

From Dean's Desk:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's) and course objectives and course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education. Semester based Credit and Grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 3-2 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

Credit and grading based system was implemented for First Year of Engineering from the academic year 2012-2013. Subsequently this system will be carried forward for Second Year Engineering in the academic year 2013-2014, for Third Year and Final Year Engineering in the academic years 2014-2015 and 2015-2016 respectively.

Dr. S. K. Ukarande Dean, Faculty of Technology, Member - Management Council, Senate, Academic Council University of Mumbai, Mumbai

Preamble:

In the process of change in the curriculum there is a limited scope to have major changes in the fundamental subjects which are mainly part of second year of engineering. The exposure to the latest technology and tools used all over the world is given by properly selecting subjects and their hierarchy in pre-final and final year. Thus this syllabus is made to groom the undergraduate students best suited and competent in all respect with best possible efforts put in by the experts in framing detail contents of individual subjects.

The engineering education in India is expanding in manifolds and the main challenge is the quality education. All the stakeholders are very much concerned about it.

The institution or program of study is committed and open to external review to meet certain minimum specified standards. The major emphasis of this process is to measure the outcomes of the program. Program outcomes are essentially a range of skills and knowledge that a student will have at the time of graduation.

So the curriculum must be constantly refined and updated to ensure that the defined objectives and outcomes are achieved. Students must be encouraged to comment on the objectives and outcomes and the role played by the individual courses in achieving them. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

I, as Chairman, Board of Studies in Electronics Engineering University of Mumbai, happy to state here that, heads of the department and senior faculty from various institute took timely and valuable initiative to frame Program Educational Objectives as listed below.

- 1. To provide students with a strong foundation in the mathematical, scientific and engineering fundamentals necessary to formulate, solve and analyze engineering problems and to prepare them for graduate studies.
- 2. To prepare students to demonstrate an ability to identify, formulate and solve electronics engineering problems.
- 3. To prepare students to demonstrate ability to design electrical and electronics systems and conduct experiments, analyze and interpret data.
- 4. To prepare students to demonstrate for successful career in industry to meet needs of Indian and multi-national companies.
- 5. To develop the ability among students to synthesize data and technical concepts from applications to product design.
- 6. To provide opportunity for students to work as part of teams on multidisciplinary projects.
- 7. To promote awareness among students for the life-long learning and to introduce them to professional ethics and codes of professional practice.

These are the suggested and expected main objectives and individual affiliated institute may add further in the list. In addition to Program Educational Objectives, for each course of undergraduate program, objectives and expected outcomes from learner's point of view are also included in the curriculum to support the philosophy of outcome based education. I believe strongly that small step taken in right direction will definitely help in providing quality education to the stake holders.

The subjects offered to undergraduate students in final year are at par to the requirement of industry. The students are also made competent to appear for various competitive examination conducted in India and abroad. The subjects offered are at enough level to

prepare a base of the students to understand and learn latest state of technology. The students are trained in such a way that they become versatile in hardware and software simulation. Some subjects offered upgrades them in the field of information and technology which is a need of today's' era.

At the end I must outset extend my gratitude to all experts who contributed to make curriculum competent at par with latest technological development in the field of electronics engineering.

Dr. D. G. Borse Chairman, Board of Studies (Electronics Engineering)

<u>Semester - VII</u>									
Sub Code	Subject Name	Teach	ing Schem	e(Hrs.)		Credits Assi	gned		
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
EXC701	Embedded System	04			04			04	
	Design								
EXC702	IC Technology	04			04			04	
EXC703	Power Electronics –II	04			04			04	
EXC704	Computer	04			04			04	
	Communication								
	Networks								
EXC 705X	Elective - I	04			04			04	
EXC 706	Project - I					02		02	
EXL701	Embedded System		02			01		01	
	Design Laboratory								
EXL702	IC Technology		02			01		01	
	Laboratory								
EXL703	Power Electronics –II		02			01		01	
	Laboratory								
EXL704	Computer		02			01		01	
	Communication								
	Networks Laboratory								
EXL705X	Elective – I Laboratory		02			01		01	
Total		20	10		20	07		27	

Subject	Subject Name			Exa	mination Sc	heme			
Code				Theory Marks		Term	Practical	Oral	Total
		I	nternal	assessment	End Sem.	Work	& Oral.		
		Test	Test	Ave. Of Test 1	Exam				
		1	2	and Test 2					
EXC701	Embedded System	20	20	20	80	-			100
	Design								
EXC702	IC Technology	20	20	20	80				100
EXC703	Power Electronics –II	20	20	20	80				100
EXC704	Computer	20	20	20	80				100
	Communication								
	Networks								
EXC705X	Elective - I	<mark>20</mark>	<mark>20</mark>	<mark>20</mark>	<mark>80</mark>	<mark></mark>		<mark></mark>	100
EXC706	Project -I					25		25	50
EXL701	Embedded System					25		25	50
	Design Laboratory								
EXL702	IC Technology					25		25	50
	Laboratory								
EXL703	Power Electronics –II					25		25	50
	Laboratory								
EXL704	Computer					25		25	50
	Communication								
	Networks Laboratory								
EXL705X	Elective – I Laboratory					25		25	50
Total				100	400	150	00	150	800

<mark>Elective – I</mark>	
Code	Name of Elective
EXC7051	Digital Image Processing
EXC7052	Artificial Intelligence
EXC7053	ASIC Verification
EXC7054	Optical Fiber Communication

Semester -VIII

Sub Code	Subject Name	Teach	ing Schem	e(Hrs.)		Credits Assi	gned	
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
EXC801	CMOS VLSI Design	04			04			04
EXC802	Advanced Networking	04			04			04
	Technologies							
EXC803	MEMS Technology	04			04			04
EXC804X	Elective -II	04			04			04
EXC806	Project - II		04			04		04
EXL801	CMOS VLSI Design		02			01		01
	Laboratory							
EXL802	Advanced Networking		02			01		01
	Technologies Laboratory							
EXL803	MEMS Laboratory		02			01		01
EXL804X	Elective –II Laboratory		02			01		01
Total		16	12		16	08		24

Subject	Subject Name			Ex	amination S	Scheme			
Code			Т	heory Marks		Term	Practical	Oral	Total
		Int	ternal a	ssessment	End	Work	& Oral.		
		Test	Test	Ave. Of	Sem.				
		1	2	Test 1 and	Exam				
				Test 2					
EXC801	CMOS VLSI Design	20	20	20	80	-			100
EXC802	Advanced Networking	20	20	20	80				100
	Technologies								
EXC803	MEMS Technology	20	20	20	80				100
EXC804X	Elective -II	20	20	20	80				100
EXC806	Project - II					50		50	100
EXL801	CMOS VLSI Design					25		25	50
	Laboratory								
EXL802	Advanced Networking					25		25	50
	Technologies Laboratory								
EXL803	MEMS Technology					25		25	50
	Laboratory								
EXL804X	Elective –II Laboratory					25		25	50
Total			80		320	150		150	700
IUU				00		100		100	,00

Elective –II

Code	Name of Elective
EXC8041	Robotics
EXC8042	Mobile Communication
EXC8043	Digital Control System
EXC8044	Biomedical Electronics

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
EXC701	Embedded	04			04			04	
	System Design								

Course	Course Name		Examination Scheme								
Code			Th	eory Marks	Term	Practical	Oral	Total			
		Internal assessment			End Sem.	Work					
		Test 1	Test 2	Ave. Of	Exam						
				Test 1 and							
				Test 2							
EXC701	Embedded	20	20	20	80	-	-	-	100		
	System Design										

Course Pre-requisite:

- EXC403: Microprocessor and Peripherals
- EXC501: Microcontroller & Applications

Course Objectives:

- 1. To teach scope, usage, requirements, challenges and general design methodology of embedded system
- 2. To apply hardware and software knowledge to develop embedded system applications according to requirement and constraints

Course Outcomes:

After successful completion of the course student will be able to

- 1. interpret component's functional and electrical specifications and its implication and advantage in design.
- 2. develop their skill to select/choose proper components, approach, and method to develop optimal system.

Module	Unit	Topics	Hrs.
INO.	INO.	Eundomentals of Embadded System	0
1	11	Fundamentals of Embedded System	0
	1.1	Actuators (solenoid values relay/switch opto-couplers) Communication Interface	
		Embedded firmware (RTOS Drivers Application programs) Power-supply (Battery	
		technology Solar) PCB and Passive components Safety and reliability environmental	
		issues. Ethical practice.	
	1.2	Characteristics and quality attributes (Design Metric) of embedded system. Real time	
		system's requirements, real time issues, interrupt latency.	
	1.3	Embedded Product development life cycle, Program modeling concepts: DFG, FSM,	
		Petri-net, UML	
2		Embedded Serial Communication	4
	2.1	Study of basic communication protocols like SPI, SCI (RS232, RS485), I ² C, CAN, Field-	
		bus (Profibus), USB (v2.0), Bluetooth, Zig-Bee, Wireless sensor network	
3		Embedded Hardware and Design	12
	3.1	Low power hardware design (MSP430 / Cortex-M3 based Real time clock and PWM dc	
		motor control as a case study using on chip timers and watch-dog-timers).	
	3.2	Introduction to ARM-v7-M (Cortex-M3), Comparison of ARM-v7-A (CortexA8), ARM-	
	2.2	v/-R (CortexR4), ARM-v/-M (Cortex-M3)	
	3.3	Direct digital solution using CPLD, FPGA, its advantages, and introduction to related	
1		Embedded Software, Firmware Concents and Design	16
4	41	Embedded C programming concepts and Design	10
	4.1	for Speed/Memory needs. Interrupt service routines, macros, functions, modifiers, data	
		types device drivers Multithreading programming (Laboratory work on 12MF Java	
		mobile application)	
	4.2	Basic embedded C programs/applications for ARM-v7, using ARM-GCC-tool-chain.	
		Emulation of ARM-v7 (e.g. using OEMU), and Linux porting on ARM-v7 (emulation)	
		board	
	4.3	Real time operating system: POSIX Compliance, Need of RTOS in Embedded system	
		software, Foreground/Background systems, multitasking, context switching, IPC,	
		Scheduler policies, Architecture of kernel, task scheduler, ISR, Semaphores, mailbox,	
		message queues, pipes, events, timers, memory management, RTOS services in contrast	
		with traditional OS.	
	4.4	Introduction to μ COS-II RTOS, study of kernel structure of μ COS-II, Synchronization in	
		μ COS-II, Inter-task communication in μ COS-II, Memory management in μ COS-II,	
		porting of RTOS on ARM-v/ (emulation) board, Application developments using μ COS-	
	4 5		
=	4.5	Introduction Linux OS, Linux IPC usage, basic device (drivers) usage.	04
3	5 1	Simulation, Testing and Debugging Methodology and Tools	04
	5.1	testing Hardware emulation logic analyzer	
6		Embedded System Designing	08
U	61	Requirement analysis Hardware blocks diagram System model (like FSM UMI)	00
	0.1	Software architectures (modules drivers) and Component/hardware selection covering	
		following cases: Hard real time/ Mission critical. Missile Car cruise control medical	
		monitoring systems, process control system (temp, pressure) Soft real time: Automated	
		vending machines, digital camera, media-player. Communication: Embedded web servers.	
		routers, Wireless (sensor) networks.	
		Total	52

- 1. Embedded Systems, Rajkamal, TMH, 2008.
- 2. Frank Vahid Embedded Systems, Wiley India, 2002
- 3. ARM System-on-Chip Architecture, Steve Furber Pearson 2005
- 4. Jean J Labrose MicroC / OS-II, Indian Low Price Edition 2002
- 5. DR.K.V.K.K. Prasad Embedded / real time system, Dreamtech
- 6. Iyer, Gupta Embedded real systems Programming, TMH
- 7. Embedded systems software primer, David Simon Pearson
- 8. ARM System Developers Guide- Sloss, Symes, Wright, ElsevierMorgan Kaufman, 2005
- 9. LPC2148 Data Sheets www.arm.com
- 10. ARM Programers/architectural manual.
- 11. MSP430 architectural manual.
- 12. Embedded Microcomputer Systems Real Time Interfacing Jonathan W. Valvano; Cengage Learning; Third or later edition.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered for final internal assessment.

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be selected from all the modules.

Subject Code	Subject Name	Te	aching Sch	eme	Credits Assigned			
		Theory Practical Tutorial			Theory	TW/Practical	Tutorial	Total
EXC702	IC	04			04			04
	Technology							

Subject	Subject				Examination S	Scheme			
Code	Name			Theory Mar	ks	Term	Practical	Oral	Total
		Internal assessment			End Sem.	Work			
		Test	Test	Avg. of	Exam				
		1	2	Test 1 and					
				Test 2					
EXC702	IC	20	20	20	80				100
	Technology								

Course Pre-requisite:

- EXC302: Electronic Devices
- EXC303: Digital Circuits and Design
- EXC402: Discrete Electronic Circuits
- EXC502: Design With Linear Integrated Circuits
- EXC601: VLSI Design

Course Objectives:

- 1. To teach fundamental principles of fabrication of VLSI devices and circuits
- 2. To disseminate knowledge about novel VLSI devices

Course Outcomes:

After successful completion of the course student will be able to

- 1. demonstrate a clear understanding of CMOS fabrication flow and technology scaling
- 2. demonstrate a clear understanding of various MOS fabrication processes, semiconductor measurements, packaging, testing and advanced semiconductor technologies
- 3. discuss physical mechanism in novel devices
- 4. verify processes and device characteristics via simulations

Module	Unit	Topics	Hrs.
No.	No.		
1.0		Environment and Crystal Growth for VLSI Technology	8
	1.1	Environment: Semiconductor technology trend, Clean rooms, Wafer cleaning	
	1.2	Semiconductor Substrate: Phase diagram and solid solubility, Crystal structure,	
		Crystal defects, Czochralski growth, Bridgman growth of GaAs, Float Zone growth,	
		Wafer Preparation and specifications	
2.0		Fabrication Processes Part 1	10
	2.1	Deposition: Evaporation, Sputtering and Chemical Vapor Deposition	-
	2.2	Epitaxy: Molecular Beam Epitaxy, Vapor Phase Epitaxy, Liquid Phase Epitaxy,	
	• •	Evaluation of epitaxial layers	-
	2.3	Silicon Oxidation: Thermal oxidation process, Kinetics of growth, Properties of	
	2.4	Silicon Dioxide, Oxide Quality, nigh k and low k dielectrics	-
	2.4	Diffusion: Nature of diffusion, Diffusion in a concentration gradient, diffusion	
		diffused layers	
	25	In Implantation: Penetration range ion implantation systems, process	-
	2.3	considerations implantation damage and annealing	
3.0		Fabrication Processess Part 2	10
0.0	3.1	Etching: Wet chemical etching dry physical etching, dry chemical etching reactive	10
	0.1	ion etching, ion beam techniques	
	3.2	Lithography: Photoreactive materials. Pattern generation and mask making, pattern	-
		transfer, Electron beam, Ion beam and X-ray lithography	
	3.3	Device Isolation, Contacts and Metallization: Junction and oxide isolation,	
		LOCOS, trench isolation, Schottky contacts, Ohmic contacts, Metallization and	
		Packaging	
	3.4	CMOS Process Flow: N well, P-well and Twin tub	
	3.5	Design rules, Layout of MOS based circuits (gates and combinational logic), Buried	
		and Butting Contact	
4.0		Measurements, Packaging and Testing	10
	4.1	Semiconductor Measurements: Conductivity type, Resistivity, Hall Effect	
		Measurements, Drift Mobility, Minority Carrier Lifetime and diffusion length	4
	4.2	Packaging: Integrated circuit packages, Electronics package reliability	-
	4.3	Testing: Technology trends affecting testing, VLSI testing process and test	
5 0		equipment, test economics and product quality	
5.0	F 1	SOLT I SOLUTION SOLUTION SUMON DE LA SOLUTION SOLUTION	08
	5.1	SOI rechnology: SOI fabrication using SIMOX, Bonded SOI and Smart Cut, PD	
	5 2	CaAs Tashnologies: MESEET Tashnology Digital Tashnologies MMIC	-
	5.4	technologies. MODEET and Optoelectronic Devices	
	53	Silicon Bipolar Technologies: Second order effects in bipolar transistor	-
	5.5	Performance of BIT. Bipolar processes and BiCMOS	
6.0		Novel Devices	06
0.0	6.1	Multigate Device: Various multigate device configurations (device structure and	
	~~*	important features)	
	6.2	Nanowire: Fabrication and applications	1
	6.3	Graphene Device: Carbon nanotube transistor fabrication, CNT applications	1
		Total	52

- 1. James D. Plummer, Michael D. Deal and Peter B. Griffin, "Silicon VLSI Technology", Pearson, Indian Edition.
- 2. Stephen A. Campbell, "*The Science and Engineering of Microelectronic Fabrication*", Oxford University Press, 2nd Edition.
- 3. Sorab K. Gandhi, "VLSI Fabrication Principles", Wiley, Student Edition.
- 4. G. S. May and S. M. Sze, "Fundamentals of Semiconductor Fabrication", Wiley, First Edition.
- 5. Kerry Bernstein and N. J. Rohrer, "SOI Circuit Design Concepts", Kluwer Academic Publishers, 1st edition.
- 6. Jean-Pierre Colinge, "FinFETs and Other Multigate Transistors", Springer, 1st edition
- 7. M. S. Tyagi, "Introduction to Semiconductor Materials and Devices", John Wiley and Sons, 1st edition.
- 8. James E. Morris and Krzysztol Iniewski, "Nanoelectronic Device Applications Handbook", CRC Press
- 9. Glenn R. Blackwell, "The electronic packaging", CRC Press
- 10. Michael L. Bushnell and Vishwani D. Agrawal, "Essentials of Electronic Testing for digital, memory and mixed-signal VLSI circuits", Springer

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be selected from all the modules.

Subject Code	Course Name	Teaching Scheme		Credits Assigned							
		Theory	Practical	Tutorial	Theory	TW/ Practical	Tutorial	Total			
EXC703	Power Electronics II	04			04			04			

Course	Course				Examination Sc	heme			
Code	Name			Theory Mar	ks	Term	Practical	Oral	Total
		Int	ernal as	ssessment	End Sem. Exam	Work			
		Test	Test	Avg. of					
		1	2	Test 1 and					
				Test 2					
EXC703	Power	20	20	20	80				100
	Electronics								
	Π								

Course Pre-requisites:

- EXC 604: Power Electronics I
- EXC 404: Principles of Control Systems

Course Objectives:

- 1. To enhance and expand the ideas of students for more complex power electronic systems.
- 2. To teach the analytical methods in power electronic systems.
- 3. To expose the students to various applications of power electronics in various electronics equipments and drives.

Course Outcomes:

After successful completion of the course students will be able to:

- 1. Thoroughly understand the modern methods of analysis and control of power electronic systems.
- 2. Carry out the theoretical analysis of the power electronic systems from the 'Systems Theory' point of view.
- 3. Appreciate the ubiquity of power electronics systems in engineering fields
- 4. Simulate and analyze power electronic systems

Module	Unit	Topics	Hrs.
No.	No.		
1		Rectifiers and Inverters:	12
	1.1	Effect of source inductance in 1-phase and 3-phase rectifiers, distortion in line current	
		waveforms, voltage distortion for diode and SCR based rectifiers	
	1.2	PWM for 3-phase voltage source inverters, Space Vector Modulation (SVM) technique	
		for 3-phase voltage source inverters, hysteresis control.	
2		DC-DC Converters:	10
	2.1	Average model, linearized and transfer function models, state-space average models of	
		basic buck, boost and buck-boost converters, Feedback control of these converters (PI	
		and PID).	
3		Power Electronic Applications	06
	3.1	Use of power electronic systems in SMPS, Battery charging systems, UPS and	
		Induction heating.	
4		Power Electronic Applications in DC Drives	10
	4.1	Various schemes of DC motor speed control, single-phase half-wave semi converter &	
		full converter drive for separately excited DC motor, Dynamic and Regenerative	
		braking of DC motor	
5		Power Electronic Applications in AC Drives	14
	5.1	Introduction to speed control of three-phase induction motor methods:	
		i) Stator voltage	
		ii) Variable frequency	
		iii) Rotor resistance	
		iv) V/f control	
		v) Regenerative braking.	
		Total	52

- 1. M. Rashid, Power Electronics: Circuits, Devices, and Applications, PHI, 3rd Edition.
- 2. By M. D. Singh, K. B. Khanchandani, Power Electronics, Tata McGraw Hill, 2nd Edition.
- 3. Mohan, Undeland and Riobbins, Power Electronics: Converters, Applications and Design, Wiley (Student Edition), 2nd Edition.
- 4. P. S. Bimbhra, Power Electronics, Khanna Publishers, 2012.
- 5. R. W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, Springer, 2nd Edition.
- 6. J. P. Agrawal, Power Electronics Systems: Theory and Design, Pearson Education, 2002.
- 7. S. Bacha, I. Munteanu and A. Bratcu, Power Electronic Converters: Modeling and Control, Springer-Verlag, 2014.
- 8. H. Sira-Ramírez, R. Silva-Ortigoza, Control Design Techniques in Power Electronics Devices, Springer-Verlag, 2006

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course Code	Course Name	Teaching Scheme			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
EXC704	Computer	04			04			04	
	Communication								
	and Networks								

Course	Course Name				Examination	Scheme			
Code				Theory Marks	5	Term	Practical	Oral	Total
		In	ternal a	ssessment	End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1 and					
				Test 2					
EXC704	Computer	20	20	20	80	-	-	-	100
	Communication								
	and Networks								

Pre requisite :

- EXC 405: Fundamentals of Communication Engineering
- EXC:504: Digital Communication

Course Objective:

- 1. To ensure that students have the necessary networking skills to design, implement and analyze communication networks.
- 2. Students will be able to design, implement, and analyze communication networks.

Course Outcome: After Completing this course student will be able to

- 1. Understand the fundamentals of communication and Computer networks.
- 2. Have the capability of designing and analyzing data transmission protocols and data link control protocols.
- 3. Able to discuss major trends in industry and current research activities within the discipline.
- 4. Able to implement networking protocols using TCP/IP based on socket programming.

Module No.	Unit No.	Topics	Hrs.
1.	2100	Introduction to Network Architectures, Protocol Layers, and Service models	10
	1.1	Network Hardware: Topologies, LAN, MAN, WAN, Wireless network, Home	
		Network, Internetworks, Virtual LANs	
	1.2	Network Software: Protocol Hierarchies, Design Issues for the layers, Connection	
		oriented and connectionless Services	
	1.3	Reference Models: Layers details of OSI, TCP/IP Models, Protocol Layers and	
		Their Service Models	
2		Physical-layer Services and Systems	08
	2.1	Introduction to physical media, Coax, fiber, twisted pair, DSL, HFC	
	2.2	Data link layer services and protocols: Link-layer and its services, Ethernet, hubs,	
		bridges, and switches, Link- layer addressing, Error-detection and error-correction.	
		Parity, check-summing, CRC, Manchester encoding. Aloha protocols, Control	
		Access Protocol, Carrier Sense	
	2.3	Multiple Access (CSMA), Local Area Networks - Ethernet, Token ring, FDDI.	
		WiMax, cellular, satellite, and telephone networks, Bit transmission, Frequency	
		division multiplexing. Time division multiplexing	10
3	1	Data Link Layer Protocol	10
	3.1	PPP, HDLC, Stop and wait protocol	10
4	4.1	Network Layer Services and Protocols	10
	4.1	Switching fabric, Routing and forwarding, Queues and buffering, Virtual-circuit and	
	4.0	datagram networks, Internet protocol	
	4.2	IPV4 and IPV6, Tunneling, LS and DV algorithms. Routing in the Internet, RIP,	
	12	Droadcast and multicast Handling mobility	
5	4.3	Broadcast and multicast, Handling mobility	00
5	51	CPN and SP. TCD and UDD. Dort numbers. Multiplaying and do multiplaying	Vð
	5.1	Flow control and congestion control Egirness Delay jitter and loss in packet	
	5.4	Flow control and congestion control. Fairness, Delay, jitter, and loss in packet-	
	53	Bondwidth throughput and quality of service	
6	3.3	Principles of Network Applications	06
U	61	Application layer protocols such as HTTP FTP and SMTP	00
	6 2	Peer-to-Peer File Sharing Protocols and Architectures ISPs and Domain name	
	0.4	systems. Socket API and network socket programming	
		Total	52

- 1. B. A. Forouzan, "Data Communications and Networking", TMH, Fourth Edition.
- 2. S. Tanenbaum, "Computer Networks", Pearson Education, Fourth Edition.
- 1. Computer Networking: A Top-Down Approach, by J. F. Kurose and K. W. Ross, Addison Wesley, 5th Edition, March 2009, ISBN-13: 978-0136079675.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course Code	Course Name	Те	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
EXC7051	Digital Image Processing	04			04			04	

Course	Course				Examination Sch	neme			
Code	Name	Theory Marks				Term	Practical	Oral	Total
		Internal assessment			End Sem.	Work			
		Test	Test	Ave. Of	Exam				
		1	2	Test 1 and					
				Test 2					
EXC7051	Digital	20	20	20	80	-	-	-	100
	Image								
	Processing								

Course Pre-requisite:

- EXS 401 : Applied Mathematics IV
- EXC 504 : Signal and Systems

Course Objectives:

- 1. To develop an overview of the field of image processing
- 2. To learn the fundamental concepts of Digital Image Processing .
- 3. To understand basic image enhancement and segmentation techniques.
- 4. To illustrate Image Transform calculations mathematically and develop fast transform algorithm
- 5. To learn Image Compression and Decompression Techniques

Course Outcomes:

After successful completion of the course student will be able to

- 1. Understand the concept of Digital Image processing.
- 2. Explain image enhancement and Segmentation technique.
- 3. Understand Digital Image compression and decompression techniques
- 4. Perform Binary Image Processing Operations

Module	Unit	Topics	Hrs.
No.	No.		
1		Digital Image Processing Fundamentals	06
	1.1	Introduction: Background, Digital Image Representation, Fundamental Steps in	
		Image Processing, Elements of a Digital Image Processing System	-
	1.2	Digital Image Fundamentals: Elements of Visual Perception, A Simple Image	
		Model, Sampling and Quantization, Some Basic Relationships between Pixels,	
		Imagining Geometry. Image File Formats : BMP, TIFF and JPEG. Colour Models	
		(RGB, HSI, YUV)	
2		Image Enhancement	08
	2.1	Spatial Domain Methods, Frequency Domain Methods, Some Simple Intensity	
		Transformations, Histogram Processing, Image Subtraction, Image Averaging,	
		Background	
	2.2	Smoothing Filters, Sharpening Filters, Lowpass Filtering, Highpass Filtering,	
		Generation of Spatial Masks from Frequency Domain Specifications. Homomorphic	
		Filtering.	00
3	- 2.1	Image Segmentation and Representation	08
	3.1	Detection of Discontinuities, Edge Linking using Hough Transform, Thresholding,	
	2.2	Region based Segmentation, Split and Merge Technique,	
	3.2	Image Representation and Description, Chain Code, Polygonal, Representation,	
4		Shape Number, Moments.	06
4	4.1	Binary Image Processing	06
	4.1	Binary Morphological Operators, Hit-or-Miss Transformation, Boundary Extraction,	
		Algorithm and Classical Algorithm	
5		Imaga Transform	12
	51	Introduction to the Fourier Transform. The Discrete Fourier Transform Some	12
	3.1	Properties of the Two-Dimensional Fourier Transform East Fourier	
		Transform(FFT)	
	5.2	Discrete Hadamard Transform(DHT), Fast Hadamard Transform(FHT), Discrete	
		Cosine Transform(DCT), Discrete Wavelet Transform(DWT).	
6		Image Compression:	12
		Fundamentals – Coding Redundancy, Interpixel Redundancy, Psychovisual	
		Redundancy, Fidelity Criteria.	
	6.1	Image Compression Models – The Source Encoder and Decoder, Lossless	
		Compression Techniques : Run Length Coding, Arithmetic Coding, Huffman	
		Coding, Differential PCM,	
	6.2	Lossy Compression Techniques: Improved Gray Scale Quantization, Vector	
		Quantization, JPEG, MPEG-1.	
		Total	52

- 1. Rafel C. Gonzalez and Richard E. Woods, 'Digital Image Processing', Pearson Education Asia, Third Edition, 2009,
- 2. S. Jayaraman, E.Esakkirajan and T.Veerkumar, "Digital Image Processing" TataMcGraw Hill Education Private Ltd, 2009,
- 3. Anil K. Jain, "Fundamentals and Digital Image Processing", Prentice Hall of India Private Ltd, Third Edition

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
EXC7052	Artificial Intelligence	04			04			04	

Course	Course			F	Examination S	cheme				
Code	Name]	Theory Marks		Term	Practical	Oral	Total	
		Iı	nternal a	ssessment	End Sem.	Work				
		Test	Test 2	Ave. Of Test	Exam					
		1		1 and Test 2						
EXC7052	Artificial	20	20	20	80	-	-	-	100	
	Intelligence									

Course Prerequisite:

- Knowledge of linear algebra, multivariate calculus, and probability theory
- Knowledge of a programming language (MATLAB /C/C ++ recommended)

Course Objective:

- 1. To study basics of biological Neural Network.
- 2. To understand the different types of Artificial Neural Networks
- 3. To know the applications of ANN
- **4.** To study fuzzy logic and fuzzy systems

Course Outcome: At the end of completing the course of Artificial Neural Networks, a student will be able to:

- 1. Choose between different types of neural networks
- 2. Design a neural network for a particular application
- 3. Understand the applications of neural networks
- 4. Appreciate the need for fuzzy logic and control

Module	Unit	Topics	Hrs.
NO.	NO.		0
1.		Fundamental Concepts of Neural Networks	8
	1.1	Difference between fuzzy and crisp sets and applications of fuzzy logic and	
	1.2	Biological neurons, McCulloch and Pitts models of neuron, Important Terms of	
		ANNs, McCulloch-Pitts Neuron, Hebb Network, Supervised learning,	
	1.3	Applications and scope of Neural Network	
2		Supervised Learning Networks	12
	2.1	Perception Networks: Adaline, Madaline	
	2.2	Back Propagation Network	
	2.3	Function Network	
3		Unsupervised learning network	12
	3.1	Max Net, Mexican Hat, Kohonen Self-organizing Feature	
	3.2	Maps, Learning Vector Quantization, Adaptive Resonance Theory	
4		Associative networks	10
	4.1	Pattern Association, Auto-associative Memory Network, Hetero-associative Memory Network, Bidirectional Associative Memory, Discrete Hopfield Networks	
	4.2	Special networks: Simulated annealing neural networks, Boltzmann machine, Brain-in-a-Box	
5		Fuzzy logic	10
	5.1	Fuzzy sets, Properties, Operations on fuzzy sets, Fuzzy relation Operations on	
	5 2	The extension principle Eugzy mean Membership functions Eugzification and	
	3.4	defuzzification methods	
	5.3	Fuzzy controllers, Adaptive neuro-fuzzy information systems (ANFIS)	
		Total	52

- 1. Simon Haykin, "Neural Network a Comprehensive Foundation", Pearson Education
- 2. Dr.S.N.Sivanandam,Mrs S.N. Deepa Introduction to Soft computing tool Wiley Publication
- 3. Satish Kumar Neural Networks: A classroom Approach Tata McGraw-Hill
- 4. Thimothy J. Ross, "Fuzz V Logic with Engineering Applications", McGraw -Hill
- 5. Rajsekaran S, Vijaylakshmi Pai, Neural Networks, Fuzzy Logic, and Genetic Algorithms, PHI
- 6. Hagan, Demuth, Beale, 'Neural Network Design', Thomson Learning
- 7. Christopher M Bishop Neural Networks For Pattern Recognition ,Oxford Publication
- 8. William W Hsieh Machine Learning Methods in the Environmental Sciences Neural Network and Kernels Cambridge Publication
- 9. Dr.S.N.Sivanandam, Dr.S.Sumathi Introduction to Neural Network Using Matlab Tata McGraw-Hill

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject Code	Subject Name	Te	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
EXC7053	ASIC	04			04			04	
	Verification								

Subject	Subject				Examination S	Scheme				
Code	Name			Theory Mar	ks	Term	Practical	Oral	Total	
		Int	ernal as	ssessment	End Sem.	Work				
		Test Test Avg. of			Exam					
		1	2	Test 1 and						
				Test 2						
EXC7053	ASIC	20	20	20	80				100	
	Verification									

Course Pre-requisite:

- EXL304: Object Oriented Programming Methodology Laboratory
- EXC303: Digital Circuits and Design

Course Objectives:

- 1. To teach ASIC Verification fundamentals
- 2. To highlight the significance of verification in VLSI industry

Course Outcomes:

After successful completion of the course student will be able to

- 1. demonstrate an understanding of programmable devices and languages
- 2. demonstrate an understanding of verification process in VLSI systems
- 3. write system verilog code for VLSI systems
- 4. carry out verification of design successfully using simulators

Module	Unit	Topics	Hrs.
1 1	INO.	Programmable Devices and Varilag	08
1	11	Programmable Devices and Vernog	Võ
	1.1	Spartan -6 family devices	
	12	Verilog HDI : Data types expressions assignments behavioral gate and switch level	
	1.4	modeling tasks and functions	
	1.3	Verification Basics: Technology challenges Verification methodology options	-
	1.0	Verification methodology Testbench creation testbench migration Verification languages	
		Verification IP reuse. Verification approaches. Verification and device test. Verification	
		plans, reference design of Bluetooth SoC. Verification Guidelines	
2		Data types, procedural statements and testbench	08
_	2.1	Data Types: Built in, Fixed size array, dynamic array, queues, associative array, linked list,	
		array methods, choosing a storage type, creating new types with typedef, creating user-	
		defined structures, type conversion, enumerated types, constants, strings, expression width	
	2.2	Procedural Statements and Routines: Procedural statements, tasks, functions and void	
		functions, task and function overview, routine arguments, returning from a routine, local	
		data storage, time values	
	2.3	Connecting the Testbench and Design: Separating the testbench and design, the interface	
		construct, stimulus timing, interface driving and sampling, connecting it all together, top-	
		level scope, program-module interactions, system verilog assertions, the four port ATM	
		router, the ref port direction, the end of simulation, directed test for the LC3 fetch block	
3		OOP and Randomization	10
	3.1	Basic OOP: Class, Creating new objects, Object deallocation, using objects, variables, class	
		methods, defining methods outside class, scoping rules, using one class inside another,	
		understanding dynamic objects, copying objects, public vs. local, building a testbench	
	3.2	Randomization: Randomization in system Verilog, constraint details, solution	
		probabilities, controlling multiple constraint blocks, valid constraints, In-line constraints,	
		The pre-randomize and post-randomize functions, Random number functions, Constraints	
		tips and techniques, common randomization problems, Iterative and array constraints,	
		Atomic stimulus generation vs. scenario generation, random control, random number	
		generators, random device configuration	
4		IPC and advanced OOP	08
	4.1	Threads and Interprocess Communication: working with threads, disabling threads,	
		interprocess communication, events, semaphores, mailboxes, building a testbench with	
		threads and IPC	
	4.2	Advanced OOP and Testbench Guidelines: Inheritance, Blueprint pattern, downcasting	
		and virtual methods, composition, inheritance and alternatives, copying an object, abstract	
		classes and pure virtual methods, callbacks, parameterized classes	
5		Assertions and Functional Coverage	12
	5.1	System Verilog Assertions: Assertions in verification methodology, Understanding	
		sequences and properties, SystemVerilog Assertions in the Design Process, Formal	
		Verification Using Assertions and SystemVerilog Assertions Guidelines	
	5.2	Functional Coverage: Coverage types, strategies, examples, anatomy of a cover group,	
		triggering a cover group, data sampling, cross coverage, generic cover groups, coverage	
		options, analyzing coverage data, measuring coverage statistics during simulation	
6		Advanced interfaces and interfacing with C	6
	6.1	Advanced Interfaces: Virtual interfaces with the ATM router, Connecting to multiple	
		design configurations, procedural code in an interface	
	6.2	A complete System Verilog Testbench: Design blocks, testbench blocks, alternate tests	
	6.3	Interfacing with C: Passing simple values, connecting to a simple C routine, connecting to	
		C++, simple array sharing, open arrays, sharing composite types, pure and context imported	
		methods, communicating from C to system verilog, connecting other languages	
		Total	52

- 1. Chris Spear, "System Verilog for Verification: A guide to learning the testbench language features", Springer, 2nd Edition
- 2. Stuart Sutherland, Simon Davidmann, and Peter Flake, "System Verilog for Design: A guide to using system verilog for hardware design and modeling", Springer, 2nd Edition.
- 3. Ben Cohen, Srinivasan Venkataramanan, Ajeetha Kumari and Lisa Piper, "SystemVerilog Assertions Handbook", VhdlCohen Publishing, 3rd edition
- 4. System Verilog Language Reference manual
- 5. S Prakash Rashinkar, Peter Paterson and Leena Singh, "System on Chip Verification Methodologies and Techniques", Kluwer Academic, 1st Edition.
- 6. Spartan and Virtex family user manuals from Xilinx
- 7. Verilog Language Reference manual

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be selected from all the modules.

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
EXC7054	Optical Fiber	04			04			04	
	Communication								

Course	Course Name				Examination	Scheme				
Code			I	Theory Mark	S	Term	Practical	Oral	Total	
		Int	ernal as	ssessment	End Sem.	Work				
		Test	Test	Ave. Of	Exam					
		1	2	Test 1 and						
				Test 2						
EXC7054	Optical Fiber	20	20	20	80	-	-	-	100	
	Communication									

Pre requisites:

- EXC503: Electromagnetic Engineering
- EXC405: Fundamentals of Communication Engineering
- EXC505: Digital Communication.

Course Objective: To teach students

- 1. Optical fiber wave guide structures, fabrication and signal degradation in fiber
- 2. The characteristics and working of various components used in optical link
- 3. Design and management of optical networks

Course Outcome: After successful completion of the course student will be able to

- 1. understand light wave propagation through fiber
- 2. identify structures, materials, and components used in optical link
- 3. analyze transmission characteristics of fiber
- 4. design and management of optical fiber links

Module	Unit	Topics	Hrs.
No.	No.		
1.		Overview of Optical Fiber Communication	10
	1.1	The evolution of fiber optic systems, elements of an optical fiber transmission link,	
		block diagram, advantages of optical fiber communication, applications	
	1.2	Ray theory transmission, total internal reflection, acceptance angle, numerical	
		aperture and skew rays	
	1.3	Modes, electromagnetic mode theory and propagation, single mode and multimode	
		fibers, linearly polarized modes	
	1.4	Fiber material, fiber cables and fiber fabrication, fiber joints, fiber connectors, splicer	
2		Optical Sources and Detectors	10
	2.1	Coherent and non-coherent sources, quantum efficiency, modulation capability of	
		optical sources	
	2.2	LEDs: Working principle and characteristics	
	2.3	Laser diodes: Working principle and characteristics	
	2.4	Working principle and characteristics of detectors: PIN and APD, noise analysis in	
		detectors, coherent and non-coherent detection, receiver structure, bit error rate of	
		optical receivers, and receiver performance	
3		Components of Optical Fiber Networks	08
	3.1	Overview of fiber optic networks, trans-receiver, semiconductor optical amplifiers	-
	3.2	Couplers/splicer, wavelength division multiplexers and de-multiplexers	-
	3.3	Filters, isolators and optical switches	
4		Transmission Characteristic of Optical Fiber	08
	4.1	Attenuation, absorption, linear and nonlinear scattering losses, bending losses, modal	
		dispersion, waveguide dispersion and pulse broadening,	-
	4.2	Dispersion shifted and dispersion flattened fibers, and non linear effects	-
	4.3	Measurement of optical parameters, attenuation and dispersion, OTDR	
5		Optical Networks	08
	5.1	SONET and SDH standards, architecture of optical transport networks (OTNs),	
		network topologies	
	5.2	Operational principle of WDM, WDM network elements and Architectures,	
-		Introduction to DWDM, Solitons.	
6		Network Design and Management	08
	6.1	Point to point links system considerations, link power budget, and rise time budget	-
	6.2	Transmission system model, power penalty-transmitter, receiver optical amplifiers,	
		crosstalk, dispersion, wavelength stabilization.	
	6.3	Network management functions, configuration management, performance	
		management, fault management, optical safety and service interface	
		Total	52

- 1. John M. Senior, "*Optical Fiber Communication*", Prentice Hall of India Publication, Chicago, 3rd Edition, 2013
- 2. Gred Keiser, "Optical Fiber Communication", Mc-Graw Hill Publication, Singapore, 4th Edition, 2012
- 3. G Agarwal, "Fiber Optic Communication Systems", John Wiley and Sons, 3rd Edition, New York 2014
- 4. S.C. Gupta, "*Optoelectronic Devices and Systems*", Prentice Hall of India Publication, Chicago, 2005.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining question will be selected from all the modules.

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
EXL701	Embedded		02			01		01	
	System Design								
	Laboratory								

Course	Course	Examination Scheme						
Code	Name			Theory Mar	ks	Term Work	Oral	Total
		Int	ternal as	ssessment	End Sem. Exam			
		Test	Test	Ave. Of				
		1	2	Test 1 and				
				Test 2				
EXL701	Embedded					25	25	50
	System							
	Design							
	Laboratory							

At least 10 experiments based on the entire syllabus of Subject **EXC701** should be set to have well predefined inference and conclusion. Computation/simulation based experiments are encouraged. The attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the **overall performance** of the student with **every experiment graded from time to time**. The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.

Course Code	Course Name	Teaching Scheme Theory Practical Tutorial			Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
EXL702	IC Technology Laboratory		02			01		01	

Course	Course Name				Examination Scl	cheme				
Code				Theory Marks	i	Term Work	Oral	Total		
		In	Internal assessment End Sem.							
		Test	Test Test Ave. Of							
		1	2	Test 1 and						
				Test 2						
EXL702	IC Technology					25	25	50		
	Laboratory									

At least 10 experiments based on the entire syllabus of Subject **EXC702** should be set to have well predefined inference and conclusion. Computation/simulation based experiments are encouraged. The attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the **overall performance** of the student with **every experiment graded from time to time**. The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
EXL703	Power		02			01		01	
	Electronics –II								
	Laboratory								

Course	Course Name		Examination Scheme							
Code				Theory Mai	rks	Term	Oral	Total		
		Int	Internal assessment End Sem. Exam							
		Test	Test	Ave. Of						
		1	2	Test 1 and						
				Test 2						
EXL703	Power					25	25	50		
	Electronics –II									
	Laboratory									

At least 10 experiments based on the entire syllabus of Subject **EXC703** should be set to have well predefined inference and conclusion. Computation/simulation based experiments are encouraged. The attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the **overall performance** of the student with **every experiment graded from time to time**. The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.

Course Course Name Teaching Scheme	Credits Assigned
------------------------------------	------------------

Code								
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
EXL704	Computer		02			01		01
	Communication							
	Networks							
	Laboratory							

Course	Course Name	Examination Scheme						
Code				Theory Mai	Term	Oral	Total	
		Internal assessment End			End Sem. Exam	Work		
		Test	Test	Ave. Of				
		1	2	Test 1 and				
				Test 2				
EXL704	Computer					25	25	50
	Communication							
	Networks							
	Laboratory							

At least 10 experiments based on the entire syllabus of Subject **EXC704** should be set to have well predefined inference and conclusion. Computation/simulation based experiments are encouraged. The attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the **overall performance** of the student with **every experiment graded from time to time**. The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.

Course Code	Course Name	Teaching Scheme				Credits	Assigned	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
EXL705X	Elective I		02			01		01
	Laboratory							

Course	Course	Examination Scheme						
Code	Name			Theory Mai	Term		Total	
		Internal assessment			End Sem. Exam	Work	Oral	
		Test	Test	Ave. Of				
		1	2	Test 1 and				
				Test 2				
EXL705X	Elective I					25	25	50
	Laboratory							

At least 10 experiments based on the entire syllabus of Subject **EXC705X** should be set to have well predefined inference and conclusion. Computation/simulation based experiments are encouraged. The attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the **overall performance** of the student with **every experiment graded from time to time**. The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.

Practical and oral exam will be based on the entire syllabus of EXC705X

Elective – I

Code	Name of Elective									
EXC7051	Digital Image Processing									
EXC7052	Artificial Intelligence									
EXC7053	ASIC Verification									
EXC7054	Optical Fiber Communication									
Course Code	Course Name	Te	Teaching Scheme			Credits Assigned				
-------------	----------------	--------	-----------------	----------	--------	------------------	----------	-------	--	--
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total		
EXC706	Project - I)	02				01		01		

Course	Course Name				Examination So	cheme				
Code			Theory Marks				Practical	Oral	Total	
		Inte	Internal assessment End Sem.		Work					
		Test	Test	Ave. Of	Exam					
		1	2	Test 1						
				and Test						
				2						
EXc706	Project -I					25	-	25	50	

The final year students have already under gone project assignment in their pre-final year in Mini Project I and II. In final year group of maximum **four** students will be completing a comprehensive project work based on the courses studied. The project work may be internally assigned or may be externally assigned by the research institutes, industry etc. Each group will be assigned one faculty as a supervisor. This project work in final year may be extension of the Mini Project work done in pre-final year.

The main intention of Project work is to enable students to apply the knowledge and skills learned out of courses studied to solve/implement predefined practical problem. The Project work may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be

- Learning additional skills
- Development of ability to define, design, analysis and implementation of the problem and lead to its accomplishment with proper planning
- Learn the behavioral science by working in a group
- The project area may be selected in which the student intend to do further education and/or may be either intend to have employment or self employment
- The topic of project should be different and / or may be advancement in the same topic of Mini Project
- The students may use this opportunity to learn different computational techniques as well as some model development. This they can achieve by making proper selection of Project work.

The college should keep proper assessment record of the progress of project and at the end of the semester it should be assessed for awarding TW marks. The TW should be examined by approved internal faculty appointed by the head of the institute on the basis of following:

- Scope and objective of the project work.
- Extensive Literature survey.
- Progress of the work (Continuous assessment)
- Report in prescribed University format.

An approved external examiner and internal examiner appointed by the head of the institute together will assess during oral examination. The oral examination is a presentation by the group members on the project along with demonstration of the work done. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained.

Subject Code Subject Teaching Scheme Credits Assigned

	Name							
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
EXC801	CMOS VLSI Design	04			04			04

Subject	Subject				cheme	e				
Code	Name			Theory Mar	ks	Term	Practical	Oral	Total	
		Int	ernal as	ssessment	ssment End Sem.					
		Test	Test	Avg. of	Exam					
		1	2	Test 1 and						
				Test 2						
EXC801	CMOS	20	20	20	80				100	
	VLSI Design									

Course Pre-requisite:

- EXC302: Electronic Devices
- EXC303: Digital Circuits and Design
- EXC402: Discrete Electronic Circuits
- EXC502: Design With Linear Integrated Circuits
- EXC601: VLSI Design
- EXC702: IC Technology

Course Objectives:

- 1. To teach analysis and design of building blocks of CMOS Analog VLSI Circuits.
- 2. To highlight the issues associated with the CMOS analog VLSI circuit design.

Course Outcomes:

After successful completion of the course student will be able to

- 1. discuss tradeoffs involved in analog VLSI Circuits.
- 2. analyze building blocks of CMOS analog VLSI circuits.
- 3. design building blocks of CMOS analog VLSI circuits
- 4. carry out verifications of issues involved in analog circuits via simulations

No.	No.		
1.0		CMOS analog building blocks	8
	1.1	MOS Models: Necessity of CMOS analog design, Review of characteristics of	
		MOS device, MOS small signal model, MOS spice models	
	1.2	Passive and Active Current Mirrors: Basic current mirrors, Cascode current	
		mirrors and Active current mirrors	
	1.3	Band Gap References: General Considerations, Supply-independent biasing,	
		Temperature independent references, PTAT current generation and Constant Gm	
		biasing	
2.0		Single Stage Amplifiers	10
	2.1	Configurations: Basic concepts, Common source stage, Source follower, Common	
		gate stage, Cascode stage	
	2.2	Frequency Response and Noise: General considerations, Common-source stage,	
		Source followers, Common-gate stage, Cascode stage and Noise in single stage	
		amplifiers	
3.0		Differential Amplifiers	10
	3.1	Configurations: Single ended and differential operation, Basic differential pair,	
		Common-mode response, Differential pair with MOS loads, Gilbert cell	
	3.2	Frequency response and noise in differential pair	
4.0		MOS Operational Amplifiers	10
	4.1	Op-amp Design: General Considerations, performance parameters, One-stage op-	
		amps, Two-stage op-amps, Gain Boosting, Common-mode feedback, Input range	
		limitations, Slew Rate, Power supply rejection, Noise in op-amps	
	4.2	Stability and Frequency Compensation: General Considerations, Multipole	
		systems, Phase margin, Frequency compensation, compensation of two stage op-	
		amps	
5.0		Mixed Signal Circuits	10
	5.1	Switch Capacitor Circuits: MOSFETs as switches, Speed considerations,	
		Precision Considerations, Charge injection cancellation, Unity gain buffer, Non-	
		inverting amplifier and integrator	
	5.2	Oscillators: General considerations, Ring oscillators, LC oscillators, VCO	
	5.3	Phase-Locked Loop: Simple PLL, Charge pump PLL, Nonideal effects in PLL,	
		Delay locked loops and applications of PLL in integrated circuits	
6.0		Analog Layout and other concepts	04
	6.1	Analog Layout Techniques: Antenna effect, Resistor matching, capacitor	
		matching, current mirror matching, floorplanning, shielding and guard rings	
	6.2	AMS design flow, ASIC, Full custom design, Semi custom design, System on Chip,	
		System in package, Hardware software co-design	
		Total	52

- 1. B Razavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 1st Edition.
- 2. R. Jacaob Baker, Harry W. Li, David E. Boyce, "CMOS Circuit Design, Layout, and Stimulation", Wiley, Student Edition
- 3. P. E. Allen and D. R. Holberg, "*CMOS Analog Circuit Design*", Oxford University Press, 3rd Edition.
- 4. Gray, Meyer, Lewis, Hurst, "Analysis and design of Analog Integrated Circuits", Willey, 5th Edition

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course	Course Name	Teaching Scheme	Credits Assigned

Code								
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
EXC 802	Advanced	04			04			04
	Networking							
	Technologies							

Course	Course Name			Exa	mination S	Scheme					
Code		Theory Marks				Term	Practical	Oral	Total		
		Internal assessment			End	Work					
		Test 1	Test 2	Ave. Of	Sem.						
				Test 1 and	Exam						
				Test 2							
EXC 802	Advanced	20	20	20	80	-	-	-	100		
	Networking										
	Technologies										

Course Pre-requisite:

• EXE704: Computer Communication Networks

Course Objectives:

- 1. To make students familiar with data communication technologies and how to use them to: Design, Implement, Operate, Manage enterprise networks.
- 2. To introduce the concept of wireless WAN, WAP and different IEEE standards.

Course Outcomes:

Upon completion of the course, students should be able to:

- 1. Analyze the performance of networks.
- 2. Determine the network performance using monitor tools..
- 3. Set up WLAN, PAN
- 4.Explain optical networking technology

Module	Unit	Topics	Hrs.
--------	------	--------	------

No.	No.		
1		Emerging Wireless Technologies	10
	1.1	Wireless Personal Area Network – Bluetooth Bluetooth (IEEE	
		802.15.1), Definitions of the Terms Used in Bluetooth, Bluetooth	
		Protocol Stack, Bluetooth Link Types, Bluetooth Security, Network	
		Connection Establishment in Bluetooth, Network Topology in	
		Bluetooth, Bluetooth Usage Models	
	1.2	Bluetooth Applications, WAP and Bluetooth Wireless Personal Area	
		Networks (WPAN):Low Rate (LR) and High Rate (HR)Wireless	
		Sensor Network, Usage of Wireless Sensor Networks, Wireless	
		Sensor Network	
	1.3	Model, Sensor Network Protocol Stack, ZigBee Technology, IEEE	
		802.15.4 LR-WPAN Device Architecture, IEEE 802.15.3a Ultra	
		WideBand, Radio Frequency Identification.	
2		Optical Networking	06
	2.1	ONET/SDH Standards, devices, DWDM, frame format, DWDM,	
		Performance and design considerations.	
3		WAN Technologies	12
	3.1	Frame: FR concept, FR specifications, FR design and VoFR and	
		Performance and design considerations	
	3.2	ATM: The WAN Protocol: Faces of ATM, ATM Protocol	
		operations. (ATM cell and Transmission) ATM Networking basics,	
		Theory of Operations, B-ISDN reference model, PHY layer, ATM	
		Layer (Protocol model), ATM layer and cell	
	3.3	Traffic Descriptor and parameters, Traffic Congestion control	
		defined, AAL Protocol model, Traffic contract and QoS, User Plane	
		overview, Control Plane AAL, Management Plane, Sub S3	
		ATM,ATM public services	
4		Network Design	08
	4.1	Network layer design, access layer design, access network capacity,	
		network topology and Hardware and completing the access network	
		design.	
5		Network Security	08
	5.1	Security threats, safeguards and design for network security	
	5.2	Enterprise Network Security: DMZ, NAT, SNAT, DNAT, Port	
		Forwarding, Proxy, Transparent Proxy, Packet Filtering and Layer 7	
		Filtering	
6		Network Management and Control	
	6.1	Network management definitions, functional areas (FCAPS), SNMP,	08
		RMON,	
	6.2	Designing a network management solutions, Monitoring and control	
		of network activity and network project management	
		Total	52

- 1. Data Network Design by Darren Spohn, 3e McGraw Hill publications
- 2. Data Communication and Network Security by Carr and Snyder, McGraw Hill Publications.
- 3. Communication Networks by Leon-Garcia and Indra Widjaja, 2e, Tata McGraw-Hill Publications.
- 4. Information Security by Mark Stamp and Deven Shah by Wiley Publications.
- 5. Behrouz A Forouzan, Data communications and Networking 4th Edition,
- 6. McGraw-Hill Publication.
- 7. William Stallings, Data Computer Communications, Pearson Education
- 8. Wireless communication and Networking-Vijay Garg, ELSEVIER Inc
- 9. Eldad Perahita ,Next Generation wireless LANS, Cambridge Publication
- 10. Computer Networking by J. F. Kurose and K. W. Ross, Pearson Education
- 11. Local Area Networks by Gerd Keiser, McGraw-Hill Publication.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject	Course	Teaching	Credits Assigned						
Code	Name	Scheme							
		Theory	Practical	Tutorial	Theory	TW/	Tutorial	Total	
						Practical			
EXC803	MEMS	04			04			04	
	Technology								

Subject	Subject Name		Examination Scheme								
Code				Theory Mar	ks	Term	Practical	Oral	Total		
		Internal assessment E			End Sem.	Work					
		Test	Test	Ave. Of	Exam						
		1	2	Test 1 and							
				Test 2							
EXC803	MEMS	20	20	20	80	-	-	-	100		
	Technology										

Course Pre – requisite:

- EXC 404: Basic VLSI Design
- EXC 604: IC Technology

Course Objective:

- To provide a basic knowledge of MEMS processing steps and processing modules.
- To demonstrate the use of semiconductor based processing modules used in the fabrication of variety of sensors and actuators (e.g. pressure sensors, accelerometers, etc.) at the micro-scale.
- To provide an understanding of basic design and operation of MEMS sensors and transducers.

Course Outcome:

On Completion of this course Student will be able to

- Understand the underlying fundamental principles of MEMS devices including physical operation, mathematical modeling and fabrication.
- Design and simulate MEMS devices and system using standard simulation tools.
- Develop different concepts of micro system sensors and actuators for real-world applications.

Module	Unit	Topics	Hrs.
No.	No.		
1.		Introduction to MEMS	04
	1.1	Introduction to MEMS & Real world Sensor/Actuator examples (DMD, Air-bag,	
		pressure sensors). MEMS Sensors in Internet of Things (IoT), BioMedical	
		Applications	
2		MEMS Materials and Their Properties	10
	2.1	Materials (eg. Si, SiO2, SiN, Cr, Au, Ti, SU8, PMMA, Pt); Important properties:	
		Young modulus, Poisson's ratio, density, piezoresistive coefficients, TCR, Thermal	
		Conductivity, Material Structure. Understanding Selection of materials based on	
		applications.	
3		MEMS Fab Processes – 1	11
	3.1	Understanding MEMS Processes & Process parameters for: Cleaning, Growth &	
		Deposition, Ion Implantation & Diffusion, Annealing, Lithography. Understanding	
		selection of Fab processes based on Applications	
4		MEMS Fab Processes – 2	10
	4.1	Understanding MEMS Processes & Process parameters for: Wet & Dry etching, Bulk	
		& Surface Micromachining, Die, Wire & Wafer Bonding, Dicing, Packaging.	
		Understanding selection of Fab processes based on Applications	
5		MEMS Devices	11
	5.1	Architecture, working and basic quantitative behaviour of Cantilevers, Microheaters,	
		Accelerometers, Pressure Sensors, Micromirrors in DMD, Inkjet printer-head.	
		Understanding steps involved in Fabricating above devices	
6		MEMS Device Characterization	06
	6.1	Piezoresistance, TCR, Stiffness, Adhesion, Vibration, Resonant frequency, &	
		importance of these measurements in studying device behavior, MEMS Reliability	
		Total	52

- 1. An Introduction to Microelectromechanical Systems Engineering; 2nd Ed by N. Maluf, K Williams; Publisher: Artech House Inc
- 2. Practical MEMS by Ville Kaajakari; Publisher: Small Gear Publishing
- 3. Microsystem Design by S. Senturia; Publisher: Springer
- 4. Analysis and Design Principles of MEMS Devices Minhang Bao; Publisher: Elsevier Science
- 5. Fundamentals of Microfabrication by M. Madou; Publisher: CRC Press; 2 edition
- 6. Micro Electro Mechanical System Design by J. Allen; Publisher: CRC Press
- 7. Micromachined Transducers Sourcebook by G. Kovacs; Publisher: McGraw-Hill

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject Code	Subject Name	Teaching Scheme			Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
EXC8041	Robotics	04			04			04	

Subject	Subject		Examination Scheme								
Code	Name			Theory Mar	·ks	Term	Practical	Oral	Total		
		Internal assessment			End Sem.	Work					
		Test	Test	Avg. of	Exam						
		1	2	Test 1 and							
				Test 2							
EXC8041	Robotics	20	20	20	80				100		

Course Pre-requisite:

- EXS 301 : Applied Mathematics III
- EXS 401 : Applied Mathematics IV
- EXC 404 : Principles of Control Systems

Course Objectives:

- 1. To prepare students with basics of robotics
- 2. To familiarize students with kinematics & dynamics of robots
- 3. To familiarize students with path & Trajectory planning of robots
- 4. To familiarize students with robot vision

Course Outcomes:

After successful completion of the course student will be able to

- 1. Describe kinematics and dynamics of stationary and mobile robots
- 2. Describe trajectory planning for robots
- 3. Implement trajectory generation and path planning various algorithms
- 4. Work in interdisciplinary projects

Module	Unit No	Topics	Hrs.
1	110.	Fundamentals of Robotics	03
-	1.1	Robot Classification, Robot Components, Degrees of freedom, Joints, Coordinates,	05
		Coordinate frames, workspace, applications	
2		Forward & Inverse Kinematics of Robots	09
	2.1	Homogeneous transformation matrices, Inverse transformation matrices, Forward	
		and inverse kinematic equations – position and orientation	
	2.2	Denavit-Hatenberg representation of forward kinematics, Inverse kinematic	
		solutions, Case studies	
3		Velocity Kinematics & Dynamics	14
	3.1	Differential motions and velocities : Differential relationship, Jacobian,	
		Differential motion of a frame and robot, Inverse Jacobian, Singularities.	
	3.2	Dynamic Analysis of Forces : Lagrangian mechanics, Newton Euler formulation,	
		Dynamic equations of robots, Transformation of forces and moment between	
		coordinate frames	
4		Robot Motion Planning	04
	4.1	Concept of motion planning, Bug Algorithms – Bug1, Bug2, Tangent Bug	
5		Potential Functions and Visibility Graphs	08
	5.1	Attractive/Repulsive potential, Gradient descent, wave-front planner, navigation	
		potential functions, Visibility map, Generalized Voronoi diagrams and graphs,	
		Silhouette methods	
6		Trajectory planning	08
	6.1	Trajectory planning, Joint-space trajectory planning, Cartesian-space trajectories	
7		Robot Vision	06
	7.1	Image representation, Template matching, Polyhedral objects, Shape analysis,	
		Segmentation, Iterative processing, Perspective transform.	ļ
		Total	52

- 1. Robert Shilling, Fundamentals of Robotics Analysis and control, Prentice Hall of India
- 2. Saeed Benjamin Niku, "Introduction to Robotics Analysis, Control, Applications", Wiley India Pvt. Ltd., Second Edition, 2011
- 3. Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, "Principles of Robot Motion Theory, Algorithms and Implementations", Prentice-Hall of India, 2005.
- 4. Mark W. Spong , Seth Hutchinson, M. Vidyasagar, "Robot Modeling & Control ", Wiley India Pvt. Ltd., 2006
- 5. John J. Craig, "Introduction to Robotics Mechanics & Control", Third Edition, Pearson Education, India, 2009
- 6. Aaron Martinez & Enrique Fernandez, "Learning ROS for Robotics Programming", Shroff Publishers, First Edition, 2013.
- 7. Mikell P. Groover et.al, "Industrial Robots-Technology, Programming & applications" ,McGraw Hill , New York, 2008

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned					
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total		
EXC 8042	Mobile Communication	04			04			04		

Subject	Subject Name		Examination Scheme							
Code		Theory Marks				Term	Practical	Oral	Total	
		Internal assessment End Sem.				Work				
		Test 1	Test	Ave. Of	Exam					
			2	Test 1 and						
				Test 2						
EXC 8042	Mobile	20	20	20	80				100	
	Communication									

Course Pre-requisite:

- EXC 704: Computer Communication Networks
- EXC: Digital Communication

Course Objectives:

To enable the student to study, understand and appreciate the concepts of mobile communication technology. **Course Outcomes:**

After successful completion of the course student will be able to

- 1. Understand the fundamentals of mobile communications
- 2. Differentiate between GSM and CDMA
- 3. Understand the evolving wireless communication technologies.
- 4. Understand the requirement of 4 G technology

Module	Unit	Topics	Hrs.
No.	No.		
1		Cellular Communication System	10
	1.1	Introduction to Cellular Communications, Frequency reuse, Multiple Access	
		Technologies	
	1.2	Cellular Processes: Channel assignment, Call Setup, Handoff strategies,	
		interferences and system capacity	
	1.3	Traffic Theory: Trunking and grade of service, improving system capacity	
2		GSM	8
	2.1	GSM Network architecture, signaling protocol architecture, identifiers,	
		channels, Frame structure, speech coding, authentication and security, call	
		procedure, handoff procedure, services and features	
3		CDMA digital cellular standard (1S-95).	8
	3.1	Frequency and channel specifications of IS-95, forward and reverse CDMA	
		channel, packet and frame formats, mobility and radio resource management	
4		3 G Mobile Communication System	10
	4.1	2.5 G TDMA Evolution Path, GPRS, EDGE, 2.5G CDMA one cellular N/W,	
		Need of 3G Cellular N/w, IMT 2000 Global Standard, UMTS Technology,	
		W-CDMA Air interface, TD-SCDMA Technology, CDMA 2000 Cellular	
		Technology	
5		4G Wireless Standards	8
	5.1	Need for 4G network, difference between 3G and 4G, LTE, WiMAX	
6		Emerging Technologies	8
	6.1	Mobile Adhoc Network, Mobile IP and Mobility Management, Mobile TCP,	
		Wireless Sensor Networks, RFID Technology	
		Total	52

- 1. Wireless Communications Theodore S. Rappaport, Prentice Hall of India, PTR publication
- 2. Mobile & Personal Communication system & Services by Raj Pandya , Prentice –Hall of India (PHI) Private Limited
- 3. Principles of Wireless Networks-KavehPahlavan, Prashant Krishnamurthy, PHI
- 4. Wireless communication and Networking-Vijay Garg, ELSEVIER Inc
- 5. Wireless communication- Singhal_TMH
- 6. Fundamentals of Wireless Communications, "David Tse and Pramod Viswanath, Publisher, Cambridge University Press.
- 7. Wireless Communications: Andrea Goldsmith, Cambridge University Press.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject Code S	ubject Teac Name	hing Schem	e (Hrs.)	Credits Assigned				
1	Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
EXC 8043 Digi	ital 04			04			04	
Con	trol							

Subject	Subject				Examination	Scheme			
Code	Name	Theory Marks				Term	Practical	Oral	Total
		Inte	rnal as	ssessment	End Sem.	Work			
		Test 1	Test	Ave. Of	Exam				
			2	Test 1 and					
				Test 2					
EXC 8043	Digital	20	20	20	80				100
	Control								
	System								

Course Prerequisites:

- EXC404: Principles of Control System
- EXC504: Signals and Systems

Course Objective:

- 1. To study the importance of digital control
- 2. To study stability analysis of digital control systems
- 3. To study the design of digital control systems

Course Outcomes:

- 1. Students will be able to differentiate between analog and digital control and importance of digital control
- 2. Student will be able to analyze the digital control systems
- 3. Students will be able to design digital controllers

Module	Unit	Topics	Hrs.
No.	N0.		
1.0	1.1	Introduction	10
	1.1	why digital control system? Advantages and limitations, comparison of continuous and discrete data control, block diagram of digital control system	12
	1.2	Data conversion and quantization, sampling and reconstruction of analog signal, zero and first order hold	
	1.3	Impulse invariance, bilinear transformation, finite difference approximation of derivatives	
2.0		Modeling of Digital Control System	04
	2.1	Linear difference equation, pulse transfer function, input output model	
	2.2	Examples of first order continuous and discrete time systems	
	2.3	Signal flow graph applied to digital control system	
3.0		Time Domain Analysis and Stability of Digital Control System	08
	3.1	Mapping between s plane and Z plane, Jury's method, R. H. criteria	
	3.2	Comparison of time response of continuous and digital control system	
	3.3	Steady state analysis of digital control system, effect of sampling on transient	
4.0		State Space Analysis	08
7.0	41	Discrete time state equation in standard canonical form similarity transformation	00
	<u> </u>	State transition matrix solution of discrete time state equation	
	4.2	Discretization of continuous state space model and its solution	1
5.0	т.Ј	Pole Placement and Observer Design	10
5.0	51	Concept of reachability controllability constructability and observability	10
	52	Design of controller using pole placement method, dead beat controller design	
	53	Concept of duality state observer design concept of multi-rate output feedback based	
	0.0	state estimation	
6.0		Transfer Function Approach to Controller Design	10
	6.1	Control structures, internal stability,	1
	6.2	Internal model principle and system type, well behaved signals	1
	6.3	Discretization of PID controllers, pole placement controllers with performance	1
		Total	52

- 1. M. Gopal, "Digital Control and State Variable Methods", McGraw Hill companies, 3rd edition, 2009.
- 2. K. Ogata, "Discrete-Time Control Systems", PHI, 2nd edition, 2009.
- 3. B. C. Kuo, "Digital Control Systems", Oxford University press, 2nd edition, 2007.
- 4. K. M. Moudgalya, "Digital Control", Wiley India, 2012.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course code	Course Name	Teaching	Scheme (Hrs	Credit Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tut.	Total
EXC8044	Biomedical Electronics	4						4

Course	Course Name			E	xaminati	ion Sche	me		
code]	Theory (ou	ut of 100)		Term	Practical	Oral	Total
		Internal Assessment (out End				Work	and		
		of 20) Sem					oral		
		Test 1	Avg.	Exam					
EXC8044	Biomedical Electronics	20	20	20	80				150

Course Pre-requisites:

- EXC305:Electronic Instruments and Measurements
- FEC102,202: Applied Physics I and II

Course Objective:

- 1. To make students understand the Identification, classification, and working principle of various Biomedical Instruments used for Bio-potential measurement
- 2. Application of these instruments in diagnosis, therapeutic treatment and imaging fields

Course Outcome:

The Students will be able to

- 1. Identify various Bio-potential and their specifications in terms of amplitude and frequency.
- 2. Understand principle and working of various Biomedical Instruments for diagnosis applications.
- 3. Decide the applications of therapeutic instruments for treatment purpose.
- 4. Understand applications of imaging instruments and the modalities involved in each technique.

Module	Unit	Topics	Hrs.
No.	No.		
1		Bio-Potential and Measurement	08
	1.1	Structure of Cell, Origin of Bio-potential, electrical activity of cell their	
		characteristic and specifications.	
	1.2	Measurement of RMP and AP. Electrode-Electrolyte interface and types of	
		bio-potential electrodes.	
2		Physiological Systems and Related Measurement	14
	2.1	Respiratory system- Physiology of respiration and measurements of	
		respiratory related parameters	
	2.2	Cardiovascular system- Structure of Heart, Electrical and Mechanical	
		activity of Heart, ECG measurements and Cardiac arrhythmias	
	2.3	Nervous system- Nerve cell, neuronal communication, nerve-muscle	
		physiology, CNS, PNS. Generation of EEG and its measurement. Normal	
		and abnormal EEG, evoked potential and epilepsy	
	2.4	Muscular system- Generation of EMG signal, specification and	
		measurement.	
		Design of ECG amplifier	
3		Cardiovascular Measurement	08
	3.1	Blood Pressure- Direct and Indirect types.	
		Blood Flow- Electromagnetic and Ultrasonic types.	
		Blood Volume- Types of Plethysmography. (Impedance, Capacitive and	
		Photoelectric)	
		Cardiac Output- Flicks method, Dye-dilution and Thermo-dilution type.	
		Heart sound measurement	
4		Life support Instruments	08
	4.1	Pacemaker- Types of Pacemaker, mode of pacing and its application.	
		Defibrillator- AC and DC Defibrillators and their application.	
		Heart Lung machine and its application during surgery.	
		Haemodialysis system and the precautions to be taken during dialysis.	
		Baby Incubator and its application	10
5		Imaging Techniques	10
	5.1	X-Ray- Generation, X-ray tube and its control, X-ray machine and its	
		application	
	5.2	CT Scan- CT Number, Block Diagram, scanning system and application.	
		Ultrasound Imaging- Modes of scanning and their application	
	5.3	MRI- Concepts and image generation, block diagram and its application	
6		Significance of Electrical Safety	04
	6.1	Physiological effects of electrical current, Shock Hazards from electrical	
		equipments and methods of accident prevention.	
		Total	52

- 1. Leslie Cromwell, "Biomedical Instrumentation and Measurements", 2nd Edition, Pearson Education, 1980.
- 2. John G. Webster, "Medical Instrumentation", John Wiley and Sons, 4th edition, 2010.
- 3. R. S. Khandpur, "Biomedical Instrumentation", TMH, 2004
- 4. Richard Aston, "Principles of Biomedical Instrumentation and Instruments", PH, 1991.
- 5. Joseph J. Carr and John M. Brown, "Introduction to Biomedical Equipment Technology", PHI/Pearson Education, 4th edition, 2001.
- 6. John E Hall, Gyton's Medical Physiology, 12th edition, 2011

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course Code	Course Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
EXL 801	CMOS VLSI		02			01		01
	Design							
	Laboratory							

Course	Course			E	xamination S	Scheme			
Code	Name	Theory Marks				Term	Practical	Oral	Total
]	Internal	lassessment	End Sem.	Work	and		
		Test	Test	Ave. Of Test 1	Exam		Oral		
		1	2	and Test 2					
EXL801	CMOS					25		25	50
	VLSI								
	Design								
	Laboratory								

At least 10 experiments based on the entire syllabus of Subject **EXC801** should be set to have well predefined inference and conclusion. Computation/simulation based experiments are encouraged. The attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the **overall performance** of the student with **every experiment graded from time to time**. The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.

Practical and oral exam will be based on the entire syllabus of **EXC801**.

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
EXL 802	Advanced		02			01		01	
	Networking								
	Technologies								
	Laboratory								

Course	Course Name			E	xamination	Scheme			
Code			Theory Marks				Practical	Oral	Total
]	Internal assessment End Sem.				and		
		Test	Test 2	Ave. Of Test 1	Exam		Oral		
		1		and Test 2					
EXL802	Advanced					25		25	50
	Networking								
	Technologies								
	Laboratory								

At least 10 experiments based on the entire syllabus of Subject **EXC802** should be set to have well predefined inference and conclusion. Computation/simulation based experiments are encouraged. The attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the **overall performance** of the student with **every experiment graded from time to time**. The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.

Practical and oral exam will be based on the entire syllabus of EXC802.

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
EXL 803	MEMS		02			01		01	
	Technology								
	Laboratory								

Course	Course Name			Ex	xamination	Scheme	e		
Code			r	Fheory Marks	Term	Practical	Oral	Total	
		Iı	nternal	assessment	Work	and			
		Test	Test	Ave. Of Test		Oral			
		1	1 2 1 and Test 2 Exam						
EXL803	MEMS					25		25	50
	Technology								
	Laboratory								

At least 10 experiments based on the entire syllabus of Subject **EXC803** should be set to have well predefined inference and conclusion. Computation/simulation based experiments are encouraged. The attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the **overall performance** of the student with **every experiment graded from time to time**. The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.

Practical and oral exam will be based on the entire syllabus of **EXC803**.

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Total		
EXL 804X	Elective –II		02			01		01
	Laboratory							

Course	Course Name		Examination Scheme						
Code				Theory Marks	Term	Practical	Oral	Total	
		Iı	Internal assessment End Sem.				and		
		Test	Test Test Ave. Of Test 1				Oral		
		1	1 2 and Test 2						
EXL	Elective –II					25		25	50
804X	Laboratory								

At least 10 experiments based on the entire syllabus of Subject **EXE804X** should be set to have well predefined inference and conclusion. Computation/simulation based experiments are encouraged. The attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the **overall performance** of the student with **every experiment graded from time to time**. The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work.

Practical and oral exam will be based on the entire syllabus of EXE804X.

Elective –**II**

Code	Name of Elective	
EXC8041	Robotics	
EXC8042	Mobile Communication	
EXC8043	Digital Control System	
EXC8044	Biomedical Electronics	

Course Code	Course Name	Te	aching Sch	eme	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
EXC806	Project - II		04			02		02	

Course	Course Name		Examination Scheme									
Code				Theory Mar	ks	Term	Practical	Oral	Total			
		Int	ernal as	ssessment	End Sem.	Work						
		Test	Test	Ave. Of	Exam							
		1	2	Test 1 and								
				Test 2								
EXC806	Project - II					50	-	50	100			

The final year students have already under gone project assignment in their seventh semester and in this semester the students are expected to continue the project work of stage I.

The college should keep proper assessment record of the progress of project and at the end of the semester it should be assessed for awarding TW marks. The TW should be examined by approved internal faculty appointed by the head of the institute on the basis of following:

- Scope and objective of the project work.
- Extensive Literature survey.
- Progress of the work (Continuous assessment)
- Design, implementation, and analysis of the project work.
- Results, conclusions and future scope.
- Report in prescribed University format.

An approved external examiner and internal examiner appointed by the head of the institute together will assess during oral examination. The oral examination is a presentation by the group members on the project along with demonstration of the work done. In the examination each individual student should be assessed for his/her contribution, understanding and knowledge gained.

UNIVERSITY OF MUMBAI

Revised syllabus (Rev- 2016) from Academic Year 2016 -17 Under

FACULTY OF TECHNOLOGY

Mechanical Engineering

Second Year with Effect from AY 2017-18 Third Year with Effect from AY 2018-19 Final Year with Effect from AY 2019-20

As per **Choice Based Credit and Grading System** with effect from the AY 2016–17.

Co-ordinator, Faculty of Technology Preamble:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEOs) and give freedom to affiliated Institutes to add few (PEOs). It is also resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education.

Choice based Credit and Grading system enables a much-required shift in focus from teacher-centric to learnercentric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 2-3 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

Choice based Credit and grading system is implemented from the academic year 2016-17 through optional courses at department and institute level. This will be effective for SE, TE and BE from academic year 2017-18, 2018-19 and 2019-20 respectively.

Dr. S. K. Ukarande Co-ordinator, Faculty of Technology, Member - Academic Council University of Mumbai, Mumbai

Chairman's Preamble:

Engineering education in India is expanding and is set to increase manifold. The major challenge in the current scenario is to ensure quality to the stakeholders along with expansion. To meet this challenge, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education and reflects the fact that in achieving recognition, the institution or program of study is committed and open to external review to meet certain minimum specified standards. The major emphasis of this accreditation process is to measure the outcomes of the program that is being accredited. Program outcomes are essentially a range of skills and knowledge that a student will have at the time of graduation from the program. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating the philosophy of outcome based education in the process of curriculum development.

As the Chairman, Board of Studies in Mechanical Engineering of the University of Mumbai, I am happy to state here that, the Program Educational Objectives for Undergraduate Program were finalized in a brain storming sessions, which was attended by more than 40 members from different affiliated Institutes of the University. They are either Heads of Departments or their senior representatives from the Department of Mechanical Engineering. The Program Educational Objectives finalized for the undergraduate program in Mechanical Engineering are listed below;

- 1. To prepare the Learner with a sound foundation in the mathematical, scientific and engineering fundamentals
- 2. To motivate the Learner in the art of self-learning and to use modern tools for solving real life problems
- 3. To inculcate a professional and ethical attitude, good leadership qualities and commitment to social responsibilities in the Learner's thought process
- 4. To prepare the Learner for a successful career in Indian and Multinational Organisations

In addition to Program Educational Objectives, for each course of the program, objectives and expected outcomes from a learner's point of view are also included in the curriculum to support the philosophy of outcome based education. I strongly believe that even a small step taken in the right direction will definitely help in providing quality education to the major stakeholders.

Dr. S. M. Khot

Chairman, Board of Studies in Mechanical Engineering, University of Mumbai

Program Structure for B.E. in Mechanical Engineering University of Mumbai (With Effect from 2017-2018)

Semester III

Course	C N		Teaching Scheme		Credits Assigned				
Code	Course Name		(Contact Theory	Hours) Pract	The	nrv	Pract	Total	
MEC301	Applied Mathematics III**		04		04	, 		04	
MEC302	Thermodynamics*	04		04			0)4	
MEC303	Strength of Materials*		04		04	Ļ		0	4
MEC304	Production Process I*		04		04	Ļ		0	4
MEC305	Material Technology*		03		03	3		0	03
MEL301	Computer Aided Machine Drawin	ng*		2 ^{\$} +4			03	0	03
MEL302	Strength of Material*	U		02			01	0)1
MEL303	Material Technology*			02			01	0)1
MEL304	Machine Shop Practice I*			04			02	0	12
	Total			14	19		07	26	
		F	Examination	1 Scheme					
			The	eory					
Course	Course Nome	rnal Assess	ment		Exam		Droot/		
Code					End Sem Exam	Durati	Work	Oral	Total
		Test1	Test 2	Avg		on	WOIN	Orai	
						(Hrs)			
MEC301	Applied Mathematics III**	20	20	20	80	03			100
MEC302	Thermodynamics*	20	20	20	80	03			100
MEC303	Strength of Materials*	20	20	20	80	03			100
MEC304	Production Process I*	20	20	20	80	03			100
MEC305	Material Technology*	20	20	20	80	03			100
MEI 301	Computer Aided Machine						50	50	100
WILL301	Drawing*						50	50	100
MEL302	Strength of Material*						25	25	50
MEL303	Material Technology*						25		25
MEL304	Machine Shop Practice I*						50		50
Total				100	400		150	75	725

* Common with Automobile Engineering

** Common with Automobile Engineering, Production Engineering and Civil Engineering

^{\$} Theory for entire class to be conducted

Semester IV

Course	Course		Teaching	Scheme	Credits Assigned				
Code	Course Name		(Contact	Hours)					
Coue			Theory	Pract	Theory		Pract	Total	
MEC401	Applied Mathematics IV**		04		04	Ļ		04	
MEC402	Fluid Mechanics*		04		04	Ļ		0	4
MEC403	Industrial Electronics*		03		03	3		0	3
MEC404	Production Process II*		04		04	ŀ		0	4
MEC405	Kinematics of Machinery*		04		04	ŀ		0	4
MEL401	Data Base and Information Retrie	eval*		2 ^{\$} +2			02	0	2
MEL402	Fluid Mechanics*			02			01	0	1
MEL403	Industrial Electronics*			02			01	0	1
MEL404	Kinematics of Machinery*			02			01	0	1
MEL405	Machine Shop Practice II*			04			02	02	
Total			19	14	19		07	26	
		E	Examination	n Scheme					
			The	eory					
Course	Course Name Inte		rnal Assess	ment		Exam	Torm	Droot/	
Code	Course Maine				End Sem	Durati	Work	Oral	Total
		Test1	Test 2	Avg	Exam	on	WUIK	Orai	
						(Hrs)			
MEC401	Applied Mathematics IV**	20	20	20	80	03			100
MEC402	Fluid Mechanics*	20	20	20	80	03			100
MEC403	Industrial Electronics*	20	20	20	80	03			100
MEC404	Production Process II*	20	20	20	80	03			100
MEC405	Kinematics of Machinery*	20	20	20	80	03			100
MEL 401	Data Base and Information						50	50	100
IVILL+01	Retrieval*						50	50	100
MEL402	Fluid Mechanics*						25	25	50
MEL403	Industrial Electronics*						25	25	50
MEL404	Kinematics of Machinery*						25		25
MEL405	Machine Shop Practice II*						50	50	100
Total				100	400		175	150	825

* Common with Automobile Engineering

** Common with Automobile Engineering, Production Engineering and Civil Engineering

^{\$} Theory for entire class to be conducted

Semester V

Course	Course Course Name		Teachin	g Scheme	Credits Assigned					
Code	Course Name		(Contac	t Hours)			D (D		
MEGTOI			Theory	Pract	The	eory	Pract			
MEC501	Internal Combustion Engines*	1 1 4	04			14		04		
MEC502	Mechanical Measurements and Control*		04		04			0	4	
MEC503	Heat Transfer*	Heat Transfer*				14		0	4	
MEC504	Dynamics of Machinery		04		(14		0	4	
MEDLO 501X	Department Level Optional Cours	se I	04		0	94		0	4	
	Internal Compustion Engines			02			01	0	1	
MEL501	Machanical Massuraments and C	ontrol		02	-	-	01	0	1	
MEL 502	Heat Transfer	onuoi		02	-	-	01	0	1	
MEL503	Dynamics of Machinery			02		-	01	0	1	
MEL504	Manufacturing Sciences Lab			02		-	01	0	1	
MEL506	Business Communication and Eth	nics		02^{\pm}		-	02	0	$\frac{1}{2}$	
	Total	20	14	2	20	07	27			
		Examination Scheme								
			The	eory						
Course		Int	ernal Asses	l Assessment Ex			-	D (1		
Code	Course Name			End	Durati	l erm Work	Pract/	Total		
		Test1	Test 2	Avg	Sem Evam	on	WOIK	Orai		
			20		Exam	(Hrs)				
MEC501	Internal Combustion Engines	20	20	20	80	03			100	
MEC502	Mechanical Measurements and	20	20	20	80	03			100	
	Control					0.5			100	
MEC503	Heat Transfer	20	20	20	80	03			100	
MEC504	Dynamics of Machinery	20	20	20	80	03			100	
MEDLO	Department Level Optional	20	20	20	80	03			100	
501X	Course I						25	25	50	
MEL501	Internal Combustion Engines						25	25	50	
MEL502	Mechanical Measurements and Control						25	25	50	
MEL503	Heat Transfer						25	25	50	
MEL504	Dynamics of Machinery						25	25	50	
MEL505	Manufacturing Sciences Lab						25		25	
MEL506	Business Communication and Ethics						50		50	
	Total			100	400		175	100	775	

^{\$}Theory classes shall be conducted for entire class

Course Code	Department Level Elective Course I
MEDLO5011	Press Tool Design
MEDLO5012	Machining Sciences and Tool Design
MEDLO5013	Design of Jigs and Fixtures

Semester VI

Course		Teaching	Scheme		Cred	ts Assigned				
Code	Course Name		(Contact	Hours)						
Coue			Theory	Pract	The	ory	Pract	Total		
MEC601	Metrology and Quality engineering	ng	04		04			04		
MEC602	Machine Design I		04		04			04		
MEC603	Finite Element analysis	Finite Element analysis			04	1		0)4	
MEC604	Refrigeration and Air Conditioni	ng	04		04	1		0)4	
MEDLO 602X	Department Level Optional Cour	se II	04		04	1		C)4	
MEL601	Metrology and Quality Engineeri	ng		02			01	0)1	
MEL602	Machine Design I			02			01	0)1	
MEL603	Finite Element Analysis			02			01	C)1	
MEL604	Refrigeration and Air Conditioni	ng		02			01	C)1	
MEL605	Mechatronics Lab		02			01	C)1		
	Total			10	20)	05	2	25	
				E	Examination	n Scheme				
			The	eory						
Course	Course Nome	Inte	rnal Assess	ment	Exam		Torm	Dract/		
Code		Test1	Test 2	Avg	End Sem Exam	Durati on (Hrs)	Work	Oral	Total	
MEC601	Metrology and Quality engineering	20	20	20	80	03			100	
MEC602	Machine Design I	20	20	20	80	03			100	
MEC603	Finite Element Analysis	20	20	20	80	03			100	
MEC604	Refrigeration and Air Conditioning	20	20	20	80	03			100	
MEDLO 602X	Department Level Optional Course II	20	20	20	80	03			100	
MEL601	Metrology and Quality engineering						25	25	50	
MEL602	Machine Design I						25		25	
MEL603	Finite Element analysis						25	25	50	
MEL604	Refrigeration and Air Conditioning						25	25	50	
MEL605	Mechatronics Lab						25	25	50	
	Total			100	400		125	100	725	

Course Code	Department Level Optional Course II						
MEDLO6021	Mechatronics						
MEDLO6022	Robotics						
MEDLO6023	Industrial Automation						

Semester VII

Course		Teaching	Scheme		Cred	its Assigned					
Code	Course Name		(Contact	Hours)			1	1			
Coue			Theory	Pract	Theory		Pract	Total			
MEC701	Machine Design II		04		04	<u> </u>		04			
MEC702	CAD/CAM/CAE		04		04	۱		0)4		
MEC703	Production Planning and Control	Production Planning and Control			04	ŀ		0)4		
MEDLO 703X	Department Level Optional Cours	se III	04		04	ŀ		0	14		
ILO701X	Institute Level Optional Course I [#]	ŧ	03		03	3		0	13		
MEL701	Machine Design II			02			01	0)1		
MEL702	CAD/CAM/CAE			02			01	0)1		
MEL703	Production Planning and Control			02			01	0)1		
MEL704	Project I			06			03	0	13		
	Total		19	12	19)	06	2	:5		
			Examination Scheme								
			The	eory							
Course	Countra Norma	Inte	rnal Assess	ment	ent Exam		T	D			
Code	Course Name	Test1	Test 2	Avg	End Sem Exam	Durati on (Hrs)	Ourati on (Hrs)	Oral	Total		
MEC701	Machine Design II	20	20	20	80	03			100		
MEC702	CAD/CAM/CAE	20	20	20	80	03			100		
MEC703	Production Planning and Control	20	20	20	80	03			100		
MEDLO 703X	Department Level Optional Course III	20	20	20	80	03			100		
ILO701X	Institute Level Optional Course I [#]	20	20	20	80	03			100		
MEL701	Machine Design II						25	25	50		
MEL702	CAD/CAM/CAE						25	25	50		
MEL703	Production Planning and Control						25	25	50		
MEP701	Project I						50		50		
Total				100	400		125	75	700		

Course Code	Department Level Optional Course III	Course Code	Institute Level Optional Course I [#]
MEDLO7031	Mechanical Vibrations	ILO7011	Product Lifecycle Management
MEDLO7032	Automobile Engineering	ILO7012	Reliability Engineering
MEDLO7033	Pumps, Compressors and Fans	ILO7013	Management Information System
MEDLO7034	Computational Fluid Dynamics	ILO7014	Design of Experiments
		ILO7015	Operation Research
		ILO7016	Cyber Security and Laws
		ILO7017	Disaster Management and Mitigation
			Measures
		ILO7018	Energy Audit and Management
		ILO7019	Development Engineering

Common with all branches

Semester VIII

Course		Teaching	Scheme	Credits Assigned					
Code	Course Name		(Contact	Hours)					
Coue			Theory	Pract	The	ory	Pract	Total	
MEC801	Design of Mechanical Systems		04		04			04	
MEC802	Industrial Engineering and Manag	Industrial Engineering and Management			04	ŀ		0	4
MEC803	Power Engineering		04		04	ŀ		0	4
MEDLO 804X	Department Level Optional Cours	se IV	04		04	Ļ		0	14
ILO802X	Institute Level Optional Course II	[#	03		03	3		0	13
MEL801	Design of Mechanical Systems			02			01	0)1
MEL802	Power Engineering			02			01	0)1
MEP801	Project II			12			06	0	6
Total			19	16	19)	08	27	
				E	Examination	n Scheme			
			The	eory					
Course	Course Name	Inte	rnal Assess	ment	ent E		Torm	Droot/	
Code					End Sem	Durati	Work	Oral	Total
		Test1	Test 2	Avg	Exam	on	WUIK	Ulai	
						(Hrs)			
MEC801	Design of Mechanical Systems	20	20	20	80	03			100
MEC802	Industrial Engineering and Management	20	20	20	80	03			100
MEC803	Power Engineering	20	20	20	80	03	-		100
MEDLO	Department Level Optional	20	20	20	80	03			100
804X	Course IV	20	20	20	80	03			100
ILO802X	Institute Level Optional Course II [#]	20	20	20	80	03			100
MEL801	Design of Mechanical Systems						25	25	50
MEL802	Power Engineering						25	25	50
MEL803	Project II						50	100	150
	Total			100	400		100	150	750

Course Code	Department Level Elective Course IV	Course Code	Institute Level Elective Course II [#]
MEDLO8041	Power Plant Engineering	ILO8021	Project Management
MEDLO8042	Rapid Prototyping	ILO8022	Finance Management
	Banawahla Energy Systems	II 08022	Entrepreneurship Development and
MEDL08045	Kellewable Ellergy Systems	IL08025	Management
MEDLO8044	Energy Management in Utility Systems	ILO8024	Human Resource Management
		ILO8025	Professional Ethics and CSR
		ILO8026	Research Methodology
		ILO8027	IPR and Patenting
		ILO8028	Digital Business Management
		ILO8029	Environmental Management

Common with all branches
Course Code	Course Name	Credits
MEC301	Applied Mathematics III**	04

- 1. To provide sound foundation in the mathematical fundamentals necessary to formulate, solve and analyse engineering problems.
- 2. To study the basic principles of Laplace Transform, Fourier Series, Complex variables.

- 1. Demonstrate the ability of using Laplace Transform in solving the Ordinary Differential Equations and Partial Differential Equations
- 2. Demonstrate the ability of using Fourier Series in solving the Ordinary Differential Equations and Partial Differential Equations
- 3. Solve initial and boundary value problems involving ordinary differential equations
- 4. Identify the analytic function, harmonic function, orthogonal trajectories
- 5. Apply bilinear transformations and conformal mappings
- 6. Identify the applicability of theorems and evaluate the contour integrals.

Module	Detailed Contents	Hrs
1	Laplace Transform 1.1 Function of bounded variation, Laplace Transform of standard functions such as 1, t^n , e^{at} , sin at , cos at , sinh at , cosh at 1.2 Linearity property of Laplace Transform, First Shifting property, Second Shifting property, Change of Scale property of L.T. (without proof) $L\{t^n f(t)\}, L\{\frac{f(t)}{t}\}, L\{\int_0^t f(u)du\}, L\{\frac{d^n f(t)}{dt^n}\}$ Laplace Transform. of Periodic functions 1.3 Inverse Laplace Transform: Linearity property, use of theorems to find inverse Laplace Transform, Partial fractions method and convolution theorem(without proof). 1.4 Applications to solve initial and boundary value problems involving ordinary differential equations with one dependent variable	12
2	 Complex variables: 2.1 Functions of complex variable, Analytic function, necessary and sufficient conditions fo f(z) to be analytic (without proof), Cauchy-Riemann equations in polar coordinates. 2.2 Milne- Thomson method to determine analytic function f(z) when it's real or imaginary or its combination is given. Harmonic function, orthogonal trajectories 2.3 Mapping: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations such as Rotation and magnification, inversion and reflection, translation 	08
3	Complex Integration: 3.1 Line integral of a function of a complex variable, Cauchy's theorem for analytic functions(without proof)Cauchy's integral formula (without proof))Singularities and poles: 3.2 Taylor's and Laurent's series development (without proof) 3.3 Residue at isolated singularity and its evaluation 3.4 Residue theorem, application to evaluate real integral of type $\int_{0}^{2\pi} f(\cos\theta, \sin\theta) d\theta, \& \int_{-\infty}^{\infty} f(x) dx$	08
4	Fourier Series: 4.1 Orthogonal and orthonormal functions, Expressions of a function in a series of orthogonal functions. Dirichlet's conditions. Fourier series of periodic function with period 2π and $2l$	10

	4.2 Dirichlet's theorem(only statement), even and odd functions, Half range sine and cosine	
	series, Parsvel's identities (without proof)	
	4.3 Complex form of Fourier series	
	Partial Differential Equations:	
	5.1. Numerical Solution of Partial differential equations using Bender-Schmidt Explicit	
	Method, Implicit method (Crank- Nicolson method).	
5	5.2. Partial differential equations governing transverse vibrations of an elastic string its solution	09
	using Fourier series.	
	5.3. Heat equation, steady-state configuration for heat flow	
	5.4. Two and Three dimensional Laplace equations	
	Correlation and curve fitting	
	6.1. Correlation-Karl Pearson's coefficient of correlation- problems, Spearman's Rank	
6	correlation problems, Regression analysis- lines of regression (without proof) -problems	05
	6.2. Curve Fitting: Curve fitting by the method of least squares- fitting of the curves of the	
	form, $y = ax + b$, $y = ax^2 + bx + c$ and $y = ae^{bx}$	

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

References:

- 1. Higher Engineering Mathematics, Dr B. S. Grewal, Khanna Publication
- 2. Advanced Engineering Mathematics, E Kreyszing, Wiley Eastern Limited
- 3. Higher Engineering Mathematics, B.V. Ramana, McGraw Hill Education, New Delhi
- 4. Complex Variables: Churchill, Mc-Graw Hill
- 5. Integral Transforms and their Engineering Applications, Dr B. B. Singh, Synergy Knowledgeware, Mumbai
- 6. Numerical Methods, Kandasamy, S. Chand & CO
- 7. Fundamentals of mathematical Statistics by S.C.. Gupta and Kapoor

Course Code	Course Name	Credits
MEC302	Thermodynamics*	04

- 1. To familiarize the concepts of Energy in general and Heat and Work in particular
- 2. To study the fundamentals of quantification and grade of energy
- 3. To study the effect of energy transfer on properties of substances in the form of charts and diagrams
- 4. To familiarize application of the concepts of thermodynamics in vapour power, gas power cycles

- 1. Demonstrate application of the laws of thermodynamics to wide range of systems.
- 2. Write steady flow energy equation for various flow and non-flow thermodynamic systems
- 3. Compute heat and work interactions in thermodynamics systems
- 4. Demonstrate the interrelations between thermodynamic functions to solve practical problems.
- 5. Use steam table and mollier chart to compute thermodynamics interactions
- 6. Compute efficiencies of heat engines, power cycles etc.

Module	Detailed Contents	Hrs
01	Basic Concepts & definitions: Thermodynamics and its importance, Macroscopic and Microscopic view point, Concept of Continuum, Thermodynamic System, Surrounding and Boundary, Control Volume approach and Systems approach, Equilibrium – Thermal ,Chemical, Mechanical and thermodynamic, Pure Substance, Property – Intensive and Extensive, State, Path, Process and Cycle. Point Function and Path Function, Quasi Static Process and processes like Isobaric, Isochoric, Isothermal, Polytropic Process, Temperature and different scales, Zeroth Law of Thermodynamics, Energy, sources of energy; forms of energy, Energy transfer by work and forms of work ; free Expansion, Energy transfer by heat ; Adiabatic Process, Equations of state, Ideal gas Equation-; Specific gas constant and Universal Gas Constant	08
02	First Law of Thermodynamics: Relation between Heat and Work- Joules Constant, First law of thermodynamics for a cyclic process, First law of thermodynamics for a closed system undergoing a process, Conservation principle, First Law of Thermodynamics applied to open system – Steady Flow Energy Equation, Perpetual motion Machine of First kind, Application of first law of thermodynamics to closed system or Non flow Process, Application of first law of thermodynamics to Open Systems like Steam Nozzle, Boiler, Steam Turbine, Pump, Heat Exchanger, Throttling Process – Joules Thompson Coefficient and its significance	07
03	Second Law of Thermodynamics: Limitation of first law of thermodynamics, Thermal Reservoir – Source and Sink, Concept of Heat Engine, Heat Pump and Refrigerator, Second law of thermodynamics – Kelvin Planck and Clausius Statements. Equivalence of Clausius and Kelvin Planck Statement, Reversible and Irreversible Process. Causes of Irreversibility, Perpetual Motion Machine of Second Kind, Need of Carnot theorem and its corollaries, Carnot cycle, Thermodynamic Temperature Scale and its equivalence with Ideal Gas Scale Entropy: Clausius Inequality, Clausius Theorem, Entropy is Property of a system, Isentropic Process, Temperature Entropy Plot and its relationship with heat interactions, Entropy Principle, Entropy change During a Process. Interpretation of concept of entropy	07
04	Thermodynamic Relations: Reciprocal Relation, Cyclic Relation Property relations, Maxwell Relations, TdS equations, Heat capacity relations, Volume Expansivity, Isothermal Compressibility, Clausius- Clapeyron Equation Availability:	10

	High grade and Low Grade Energy, Available and Unavailable Energy, Dead State, Available energy with respect to a process and a cycle, Decrease of Available Energy When heat is transferred through a finite temperature Difference, Second Law efficiency	
	Properties of Pure Substance:	
	Pure substance and Phase changes: Phase change processes of pure substance, Property	
	diagrams for phase change process (T-v, T-s and p-h diagrams), Understanding of Steam	
	Table and Mollier chart with suitable examples.	
	Compressors:	08
	Reciprocating Air Compressor, Single stage compressor - computation of work done,	
	isothermal efficiency, effect of clearance volume, volumetric efficiency, Free air delivery,	
	Theoretical and actual indicator diagram,	
05	Multistage compressors - Constructional details of multistage compressors, Need of	
	multistage, Computation of work done, Volumetric efficiency, Condition for maximum	
	efficiency, Inter cooling and after cooling (numerical), Theoretical and actual indicator	
	diagram for multi stage compressors	
	Rotary Air Compressors- Classification, Difference between compressors and blowers,	
	Working and constructional details of roots blower, Screw type and vane type compressors	
	Vapour Power cycle:	10
	Carnot cycle and its limitations as a vapour cycle, Rankine cycle with different turbine inlet	
06	conditions, Mean temperature of heat addition, Methods to improve thermal efficiency of	
00	Rankine cycle – Reheat cycle and Regeneration Cycle.	
	Gas Power cycles:	
	Assumptions of Air Standard Cycle, Otto cycle, Diesel Cycle and Dual cycle, Brayton Cycle,	
	Sterling Cycle and Ericsson Cycle and Lenoir cycle and Atkinson cycle	

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

Reference Books:

- Thermodynamics: An Engineering Approach by Yunus A. Cengel and Michael ABoles, 7th edition, TMH
- 2. Basic Engineering Thermodynamics by Rayner Joel, Longman Publishers Engineering
- 3. Engineering Thermodynamics by P Chattopadhyay, 2nd edition, Oxford University Press India
- 4. Thermodynamics by P K Nag, 5th edition, TMH
- 5. Thermodynamics by Onkar Singh, New Age International
- 6. Thermodynamics by C P Arora, TMH
- 7. Engineering Thermodynamics through Examples by Y V C Rao, Universities Press (India) Pvt Ltd
- 8. Fundamentals of Thermodynamics by Moran & Shapiro
- 9. Fundamentals of Classical Thermodynamics by Van Wylen G.H. & Sonntag R.E., JohnWiley & Sons
- 10. Thermodynamics by W.C. Reynolds, McGraw-Hill & Co
- 11. Thermodynamics by J P Holman, McGraw-Hill & Co

University of Mumbai, B. E. (Mechanical Engineering), Rev 2016

Course Code	Course Name	Credits
MEC303	Strength of Materials*	04

* Course common to Mechanical and Automobile Engineering

Objectives:

- 1. To study different types of stresses, strain and deformation induced in the mechanical components due to external loads.
- 2. To study distribution of various stresses in the mechanical elements or bodies of finite dimensions that deform under loads.
- 3. To study the effects of component dimensions, materials and shapes on stresses and deformations

- 1. Demonstrate fundamental knowledge about various types of loading and stresses induced.
- 2. Draw the SFD and BMD for different types of loads and support conditions.
- 3. Analyse the stresses induced in basic mechanical components.
- 4. Estimate the strain energy in mechanical elements.
- 5. Analyse the deflection in beams.
- 6. Analyse buckling and bending phenomenon in columns, struts and beams.

Module	Detailed Contents	Hrs
Module 1	Detailed Contents Moment of Inertia: Area moment of Inertia, Principal Axes and Principal Moment of Inertia, Parallel Axis theorem, Polar moment of Inertia. Stresses and Strains: Definition – Stress, Strain, Hooke's law, elastic limit, uni-axial, bi-axial and tri-axial stresses, tensile & compressive stresses, shear stress, Principal stresses and strains, Mohr's circle. Elastic Constants: Poisson's ratio, Modulus of elasticity, Modulus of rigidity, Bulk Modulus, yield stress, Ultimate stress	Hrs 12
	Factor of safety, state of simple shear, relation between elastic constants, volumetric strain, volumetric strain for tri-axial loading, deformation of tapering members, deformation due to self –weight, bars of varying sections, composite sections, thermal stress and strain.	
2	Shear Force and Bending Moment in Beams: Axial force, shear force and bending moment diagrams for statically determinate beams including beams with internal hinges for different types of loading, relationship between rates of loading, shear force and bending moment.	08
3	 Stresses in Beams: Theory of pure bending, Assumptions, Flexural formula for straight beams, moment of resistance, bending stress distribution, section modulus for different sections, beams for uniform strength, Flitched beams. Direct and Bending Stresses: Core of sections, Chimneys subjected to wind pressure. Shear Stress in Beams: Distribution of shear stress, across plane sections used commonly for structural purposes, shear connectors. 	08
4	Torsion: Torsion of circular shafts- solid and hollow, stresses in shafts when transmitting power, shafts in series and parallel. Strain Energy: Resilience, Proof Resilience, strain energy stored in the member due to gradual, sudden and impact loads, Strain energy due to shear, bending and torsion.	08

	Deflection of Beams:	
5	Deflection of Cantilever, simply supported and overhang beams using double integration and	
	Macaulay's Method for different types of loadings	08
	Thin Cylindrical and Spherical Shells:	
	Cylinders and Spheres due to internal pressure, Cylindrical shell with hemi spherical ends	
	Columns and Struts:	
6	Buckling load, Types of end conditions for column, Euler's column theory and its limitations,	04
	Rankine and Johnson formula	

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

References:

- 1. Strength of Materials by R. Subramanian, Oxford University Press, Third Edition 2016
- 2. Strength of Materials by Ryder, Macmillan
- 3. Mechanics of Materials by James M. Gere and Barry J. Goodno, Cengage Learning, 6thEd, 2009
- 4. Mechanics of Materials by Gere and Timoshenko, CBS 2nd Edition
- 5. Strength of Materials by Basavrajaiah and Mahadevappa, Khanna Publishers, New Delhi
- 6. Elements of Strength of Materials by Timoshenko and Youngs, Affiliated East -West Press
- 7. Mechanics of Materials byBeer, Jhonston, DEwolf and Mazurek, TMHPvt Ltd., New Delhi
- 8. Mechanics of Structures by S.B.Junnarkar, Charotar Publication
- 9. Mechanics of Materials by S.S.Ratan, Tata McGraw Hill Pvt. Ltd
- 10. Introduction to Solid Mechanics by Shames, PHI
- 11. Strength of Materials by Nag and Chandra, Wiley India
- 12. Strength of Materials by S. Ramamrutham, Dhanpat Rai Pvt. Ltd
- 13. Strength of Materials by W.Nash, Schaum's Outline Series, McGraw Hill Publication, Special Indian Edition

Course Code	Course Name	Credits
MEC304	Production Process*	04

- 1. To study basic production processes.
- 2. To study how to select appropriate production processes for a specific application.
- 3. To study machine tools

- 1. Demonstrate understanding of casting process
- 2. Illustrate principles of forming processes
- 3. Demonstrate applications of various types of welding processes.
- 4. Differentiate chip forming processes such as turning, milling, drilling, etc.
- 5. Illustrate the concept of producing polymer components and ceramic components.
- 6. Distinguish between the conventional and modern machine tools.

Module	Detailed Contents	Hrs
1	 1.1 Metal casting: Classification of Production Processes: Examples and field of applications Pattern materials and allowances, Types of pattern, Sand properties, Sand moulding, Machine moulding Gating system :Types of riser, types of gates, solidification Melting- cupola& induction furnaces 1.2 Special casting processes : CO2 and shell moulding, Investment casting, Die casting, Vacuum casting, Inspection & casting defects and remedies 	10
2	2.1 Joining processes: Welding: Classification of welding, Oxy-acetylene welding, types of flames, equipment used, welding methods & applications, Arc welding principle and working of metal arc welding, TIG & MIG welding, submerged arc welding, electro-slag welding & stud welding PAM welding. Applications merits & demerits of above welding processes, fluxes used, Thermit welding, Resistance welding, Friction welding, ultrasonic, explosive, LASER, electron beam welding, Welding defects and remedies Soldering and brazing techniques & applications Fastening processes	10
3	3.1 Forming processes: Principles and process characteristics, Rolling types, Rolling parameters: Draught, spread, elongation, roll pressure, torque, work and power in rolling. Effect of front and back tension on rolling load and capacities, Rolling defects, Thread rolling roll forging, production of seamless tubes, Forging, Extrusion and Wire Drawing processes	08
4	 4.1 Moulding with polymers: Moulding with polymers: Basic concepts related to Injection Moulding, Compression moulding, Transfer moulding, Blow Moulding, Rotational Moulding, Thermoforming and Extrusion. Applications of plastics in Engineering field 4.2 Moulding with ceramics: Blow moulding and extrusion of glass. 	06
5	 Classification, Selection and application of Machine Tools: 5.1 Lathe Machines, Milling Machines, Drilling Machines, and Grinding Machines, Broaching machines, Lapping/Honing machines and shaping/slotting/planning Machines. 5.2 Gear Manufacturing -Gear milling, standard cutters and limitations, gear hobbing, gear shaping, gear shaving and gear grinding processes 	10
6	 5.1 Modern Machine Tools: CNC machines: Introduction, principles of operation, Types – Vertical machining centres and horizontal machining centres, major elements, functions, applications, controllers, open loop and closed loop systems 5.2 Types of automatic machines, Transfer machines 	04

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

References

- 1. Workshop Technology By W. A. J. Chapman part I, II & III
- 2. A Textbook of Foundry Technology by M. Lal
- 3. Production Technology by R. C. Patel and C. G. Gupta Vol I, II.
- 4. Production Technology by Jain & Gupta
- 5. Manufacturing, Engineering and Technology SI by Serope Kalpakjian, Steven R. Schmid, Prentice Hall
- 6. Production Technology by HMT
- 7. Elements of Workshop Technology Hazra Chaudhary Vol I, II.
- 8. Foundry technology by P.L. Jain
- 9. Production Technology by P.C. Sharma
- 10. Manufacturing processes by P. N. Rao, Vol. 1 and 2

Course Code	Course Name	Credits
MEC305	Material Technology*	03

- 1. To study basic engineering materials, their structure-property-performance
- 2. To study strengthening processes including heat treatment processes in order to enhance properties.
- 3. To study new materials and their applications

Outcomes: Learner will be able to...

- 1. Identify various crystal imperfections, deformation mechanisms, and strengthening mechanisms
- 2. Demonstrate understanding of various failure mechanisms of materials.
- 3. Interpret Iron-Iron carbide phase diagram, and different phases in microstructures of materials at different conditions.
- 4. Select appropriate heat treatment process for specific applications.
- 5. Identify effect of alloying elements on properties of steels
- 6. Illustrate basics of composite materials, Nano- materials and smart materials.

Module	Detailed Contents	Hrs
	 1.1 Classification of Materials: Metallic materials, Polymeric Materials, Ceramics and Composites: Definition, general properties, applications with examples 1.2 Lattice Imperfections: 	
1	 Definition, classification and significance of Imperfections Point defects: vacancy, interstitial and impurity atom defects, Their formation and effects, Dislocation - Edge and screw dislocations Burger's vector, Motion of dislocations and their significance, Surface defects - Grain boundary, sub-angle grain boundary and stacking faults, their significance, Generation of dislocation, Frank Reed source, conditions of multiplication and significance. 1.3 Deformation: Definition, elastic and plastic deformation, Mechanism of deformation and its significance in 	08
	 design and shaping, Critical Resolved shear stress, Deformation in single crystal and polycrystalline materials, Slip systems and deformability of FCC, BCC and HCP lattice systems. 1.4 Strain Hardening: Definition importance of strain hardening, Dislocation theory of strain hardening, Effect of strain hardening on engineering behaviour of materials, Recrystallization Annealing: stages 	
	of recrystallization annealing and factors affecting it	
	Failure mechanisms:	
	Definition and types of facture, Brittle fracture: Griffith's theory of fracture, Orowan's modification, Dislocation theory of fracture, Critical stress and crack propagation velocity for brittle fracture, Ductile fracture: Notch effect on fracture, Fracture toughness, Ductility transition, Definition and significance	
	1.2 Fatigue Failure:	
2	Definition of fatigue and significance of cyclic stress, Mechanism of fatigue and theories of fatigue failure, Fatigue testing, Test data presentation and statistical evolution, S-N Curve and its interpretation, Influence of important factors on fatigue, Notch effect, surface effect, Effect of pre-stressing, corrosion fatigue, Thermal fatigue.	08
	1.3 Creep:	
	Definition and significance of creep, Effect of temperature and creep on mechanical	
	behaviours of materials, Creep testing and data presentation and analysis, Mechanism and types of creep, Analysis of classical creep curve and use of creep rate in designing of products for load bearing applications, Creep Resistant materials	
	3.1 Theory of Alloys & Alloys Diagrams :	
3	Significance of alloying, Definition, Classification and properties of different types of alloys, Solidification of pure metal, Different types of phase diagrams (Isomorphous, Eutectic,	08

University of Mumbai, B. E. (Mechanical Engineering), Rev 2016

	Peritectic, Eutectoid, Peritectoid) and their analysis, Importance of Iron as engineering material, Allotropic forms of Iron, Influence of carbon in Iron- Carbon alloying Iron-Iron carbide diagram and its analysis, TTT diagram, CCT diagram Hardenability concepts and tests, Graphitization of Iron- Grey iron, white iron, Nodular and malleable irons, their microstructures, properties and applications	
4	4.1 Heat treatment Process: Technology of heat treatment, Classification of heat treatment process, Annealing- Principle process, properties and applications of full annealing, Diffusion annealing, process annealing and Cyclic annealing, Normalizing, Hardening heat treatment, Tempering, Subzero treatment, Austempering, Martempering, Maraging and Ausforming process, Surface hardening: Hardening and surface Hardening methods. Carburizing, Nitriding, Cyaniding, Carbonitriding, induction hardening and flame hardening processes	06
5	5.1 Effect of Alloying Elements in Steels : Limitation of plain carbon steels, Significance of alloying elements, Effects of major and minor constituents, Effect of alloying elements on phase transformation Classification of tool steels and metallurgy of tool steels and stainless steel	04
6	 Introduction to New materials: 6.1 Composites: Basic concepts of composites, Processing of composites, advantages over metallic materials, various types of composites and their applications 6.2 Nano Materials: Introduction, Concepts, synthesis of nanomaterials, examples, applications and Nano composites 6.3 An overview to Smart materials (e.g.: Rheological fluids) 	04

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

References

- 1. Materials Science and Engineering by William D. Callister, Jr. Adapted by R.Balasubramaniam, Wiley India (P) Ltd
- 2. Material Science and Metallurgy by V.D. Kodgire, Everest Publishing House
- 3. Mechanical Behaviour of Materials by Courtney, McGraw Hill International New Delhi
- 4. Introduction of Engineering Materials, by B.K. Agrawal, McGraw Hill Pub. Co. ltd
- 5. Mechanical Metallurgy by G.E. Dieter, McGraw Hill International New Delhi
- 6. A text book of Metallurgy by A.R.Bailey, Macmillan & Co. Ltd., London
- 7. The Structure and Properties of Engineering Alloys by W.F. Smith, McGraw hill Int.
- 8. Engineering Physical Metallurgy, by Y. Lakhtin, Mir Publishers, Moscow
- 9. Introduction to Physical Metallurgy by SydneyAvner, McGraw Hill
- 10. Metallurgy for Engineers by E.C. Rollason ELBS SOC and Edward Arnold, London

Course Code	Course Name	Credits
MEL301	Computer Aided Machine Drawing*	03

- 1. To familiarise conversion of an object into a drawing
- 2. To study conventional representation of various machining and mechanical details as per IS
- 3. To become conversant with 2-D and 3-D drafting

- 1. Visualize and prepare detail drawing of a given object.
- 2. Read and interpret the drawing
- 3. Draw details and assembly of different mechanical systems.
- 4. Convert detailed drawing into assembly drawing using modelling software
- 5. Convert assembly drawing into detailed drawing using modelling software
- 6. Prepare detailed drawing of any given physical object/machine element with actual measurements

Module	Detailed Contents	Theory	Practical
1	1.1 Machine Elements: Preparation of 2-D drawings of standard	02	04
	machine elements (nuts, bolts, keys, cotter, screws, spring etc)		
	1.2 Conventional representation of threaded parts, Types of threads;	01	
	components and materials. Designation of standard components	01	
	1.3 Solid Geometry: Intersection of surfaces and interpenetration of		
	solids- Intersection of prism or cylinder with prism; cylinder or cone,		
	both solids in simple position only. Primary auxiliary views	04	
2	2.1 Geometric Dimensioning and Tolerancing (GD&T):	02	
	Dimensioning with tolerances indicating various types of fits,		
	2.2 Details and assembly drawing: Types of assembly drawings, part	02	
	drawings, drawings for catalogues and instruction manuals, patent		
	2.3 Introduction to unit assembly drawing, steps involved in preparing		
	assembly drawing from details and vice-versa,		
	2.4 Preparation of details and assembly drawings of any three from:	02	08
	Clapper block, Single tool post, Lathe and Milling tail stock, jigs and		
	fixtures		
	2.5 Cotter, Knuckle joint, Keys: keys-sunk, parallel woodruff, saddle, feather etc.	01	
	2.6 Couplings : simple muff flanged Protected flange coupling	01	
	Oldham's coupling, Universal coupling	02	06
3	3.1 Preparation of details and assembly drawings of Bearings:	02	06
	Simple, solid, Bushed bearing, I.S. conventional representation of		
	ball and roller bearing, Pedestal bearing, footstep bearing		
4	4.1 Preparation of details and assembly drawings of pulleys, Pipe	02	
	Joints: Classification of Pulleys, pipe joints		06
	4.2 Funeys. Flat bell, V-bell, Tope bell, Fast and Toose puneys. 4.3 Pine joints (any two): Flanged joints. Socket and spigot joint. Gland		00
	and stuffing box, expansion joint		06
5	5.2 Preparation of details and assembly drawings of Valves, I.C.	02	
	Engine parts: Types of Valves, introduction to I.C. Engine		
	5.3 Preparation of details and assembly drawings(any three): Air		08
	cock; Blow off cock, Steam stop valve, Gate valve, Globe valve, Non		
	return valve, I.C. Engine parts: Piston, Connecting rod, Cross head, Crankshaft Carburattor Fuel nump injector and Spark plug		
	Cranksnan, Carburettor, Fuel pump, injector, and Spark plug		

6	6.1 Reverse Engineering of a physical model: disassembling of any	02	06
	physical model having not less than five parts, measure the required		
	dimensions of each component, sketch the minimum views required		
	for each component, convert these sketches into 3-D model and		
	create an assembly drawing with actual dimensions		

Term work

- **A.** Minimum two questions from theory part of each module should be solved as a home work in A-3 size sketch book.
- **B.** A-3 size Printouts/plots of the problems solved in practical class from the practical part of each module. Problems from practical parts of each module should be solved using any standard CAD packages like IDEAS, PRO-E, CATIA, Solid Works, Inventor etc.

The distribution of marks for Term work shall be as follows:

- Home work sketch bookPrintouts/Plots20 marks
- Attendance 10 marks

End Semester Practical/Oral examination:

To be conducted by pair of Internal and External Examiner

1. Practical examination duration is **three hours**, based on Part-B of the Term work, and should contain two sessions as follows:

Session-I: Preparation of 3-D models of parts, assembling parts and preparing views of assembly from given 2-D detailed drawing.

Session-II: Preparation of minimum five detailed 3-D part drawings from given 2-D assembly drawing. *Oral examination should also be conducted to check the knowledge of conventional and CAD drawing.*

2. Questions provided for practical examination should contain minimum five and not more than ten parts.

3. The distribution of marks for practical examination shall be as follows:

- Session-I20 marks
- Session-II 20 marks
- Oral 10 marks

4. Evaluation of practical examination to be done based on the printout of students work

5. Students work along with evaluation report to be preserved till the next examination

References:

- 1. Machine Drawing by N.D. Bhatt.
- 2. A textbook of Machine Drawing by Laxminarayan and M.L. Mathur, Jain brothers Delhi
- 3. Machine Drawing by Kamat and Rao
- 4. Machine Drawing by M. B. Shah
- 5. A text book of Machine Drawing by R. B. Gupta, Satyaprakashan, Tech. Publication
- 6. Machine Drawing by K.I.Narayana, P. Kannaiah, K.Venkata Reddy
- 7. Machine Drawing by Sidheshwar and Kanheya
- 8. Autodesk Inventor 2011 for Engineers and Designers by ShamTickoo and SurinderRaina, Dreamtech Press
- 9. Engineering Drawing by P J Shah
- 10. Engineering Drawing by N D Bhatt

Course Code	Course Name	Credits
MEL302	Strength of Materials*	01

- 1. To familiarise material behaviour under different loading conditions
- 2. To acquaint with surface hardness measurement method
- 3. To familiarise with impact test methods for different materials

Outcomes: Learner will be able to...

- 1. Analyse the stress strain behaviour of materials
- 2. Measure ultimate tensile/compression strength of material
- 3. Measure torsional strength of material
- 4. Perform impact test using Izod and Charpy method
- 5. Measure the hardness of materials.
- 6. Perform flexural test with central and three point loading conditions

a) List of Experiments (Minimum Eight)

Module	Detailed Contents	Laboratory
		565510115
1	Tension test on mild steel bar (stress-strain behaviour, determination	2 Urg
1	of yield strength and modulus of elasticity)	2 1118
2	Bending test on UTM	2 Hrs
3	Torsion test on mild steel bar / cast iron bar	2 Hrs
4	Impact test on metal specimen (Izod test)	2 Hrs
5	Impact test on metal specimen (Charpy test)	2 Hrs
6	Hardness test on metals - Brinell Hardness Number	2 Hrs
7	Hardness test on metals - Rockwell Hardness Number	2 Hrs
8	Flexural test on beam (central loading)	2 Hrs
9	Flexural test on beam (three point loading)	2 Hrs

b) **Assignments**: Atleast one problem on each of the following topics:

- 1. Simple stress strain
- 2. SFD and BMD
- 3. Stresses in beams
- 4. Strain energy and deflection.
- 5. Torsion, Columns and struts

Note: Preferably, the assignments shall be based on live problems.**Project Based Learning may be** incorporated by judiciously reducing number of assignments.

Assessment:

Term Work: Including Part a and b both

Distribution of marks for Term Work shall be as follows:

Part a	:	15marks.
Part b	:	05 Marks
Attendance	:	05 marks.

End Semester Practical/Oral Examination:

Pair of Internal and External Examiner should conduct practical examination followed by Oral

University of Mumbai, B. E. (Mechanical Engineering), Rev 2016

Course Code	Course Name	Credits
MEL303	Materials Technology*	03

- 1. To familiarise with use of optical laboratory microscope
- 2. To acquaint with microstructures of ferrous (steel and cast iron) metals
- 3. To familiarise with microstructures of steel under different heat treated conditions
- 4. To study hardenability, fatigue test for fatigue strength and corrosion rate test

Outcomes: Learner will be able to...

- 1. Demonstrate the understanding of the procedure to prepare samples for studying microstructure using microscope (metallography)
- 2. Interpret different phases present in different plain carbon steels and cast irons.
- 3. Perform different heat treatment processes for a steel and observe microstructures in these conditions
- 4. Identify effects of Annealing, Normalizing and Hardening on microstructure of medium carbon steel
- 5. Determine hardenability of steel using Jominy end Quench test
- 6. Determine S-N curve by Fatigue Test.

Sr No	Details
1	Study of metallurgical microscope
2	Metallographic sample preparation and etching
3	Microstructures of plain carbon steels
4	Microstructures of cast irons
5	Annealing, Normalizing and Hardening of medium carbon steel and observation of microstructures
6	Study of tempering characteristics of hardened steel
7	Determination of hardenability of steel using Jominy end Quench Test
8	Fatigue test – to determine number of cycles to failure of a given material at a given stress

Assignments: Assignment on following topics

- 1. Crystal imperfections-deformation-strengthening mechanisms
- 2. Fracture-failure of metals
- 3. Iron –Iron carbide phase diagram/TTT diagram/CCT diagram.
- 4. Heat treatment processes
- 5. Alloy steels (e. g. alloy steels, tool steels)
- 6. New materials

Note: Preferably, the assignments shall be based on live problems. **Project Based Learning may be** incorporated by judiciously reducing number of assignments

Assessment:

Term Work: Including Laboratory Work and Assignments both

Distribution of marks for Term Work shall be as	follows:
Laboratory work	15 marks
Assignments	05 Marks
Attendance	05 marks

Course Code	Course Name	Credits
MEL304	Machine Shop Practice I*	02

- 1. To study basic machining processes.
- 2. To familiarise various machining operations and machine protocols

Outcomes: Learner will be able to...

- 1. Operate various machines like lathe, shaper etc.
- 2. Perform plain turning, taper turning, and screw cutting etc. on lathe machine.
- 3. Perform machining operations on shaper.
- 4. Demonstrate metal joining process like compressive welding.
- 5. Perform forging operations
- 6. Perform shaping operations

Module	Details	Hrs
	Introduction to Lathe Machine, demonstration of various machining	
1	processes performed on lathe machine.	18
-	One Job on Plain and Taper Turning	10
	One job on Precision Turning, Taper Turning and Screw Cutting	
	Introduction to Shaping Machine and various machining processes	
2	performed on Shaping Machine	12
	One job on shaping machine to make horizontal and inclined surface	
3	Introduction to various forging tools	12
	Two jobs on Forging of Cutting Tools used on Lathe Machine	12
4	One simple exercise on Welding, Preparation of a component using	6
-	Compressive Welding Joint	

Assessment:

Term Work:

1. All the jobs mentioned above

2. Complete Work-Shop Book giving details of drawing of the job and time sheet

The distribution of marks for Term work shall be as follows:

Job Work with complete workshop book	40 marks
Attendance	10 marks

Course Code	Course Name	Credits
MEC401	Applied Mathematics IV **	04

- 1 To inculcate an ability to relate engineering problems to mathematical context
- 2 To provide a solid foundation in mathematical fundamentals required to solve engineering problem
- 3 To study the basic principles of Vector analyses, complex integration, probability, test of hypothesis and correlation between data.
- 4 To prepare students for competitive exams

- 1 Solve the system of linear equations using matrix algebra with its specific rules
- 2 Demonstrate basics of vector calculus
- 3 Apply the concept of probability distribution and sampling theory to engineering problems
- 4 Apply principles of vector calculus to the analysis of engineering problems
- 5 Identify, formulate and solve engineering problems
- 6 Illustrate basic theory of correlations and regression

Module	Details	Hrs
1	 Matrices: 1.1 Brief revision of vectors over a real field, inner product, norm of a vector 1.2 Eigen values and Eigen vectors: Characteristic polynomial, characteristic equation, characteristic roots and characteristic vectors of a square matrix, properties of characteristic roots and vectors of different types of matrices such as orthogonal matrix, Hermitian matrix, Skew-Hermitian matrix, Cayley Hamilton theorem (without proof). Similarity of matrices. Functions of a square matrix 	08
2	Matrices: 2.1 Minimal polynomial and Derogatory matrix 2.2 Quadratic forms: Linear transformations of a quadratic form, congruence of a square matrix, reduction to Canonical form under congruent transformations, orthogonal transformations, determining the nature of a quadratic form, Applications of Eigen Values and Eigen Vectors Vector calculus 2.3 Brief revision of Scalar and vector point functions. Gradient of a scalar function, Divergence and curl of a vector function 2.4 Line integrals, circulation of a vector, condition for independence of the path in the line integral	09
3	 Vector calculus: 3.1 Green's theorem(without proof) for plane regions and properties of line integrals, Stokes theorem (without proof), Gauss divergence theorem (without proof) related identities and deductions.(No verification problems on Stoke's Theorem and Gauss Divergence Theorem) Linear Programming problems 3.2 Types of solutions to linear programming problems, standard form of L.P.P. Simplex method to solve L.P.P 	09
4	 Linear Programming problems Probability Distributions: 4.1 Big M method (Penalty method) to solve L.P.P, Duality, Dual simplex method and Revised simplex method to solve L.P.P. Probability Distributions 4.2 Discrete and Continuous random variables, Probability mass and density function, Probability distribution for random variables, Expected value, Variance. 4.3 Probability Distributions: Binomial, Poisson and Normal Distributions 	09

5	 Sampling theory: 5.1. Sampling theory: Sampling distribution. Test of Hypothesis. Level of significance, critical 5.2. region. One tailed and two tailed tests. Interval Estimation of population parameters. Large and small samples 5.3. Test of significance for Large samples: Test for significance of the difference between sample mean and population means, Test for significance of the difference between the means of two samples. 5.4. Student's t-distribution and its properties. Test of significance of small samples: Test for significance of the difference between sample mean and population means, Test for significance of the difference between the means of two samples. 	09
6	 Sampling theory and ANOVA 6.1. Chi-square test, Test for the Goodness of fit, Association of attributes and Yate's correction 6.2. Analysis of Variance(F-Test): One way classification, Two-way classification(short-cut method) 	08

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

References:

- 1. Advanced Engineering Mathematics, E Kreyszing, Wiley Eastern Limited
- 2. Higher Engineering Mathematics, B. S. Grewal, Khanna Publication
- 3. Advanced Engineering Mathematics, H. K. Dass, S. Chand & co
- 4. Vector Analysis by Murray R. Spiegel, Shaum Series
- 5. Operations Research, S.D. Sharma, S. Chand & CO.
- 6. Fundamentals of Mathematical Statistics, S C Gupta & V K Kapoor, S. Chand & Co
- 7. Elements of Applied mathematics, P N & J N Wartikar, Pune Vidyarthi Gruha Prakashan
- 8. Advanced Engineering Mathematics, E Kreyszing, Wiley Eastern Limited
- 9. Operations Research, Kantiswearup, Manmohan, P K Gupta, S. Chand & CO

Course Code	Course Name	Credits
MEC402	Fluid Mechanics*	04

- 1. To study fluid statics and fluid dynamics
- 2. To study application of mass, momentum and energy equations in fluid flow.
- 3. To learn various flow measurement techniques.

- 1. Define properties of fluids and classification of fluids
- 2. Evaluate hydrostatic forces on various surfaces and predict stability of floating bodies
- 3. Formulate and solve equations of the control volume for fluid flow systems
- 4. Apply Bernoulli's equation to various flow measuring devices
- 5. Calculate resistance to flow of incompressible fluids through closed conduits and over surfaces
- 6. Apply fundamentals of compressible fluid flows to relevant systems

Module	Detailed Contents	Hrs
1	 1.1Fluid Definition and properties, Newton's law of viscosity concept of continuum, Classification of fluids 1.2Fluid Statics: Definition of body and surface forces, Pascal's law, Basic hydrostatic equation, Forces on surfaces due to hydrostatic pressure, Buoyancy and Archimedes' principle 	06
2	 2 Fluid Kinematics: 2.1 Eulerian and Lagrangian approach to solutions; Velocity and acceleration in an Eulerian flow field; Definition of streamlines, path lines and streak lines; Definition of steady/unsteady, uniform/non-uniform, one-two and three dimensional flows; Definition of control volume and control surface, Understanding of differential and integral methods of analysis 2.2 Definition and equations for stream function, velocity potential function in rectangular and cylindrical co-ordinates, rotational and irrotational flows; Definition and equations for source, sink, irrotational vortex, circulation 	06
3	 3 Fluid Dynamics: 3.1 Integral equations for the control volume: Reynold's Transport theorem, equations for conservation of mass, energy and momentum, Bernoulli's equation and its application in flow measurement, pitot tube, venture, orifice and nozzle meters. 3.2 Differential equations for the control volume: Mass conservation in 2 and 3 dimension in rectangular, Euler's equations in 2,3 dimensions and subsequent derivation of Bernoulli's equation; Navier-Stokes equations (without proof) in rectangular Cartesian co-ordinates; Exact solutions of Navier-Stokes Equations to viscous laminar flow between two parallel planes (Couette flow and plane Poiseuille flow) 	12
4	 4 Real fluid flows: 4.1 Definition of Reynold's number, Laminar flow through a pipe (Hagen-Poiseuille flow), velocity profile and head loss; Turbulent flows and theories of turbulence-Statistical theory, Eddy viscosity theory and Prandtl mixing length theory; velocity profiles for turbulent flows-universal velocity profile, 1/7th power law; Velocity profiles for smooth and rough pipes 4.2 Darcy's equation for head loss in pipe (no derivation), Moody's diagram, pipes in series and parallel, major and minor losses in pipes 	08
5	 5 Boundary Layer Flows: 5.1Concept of boundary layer and definition of boundary layer thickness, displacement, momentum and energy thickness; Growth of boundary layer, 	08

	laminar and turbulent boundary layers, laminar sub-layer; Von Karman Momentum Integral equation for boundary layers (without proof), analysis of laminar and turbulent boundary layers, drag, boundary layer separation and methods to control it, streamlined and bluff bodies 5.2Aerofoil theory: Definition of aerofoil, lift and drag, stalling of aerofoils, induced drag	
6	 6 Compressible Fluid flow: 6.1 Propagation of sound waves through compressible fluids, Sonic velocity and Mach number; Application of continuity, momentum and energy equations for steady state conditions; steady flow through nozzle, isentropic flow through ducts of varying cross-sectional area, Effect of varying back pressure on nozzle performance, Critical pressure ratio 6.2 Normal shocks, basic equations of normal shock, change of properties across normal shock 	08

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

Reference Books:

- 1. Fluid Mechanics by Yunus A Cengel and John M Cimbala, McGraw Hill Education, 3rd Edition
- 2. Fluid Mechanics and Machinery by C S P Ojha, Chandramouli and R Berndtsson, Oxford University Press
- 3. Introduction to Fluid Mechanics by Fox and McDonald
- 4. Fluid Mechanics by R K Bansal
- 5. Fluid Mechanics by Victor Streeter, Benjamin Wylie and K W Bedford, McGraw Hill Education, 9th Edition
- 6. Fluid Mechanics by K. L. Kumar
- 7. Introduction to Fluid Mechanics by James A. Fay
- 8. Fluid Mechanics by B. M. Massey
- 9. Mechanics of Fluids by Irving Shames
- 10. Fluid Mechanics and Hydraulics, S. K. Ukarande, Ane Books Pvt.Ltd

Course Code	Course Name	Credits
MEC 403	Industrial Electronics*	3

- 1 To study power electronic switches and circuits and their applications
- 2 To familiarise Op amp and digital circuits and their applications
- 3 To acquaint with basics of microprocessor and microcontroller
- 4 To study structure, working and characteristics of different types of industrial electric motors and their
- 5 selection for a particular application

- 1 Illustrate construction, working principles and applications of power electronic switches
- 2 Identify rectifiers and inverters for dc and ac motor speed control
- 3 Develop circuits using OPAMP and timer IC555
- 4 Identify digital circuits for industrial applications
- 5 Illustrate the knowledge of basic functioning of microcontroller
- 6 Analyse speed-torque characteristics of electrical machines for speed control

Module	Detailed Contents	Hrs.
1	Semiconductor Devices: Diodes: Principles V-I characteristics and Application of: rectifier diode, zener diode, LED, photodiode, SCR V-I characteristics, UJT triggering circuit, turning-off of a SCR (preliminary discussion), basics of Gate Turn-off thyristor (GTO). Structure and V-I characteristics of Triac (modes of operation not needed) and Diac, Applications of Triac-Diac circuit. Characteristics and principle of Power BJT, power MOSFET, IGBT, comparison of devices, MOSFET/IGBT Gate driver circuit Comparison of SCR, Triac, Power BJT, power MOSFET, IGBT	08
2	Phase controlled rectifiers and Bridge inverters: Full wave controlled rectifier using SCR's(semi controlled, fully controlled) with R load only, Derivation of output voltage Block diagram of closed loop speed control of DC motors, Necessity of inner current control loop Basic principle of single phase and three phase bridge inverters , block diagrams including rectifier and inverter for speed control of AC motors (frequency control only)	07
3	Operational amplifiers and 555 Timer: Operational amplifier circuits, Ideal OPAMP behaviour, common OPAMP ICs; Basic OPAMP circuits- Inverting amplifier, Non-inverting amplifier, Voltage follower (Buffer), Instrumentation Amplifier, Active first order filter: Low pass and high pass filter; Power Op Amps, Optical Isolation amplifier; 555 timer-Operating modes: monostable, astable multivibrator	04
4	Digital logic and logic families: Digital signals, combinational and sequential logic circuits, clock signals, Boolean algebra and logic gates. Integrated circuits and logic families: Logic Levels, Noise Immunity, Fan Out, Propagation Delay, TTL logic family CMOS Logic family, comparison with TTL family Flip flops: Set Reset(SR),Trigger(T), clocked F/Fs; Registers, decoders and encoders, Multiplexer and Demultiplexer, applications	04
5	Microprocessor and Microcontrollers: Overview of generic microprocessor, architecture and functional block diagram, Comparison of microprocessor and microcontroller	08

	MSP430 architecture, assembly language programming, C compiler programming, basics of interfacing with external input / output devices (like reading external analog voltages, digital input output) Applications of microcontroller: Temperature measurement, Speed Measurement using	
	Proximity Sensor, Piezoelectric Actuator Drive	
6	Motors: Review and comparison of DC motors and AC induction motors, Basic principles of speed control of AC induction motor Basics of BLDC motor, Linear Actuator motor, Servo Motor Motor Specifications, suitability of each motor for various industrial applications, Selection and sizing of motors for different applications. Applications for pumps, conveyors, machine tools, Microcontroller based speed control for Induction Motor.	05

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

Reference Books:

- 1. Power Electronics M.H. Rashid, Prentice-Hall of India
- 2. Power Electronics, P S Bhimbra
- 3. Power Electronics, Vedam Subramanyam, New Age International
- 4. Power Electronics, Ned Mohan, Undeland, Robbins, John Wiley Publication
- 5. Electronic Devices and Circuits, Robert Boylestad and Louis Nashelsky, Prentice-Hall
- 6. Industrial Electronics and Control by S K Bhattacharya, S Chatterjee, TTTI Chandigarh
- 7. Modern Digitals Electronic, Jain R P, Tata McGraw Hill, 1984
- 8. Digital principal and Application, Malvino and Leach, Tata McGraw Hill, 1991
- 9. Fundamentals of Microcontrollers and Embedded System, Ramesh Gaonkar, PENRAM
- 10. MSP430 Microcontroller Basics, John H. Davies, Newnes; 1 edition 2008

Course Code	Course Name	Credits
MEC 404	Production Process II*	04

- 1. To study sheet metal forming as well as mechanical behavior of stress system in metal forming processes.
- 2. To Acquaint tobasic principles of design of jigs and fixtures
- 3. To give exposure to Non-traditional machining operations.
- 4. To acquaint with fundamentals of metal cutting and tool engineering

- 1. Demonstrate understanding of metal cutting principles and mechanism
- 2. Identify cutting tool geometry of single point and multipoint cutting tool
- 3. Demonstrate various concepts of sheet metal forming operations
- 4. Demonstrate concepts and use of jigs and fixtures
- 5. Illustrate various non-traditional machining techniques
- 6. Illustrate concepts and applications of additive manufacturing

Module	Details	Hrs
1	 Metal Cutting: 1.1 Features of machining processes, concept of speed and cutting, mechanism of chip formation, concept of shear plane, chip reduction coefficient force analysis, Merchants circle of cutting forces, expression for shear plane angle and coefficient of friction in terms of cutting forces and tool angles, Merchants theory-original and modified, effect of various parameters on cutting forces 1.2 Different types of dynamometers and their operations, Tool life definition, mechanism of tool wear and measurement, preliminary and ultimate feature, factors influencing tool life such as speed, feed, depth of cut, tool material, cutting fluids etc., Machinability, factors affecting surface finish 	16
2.	 Tool Engineering: 2.1 Cutting Tool geometry and definition of principles tool angles of single point cutting tools, Types of milling cutters and their geometry, Geometry of drill, broach 2.2 Specification & Selection of grinding wheel, dressing & truing and balancing of grinding wheels 	06
3.	 Sheet Metal Forming: 3.1 Sheet metal operations, Classification of presses, Types of Dies:, compound, combination, progressive, bending, forming and drawing dies, scrap strip layout, centre of pressure, selection of die sets, stock guides, strippers 	06
4.	Jigs and Fixtures: 4.1 Elements of Jigs and fixtures, principles of location, types of locating and clamping elements, Drill bushes-their types and applications indexing devices, auxiliary elements, Types of jigs, Milling fixture and turning fixture	06
5.	 Non-traditional Machining: 5.1 Ultrasonic Machining (USM), Abrasive Jet Machining (AJM), Water Jet Machining, Electrochemical Machining (ECM), Chemical Machining (CHM)Electrical Discharge Machining (EDM), Plasma Arc Machining (PAM), Laser Beam Machining (LBM), Electron Beam Machining (EBM) 	06

Additive Manufacturing:

	6.1 Historical Development, Fundamentals of Rapid Prototyping, Advantages of Rapid					
	Prototyping ,Additive Manufacturing (AM) Definition, Applications of AM parts, The					
	Generic AM process, Why use the term Additive Manufacturing, The Benefits of AM,					
	Distinction Between AM and CNC Machining, Other Related Technologies: Reverse					
	Engineering, CAE, Haptic based CAD, Classifications of AM / RP System: Liquid polymer					
6.	Systems, Discrete Particle Systems, Molten Material Systems, Solid Sheet Systems	08				
	6.2 New AM Classification Schemes as per ASTM F42 and ISO TC 261: Vat photo					
	polymerization, Powder bed fusion, Material extrusion, Material jetting, Binder jetting,					
	Sheet lamination and Directed energy deposition					
	6.3 Vat Photo Polymerization based AM / RP Systems: Principle of operation, Process,					
	materials advantages, disadvantages, and applications of 3D Systems' stereo lithography					
	(SLA), CMET'S Solid Object Ultraviolet-Laser Printer (SOUP).					

Assessment:

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

References

- 1. Tool Design by Donaldson
- 2. Machining Process by H.L. Juneja
- 3. Production Technology HMT
- 4. Manufacturing, Engineering and Technology SI by Serope Kalpakjian, Steven R Schmid, Prentice Hall
- 5. Fundamentals of Tool Design by ASTME
- 6. Metal cutting Theory & Cutting Tool Designing by V. Arshinov, G Alekseev
- 7. Principle of Metal cutting by Sen & Bhattacharya
- 8. Manufacturing science by Ghosh and Mallick
- 9. Production Engg by P.C.Sharma
- Additive Manufacturing Technologies, Ian Gibson, D.W. Rosen, and B. Stucker, , 2nd Edition, Springer 2015

Course Code	Course Name	Credits
MEC405	Kinematics of Machinery*	04

- 1. To acquaint with basic concept of kinematics and kinetics of machine elements
- 2. To familiarise with various basic mechanisms and inversions
- 3. To study basics of power transmission

- 1. Define various components of mechanisms
- 2. Develop mechanisms to provide specific motion
- 3. Draw velocity and acceleration diagrams of various mechanisms
- 4. Draw Cam profile for the specific follower motion
- 5. Analyse forces in various gears
- 6. Select appropriate power transmission for specific application

Module	Details	Hrs.
1	 1.1 Kinetics of Rigid Bodies: Mass M.I. about centroidal axis and about any other axis, Radius of Gyration, D'Alembert's Principle of bodies under rotational motion about a fixed axis and plane motion, Application of motion of bars, cylinders and spheres only Kinetics of Rigid bodies: Work and Energy Kinetic energy in translating motion, Rotation about fixed axis and in general plane motion, Work Energy Principle and Conservation of energy 1.2 Basic Kinematics: Structure, Machine, Mechanism, Kinematic link & its types, Kinematic pairs, Types of constrained motions, Types of Kinematic pairs, Kinematic chains, Types of joints, Degree of freedom (mobility), Kutzbach mobility criterion, Grübler's criterion & its limitations Four bar chain and its inversions, Grashoff's law, Slider crank chain and its inversions, Double slider crank chain and its inversions 	10
2	 2.1 Special Mechanisms: Straight line generating mechanisms: Introduction to Exact straight line generating mechanisms - Peaucillier's and Hart's Mechanisms, Introduction to Approximate Straight line generating mechanisms- Watt's, Grasshopper mechanism, Tchebicheff's mechanisms Offset slider crank mechanisms - Pantograph, Hook-joint (single and double). Steering Gear Mechanism - Ackerman, Davis steering gears 	06
3	 3.1 Velocity Analysis of Mechanisms (mechanisms up to 6 links): Velocity analysis by instantaneous center of rotation method (Graphical approach), Velocity analysis by relative velocity method (Graphical approach) Analysis extended to find rubbing velocities at joints, mechanical advantage (Graphical approach) Velocity analysis of low degree complexity mechanism (Graphical approach), Auxiliary point method 3.2 Velocity and Acceleration Analysis of Mechanism: Velocity and Acceleration- analysis by relative method (mechanism up to 6 link) including pairs involving Coriolis acceleration (Graphical Approach) 	10
4	4.1 Cam Mechanism: Cam and its Classification, Followers and its Classification, Motion analysis and plotting of displacement - time, velocity-time, acceleration-time, jerk-time graphs for uniform velocity, UARM, SHM, and Cycloid motions (combined motions during one stroke excluded), Motion analysis of simple cams - R-R cam, D-R-R and D-R-D-R Cam operating radial translating follower, Pressure angle	06

5	 5.1 Belts, Chains and Brakes: Belts: Introduction, types and all other fundamentals of belting, Dynamic analysis –belt tensions, condition of maximum power transmission Chains: types of chains, chordal action, variation in velocity ratio, length of chain Brakes: Introduction, types and working principles, Introduction to braking of vehicles 	06
6	 6.1 Gears and Gear Trains: Gears- Introduction, types, Law of gearing, Construction of Involute and Cycloid gear tooth profile, Details of gear terminology, involutes and cycloidal tooth profile, Interference in involutes gears, Critical numbers of teeth for interference free motion Methods to control interference in involutes gears, Static force analysis in gears - spur, helical, bevel, worm & worm wheel Gear Trains: Kinematics and dynamic analysis of simple and compound gear trains, reverted gear trains, epi-cycle gear trains with spur or bevel gear combination 	10

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of content and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the syllabus.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the syllabus
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

References:

- 1. Theory of Mechanisms and Machines by Amitabh Ghosh and A. Kumar Mallik
- 2. Theory of Machines and Mechanism by Uicker Jr, Garden Pennock & J.F. Shigley, OXFORD University Press
- 3. Theory of Machines by P L Ballaney
- 4. Theory of Machines by S S Ratan
- 5. Kinematics of Machines by R T Hinckle, Prentice Hall Inc
- 6. Kinematics by V M Fairs, McGraw Hill
- 7. Mechanism Design: Analysis and Synthesis Vol I by A. Erdman and G N Sander, Prentice Hall
- 8. Kinematics and Dynamics of Planer mechanisms by Jeremy Hirsihham, McGraw Hill
- 9. Theory of Machines by W. G. Green, Bluckie & Sons Ltd

Course Code	Course Name	Credits
MEL401	Data Base and Information Retrieval*	02

- 1. To acquaint with data modelling/database design using the entity-relationship
- 2. To study use of Structured Query Language (SQL) and learn SQL syntax
- 3. To familiarise Graphical User Interface techniques to retrieve information from database
- 4. To study needs of database processing and controlling the consequences of concurrent data access

- 1. Identify data models and schemes in DBMS
- 2. Demonstrate the features of database management systems and Relational database
- 3. Use SQL- the standard language of relational databases
- 4. Demonstrate understanding of functional dependencies and design of the database
- 5. Design graphical user Interface for specific application
- 6. Create visual software entities

Module	Detailed Contents	Hrs.
01	Introduction to Database Concept: What is a database?, Characteristics of database, Example of database, File system V/s Database system, What is DBMS?, Users of database system, Advantage of using an enterprise database, Concerns when using an enterprise database, Data independence, DBMS systems architecture, Database administrator	02
02	Entity-Relationship Data Model: Introduction, Benefits of Data Modelling, Types of Models, Phases of Database Modelling, The Entity-Relationship (ER) Model, Generalisation, Specialization and Aggregation, Extended Entity-Relationship (EER) Model	04
03	Rational Model and Algebra: Introduction, Mapping the ER and EER Model to the relational Model, Data Manipulation, Data Integrity, Advantages of Relational Model, Relational Algebra, Relational Algebra Queries, Relational Calculus	04
04	Structured Query Language (SQL): Overview of SQL, Data definition commands, set operations, aggregrate functions, null values, Data manipulation commands, Data control commands, Views- using virtual tables in SQL, Nested and complex queries	04
05	Introduction to Transactions Management and Co-currency: Transaction concept, transaction states, ACID properties, Implementation of atomicity and durability, Concurrent Executions, Serializability, Recoverability, Co-currency Control: Lock-based, Timestamp-based, Validation-based protocols, Deadlock handling, Recovery system, Failure classification, Storage structure, Recovery and atomicity, Log based recovery, Shadow paging	04
06	Graphical User Interface: Murphy's law of GUI design, Features of GUI, Icons and graphics, Identifying visual cues, clear communication, colour selection, GUI standard, planning GUI Design Work Visual Programming: Sharing Data and Code: Working with projects, introduction to basic language, Using inbuilt controls and ActiveX controls, creating and using classes, introduction to collections, usinf and creating ActiveX components, dynamics data exchange, Object linking and embedding, <i>Creating visual software entities:</i> Working with text, graphics, working with files, file management, serial communication, multimedia control interfaces	06

Term Work:

Assign minimum two case studies for each student. On their case studies following exercises to be performed

- 1. Problem Definition and draw ER/EER diagram
- 2. Design Relational Model
- 3. Perform DDL operation
- 4. Perform DML and DCL operations
- 5. Design Forms using Visual programming
- 6. Retrieve the information through GUI.

Distribution of Term work Marks Laboratory work Attendance

40 Marks 10 Marks

End Semester Practical/Oral Examination:

- 1. Practical examination of 2 hours duration followed by viva to be conducted by Pair of Internal and External Examiner based on contents
- 2. Evaluation of practical examination to be done by examiner based on the printout of students work
- 3. Distribution of marks

Practical examination:	40 marks
Viva based on practical examination	10marks

4. Students work along with evaluation report to be preserved till the next examination

Reference Books:

- 1. Database Management Systems, G K Gupta, McGraw Hill
- 2. Database System Concepts, Korth, Slberchatz, Sudarshan, 6th Edition, McGraw Hill
- 3. GUI Design for dummies, IDG books
- 4. Visual Basic 2005, How to program, Deitel and Deitel, 3rdEdition, Pearson Education
- 5. SQL and PL/SQL for Oracle 10g,Black Book, Dr P S Deshpande, Dreamtech Press
- 6. Introduction to Database Management, Mark L Gillenson, Paulraj Ponniah, Wiley
- 7. Oracle for Professional, Sharaman Shah, SPD.
- 8. Database Management Systems, Raghu Ramkrishnan and Johannes Gehrke, TMH
- 9. Fundamentals of Database Management System, Mark L Gillenson, Wiley India

Course Code	Course/Subject Name	Credits
MEL402	Fluid Mechanics*	1

- 1. To study measurement as well as calibration principles
- 2. To practically verify the concepts learnt in theory course

Outcomes: Learner will be able to...

- 1. Calibrate different gauges
- 2. Measure hydrostatic forces
- 3. Verify the Archimedes Principle
- 4. Calibrate Venturimeter, Orificemeter and Pitot tube
- 5. Verify the Bernoulli's Principle
- 6. Read manometers and maintain them.

(a) List of Experiments: Any 6 experiments to be performed.

Expt no	Experiment	Hrs
1	Calibration of Pressure Gauges	2
2	Measurement of Hydrostatic Pressures	2
3	Verification of Archimedes' Principle	2
4	Calibration of Venturimeter/ Orificemeter/Nozzlemeter/ Pitot tube	2
5	Determine the friction factor for Pipes	2
6	Determination of major and minor losses in Pipe systems	2
7	Verification of Bernoulli's Equation	2
8	Experiment on Laminar flow in pipes	2
9	Calculation of Lift and Drag over an aerofoil	2
10	Determine the pressure profile over an aerofoil	2

(b) Mini Project: A mini project along with a brief report in which a group of students (maximum 4) will design/ fabricate/ assemble a unit or software based simulation to demonstrate any principle in Fluid Mechanics.

Assessment:

Term work Mark distribution will be as follows:

Laboratory work	15 marks
Mini Project	05 marks
Attendance	05 marks

End Semester Practical/Oral Examination:

1. Pair of Internal and External Examiner should conduct practical/viva based on contents. Distribution of marks for practical/viva examination shall be as follows:

Practical performance	15 marks
Viva	10 marks

- 2. Evaluation of practical examination to be done based on the experiment performed and the output of the experiment during practical examination
- 3. Students work along with evaluation report to be preserved till the next examination

Course Code	Course Name	Credits
MEL403	Industrial Electronics*	01

- 1. To study operational characteristics of various electrical and electronics components
- 2. To study microcontroller based applications and its programming

Outcomes: Learner will be able to...

- 1. Demonstrate characteristics of various electrical and electronics components
- 2. Develop simple applications built around these components
- 3. Identify use of different basic gates
- 4. Identify and use digital circuits for industrial applications
- 5. Built and demonstrate basic parameter measurement using microcontroller
- 6. Test and Analyse speed-torque characteristics of electrical machines for speed control.

List of Experiment: Minimum six from 1-9 and four from 10-15, in all minimum ten experiments need to be performed

Sr No	Detailed Contents
1	MOSFET / IGBT as a switch
2	V-I characteristics of SCR
3	Triggering circuit of SCR (UJT)
4	Full wave Rectifier using SCR
5	Single phase Bridge inverter with rectifier load
6	OPAMP as integrator
7	555 timer as astable multivibrator
8	Implementing study of gates and Logic Operations like, NOT, AND, OR
9	Realization of basic gates using universal gates
10	Light dimmer circuit using Diac-Triac
11	Speed control of DC motor
12	Speed control of induction motor
13	Simple programs using microcontroller
14	Simple microcontroller based application like Temp Measurement/ Speed Measurement
14	using Proximity Sensor/ Piezoelectric Actuator Drive
15	Microcontroller based speed control for Induction Motor
company (in a	anoun) may be anacurated for Design Daged I corning Anneoprists Weightage may b

<u>Learners (in a group) may be encouraged for Project Based Learning. Appropriate Weightage may be given in term work assessment</u>

Assessment:

Distribution of marks for term work20 MarksLaboratory work20 MarksAttendance05 Marks

End Semester Practical/Oral Examination:

- 1. Pair of Internal and External Examiner should conduct practical/viva based on contents
- 2. Distribution of marks for practical/viva examination shall be as follows:

Practical performance	15 marks
Viva	10 marks

- 3. Evaluation of practical examination to be done based on the experiment performed and the output of the experiment during practical examination
- 4. Students work along with evaluation report to be preserved till the next examination

University of Mumbai, B. E. (Mechanical Engineering), Rev 2016

Course Code	Course Name	Credits
MEL 404	Kinematics of Machinery*	01

- 1. To familiarise with various mechanisms and inversions
- 2. To acquaint with basics of power transmission systems

Outcomes: Learner will be able to...

- 1. Draw velocity diagram by instantaneous center method
- 2. Draw velocity and acceleration diagrams for four bar mechanism by relative method.
- 3. Draw velocity and acceleration diagrams for Slider crank mechanism by relative method
- 4. Draw Cam profile for the specific follower motion
- 5. Plot displacement-time, velocity-time, acceleration-time cam profiles
- 6. Develop and build mechanisms to provide specific motion

Term Work: (Comprises a and b)

a) List of Experiments

Sr No	Details	Lab
		Session
1	Analysis of velocity of mechanisms by Instantaneous Center of Rotation - 3 to 5	2 Hrs
1	problems	21115
2	Analysis of velocity of mechanism by Relative method -3 to 5 problems	4 Hrs
3	Analysis of Velocity & Acceleration of mechanism by Relative method – 3 to 5 problems	4 Hrs
1	Motion analysis and plotting of displacement-time, velocity-time and acceleration-time,	4 Hrs
4	jerk-time and layout of cam profiles - 2 to 3 problems	
5	Mini project on design and fabrication of any one mechanism for a group of maximum	6 Ure
5	4 students	0 1118

b) Assignments: Minimum two problems on each of the following topics:

- i) Brakes
- ii) Chains and belts
- iii) Gear and gear trains

Distribution of marks for Term Work shall be as follows:

Laboratory work	:	15marks.
Assignments	:	05 Marks
Attendance	:	05 marks.

Course Code	Course/Subject Name	Credits
MEL405	Machine Shop Practice – II*	2

- 1. To familiarise with basic machining processes.
- 2. To Acquaint to various machining operations and machine protocols

Outcomes: Learner should be able to

- 1. Operate lathe machine,
- 2. Perform shaping operations
- 3. Perform finishing operations on grinding machine
- 4. Perform milling operations.
- 5. Perform precision turning
- 6. Perform drilling and threading operations.

Module	Details	Hrs
	One composite job consisting minimum four parts employing operations on lathe	
1	like precision turning screw cutting, boring etc.	19
	This job shall involve use of shaping, milling and grinding operations	40

Term Work:

- 1. Composite job mentioned above
- 2. Complete Work-Shop Book giving details of drawing of the job and time sheet

The distribution of marks for Term work shall be as follows:

Job Work with complete workshop book	40 marks
Attendance	10 marks

End Semester Practical Examination:

Pair of Internal and External Examiner should conduct practical/viva based on contents.

Practical examination will be held for 4 hours.

Job shall consist of minimum four operations such as precision turning, boring, screw cutting, drilling, milling, shaping, grinding etc.

Course Code	Course/Subject Name	Credits
MEC501	Internal Combustion Engines*	4

- 1. To familiarize with the working of S.I. and C.I. engines and its important systems
- 2. To acquaint with the various methods for measurement of engine performance
- 3. To provide insight into the harmful effects of engine pollutants and its control
- 4. To familiarise with the latest technological developments in engine technology

- 1. Demonstrate the working of different systems and processes of S.I. engines
- 2. Demonstrate the working of different systems and processes of C.I. engines
- 3. Illustrate the working of lubrication, cooling and supercharging systems.
- 4. Analyse engine performance
- 5. Illustrate emission norms and emission control
- 6. Comprehend the different technological advances in engines and alternate fuels

Module	Detailed Contents	Hrs.
01	Introduction Classification of I.C. Engines; Parts of I.C. Engine and their materials, Cycle of operation in Four stroke and Two-stroke IC engines and their comparative study; Fuel air cycles and their analysis, Actual working cycle, Valve Timing Diagram. LHR Engines, Homogeneous charge compression Ignition,Rotary engine-Six stroke engine concept	06
02	 S.I. Engines Fuel Supply System: Spark ignition Engine mixture requirements, Fuel-Air ratio, Simple carburettor and auxiliary circuits (excluding mathematical analysis of carburettors) Injection systems: Single-point and Multipoint injection, Gasoline Direct Injection Ignition System: Battery Ignition System, Magneto Ignition System, Functions and working of ignition coil, spark plug, contact breaker point, Requirements and working of Ignition advance mechanisms; mechanical and vacuum, Electronic Ignition Systems; Capacitor Discharge Ignition System, Transistorized Coil Assisted Ignition System, Transistor Ignition system with contactless breaker Combustion : Combustion phenomenon in SI Engines, Ignition delay, Flame propagation, Pressure- 	12
03	 Crank angle diagram, Abnormal combustion, Auto ignition, Detonation and Knocking, Factors affecting combustion and detonation, Types of combustion chambers Compression Ignition Engines Fuel Injection Systems: Air injection systems, Airless/solid injection systems, Common rail, individual pump, distributor and unit systems. Injection pumps, Fuel injector, Types of nozzle, Electronically controlled unit fuel injection system Combustion: Combustion phenomenon in C I engines, Stages of combustion, Delay period, Knocking, Pressure-Crank angle diagram, Factors affecting combustion and knocking, Types of combustion chambers 	10
04	 Engine lubrication: Types of lubricants and their properties, SAE rating of lubricants, Types of lubrication systems Engine Cooling: Necessity of engine cooling, disadvantages of overcooling, Cooling systems and their comparison: Air cooling, Liquid cooling Supercharging/Turbo-charging: Objectives, Limitations, Methods and Types, Different arrangements of turbochargers and superchargers 	06

	Engine Testing and Performance	
05	Measurement of Brake Power, Indicated Power, Frictional Power, Fuel Consumption, Air	
	flow, BMEP, Performance characteristic of SI and CI Engine Effect of load and speed on	
	Mechanical, Indicated Thermal, Brake Thermal and Volumetric efficiencies, Heat balance	
	sheet.	10
03	Engine Exhaust Emission and its control	10
	Constituents of exhaust emission at its harmful effect on environment and human health,	
	Formation of NOx, HC, CO and particulate emissions, Methods of controlling emissions;	l
	Catalytic convertors, particulate traps, Exhaust Gas Recirculation, EURO and BHARAT	
	norms.	
	Alternative Fuels Alcohol - Hydrogen - Natural Gas and Liquefied Petroleum Gas -	
	Biodiesel- Biogas - Producer Gas - Properties - Suitability - Engine Modifications - Merits	
	and Demerits as fuels.	
06	Basics of Electronic Engine Controls:	04
00	Electronic Control module (ECM), Inputs required and output signals from ECM, Sensors:	
	Throttle Position, Inlet Air Temperature, Coolant Temperature, Crankshaft Position,	
	Camshaft Position, Mass Air flow and Exhaust Gas Oxygen sensors, their construction and	
	importance in ECM. Electronic Spark control, Air Management system, Idle speed control	

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of content and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the syllabus.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the syllabus
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

References:

- 1. Internal Combustion Engines, Willard W.Pulkrabek, Pearson Education.
- 2. Internal Combustion Engines, Shyam Agrawal, New Age International
- 3. Internal Combustion Engine, Mathur and Sharma
- 4. Internal Combustion Engines, Mohanty, Standard Book House
- 5. Internal Combustion Engine, Gills and Smith
- 6. Internal Combustion Engines Fundamentals, John B. Heywood, TMH
- 7. Internal Combustion Engines, Gupta H N, 2nd ed, PHI
- 8. Internal Combustion Engine, V Ganesan, TMH
- 9. Introduction to Internal Combustion Engines, Richard Stone, Palgrave Publication, 4th Edition
- 10. Internal Combustion Engine, S.L. Beohar
- 11. Internal Combustion Engine, P.M Heldt.
- 12. Internal Combustion Engines, V.L. Maleeve
- 13. Internal Combustion Engine, E.F. Oberi.
- 14. Internal Combustion Engine by Domkundwar

Course Code	Course/Subject Name	Credits
MEC502	Mechanical Measurement and Control*	4

- 1. To impart knowledge of architecture of the measurement system
- 2. To deliver working principle of mechanical measurement system
- 3. To study concept of mathematical modelling of the control system
- 4. To acquaint with control system under different time domain

- 1. Classify various types of static characteristics and types of errors occurring in the system.
- 2. Classify and select proper measuring instrument for linear and angular displacement
- 3. Classify and select proper measuring instrument for pressure and temperature measurement
- 4. Design mathematical model of system/process for standard input responses
- 5. Analyse error and differentiate various types of control systems and time domain specifications
- 6. Analyse the problems associated with stability

Module	Contents	Hours
01	 Significance of Mechanical Measurements, Classification of measuring instruments, generalized measurement system, types of inputs: Desired, interfering and modifying inputs. Static characteristics: Static calibration, Linearity, Static Sensitivity, Accuracy, Static error, Precision, Reproducibility, Threshold, Resolution, Hysteresis, Drift, Span & Range etc. Berrors in measurement: Types of errors, Effect of component errors, Probable errors. 	08
02	 2.1 Displacement Measurement: Transducers for displacement, displacement measurement, potentiometer, LVDT, Capacitance Types, Digital Transducers (optical encoder), Nozzle Flapper Transducer 2.2 Strain Measurement: Theory of Strain Gauges, gauge factor, temperature Compensation, Bridge circuit, orientation of strain gauges for force and torque, Strain gauge based load cells and torque sensors 2.3 Measurement of Angular Velocity: Tachometers, Tachogenerators, Digital tachometers and Stroboscopic Methods. 2.4 Acceleration Measurement: theory of accelerometer and vibrometers, practical accelerometers, strain gauge based and piezoelectric accelerometers 	08
03	 3.1 Pressure Measurement: Elastic pressure transducers viz. Bourdon tubes, diaphragm, bellows and piezoelectric pressure sensors, High Pressure Measurements, Bridge man gauge. Vacuum measurement: Vacuum gauges viz. McLeod gauge, Ionization and Thermal Conductivity gauges 3.2 Flow Measurement: Bernoulli flowmeters, Ultrasonic Flowmeter, Magnetic flow meter, rotameter 3.3 Temperature Measurement: Electrical methods of temperature measurement Resistance thermometers, Thermistors and thermocouples, Pyrometers 3.4 Sensitivity analysis of sensor-influence of component variation 3.5 Signal conditioning: Amplifier, Conversion, Filtering, Impedance Buffering, Modulation / Demodulation, Linearization, Grounding and Isolation 	08
04	 4.1 Introduction to control systems, Classification of control system. Open loop and closed loop systems. 4.2 Mathematical modelling of control systems, concept of transfer function, Block diagram algebra 	06
05	5.1 Transient and steady state analysis of first and second order system. Time Domain specifications. Step response of second order system. Steady-state error, error coefficients, steady state analysis of different type of systems using step, ramp and parabolic inputs	06

06	Stability analysis	
	6.1 Introduction to concepts of stability, The Routh criteria for stability	
	6.2 Experimental determination of frequency response, Stability analysis using Root locus,	12
	Bode plot and Nyquist Plots	12
	6.3 State space modeling	
	6.4 Process control systems, ON-OFF control. P-I-D Control	

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of content and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the syllabus.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the syllabus
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

References

- 1. Measurement Systems: Applications and Design, by EO Doebelin,5th Edition,McGraw Hill
- 2. Mechanical Engineering Measurements, A K Sawhney, Dhanpat Rai& Sons, New Delhi
- 3. Instrumentation & Mechanical Measurements, A K Thayal
- 4. Control System Engineering by Nagrath IJ and Gopal M, Wiley EasternLtd.
- 5. Modem Control engineering: by KOgata, Prentice Hall
- 6. Control systems by DhaneshManik, Cengage Learning
- 7. Engineering Metrology and Measurementsby N V Raghavendra and L Krishnamurthy, Oxford University Press
- 8. Instrumentation and Control System, W. Bolton, Elsevier
- 9. Experimental Methods for Engineers by J P Holman, McGraw Hills Int. Edition
- 10. Engineering Experimentation by EO Doebelin, McGraw Hills Int. Edition
- 11. Mechanical Measurements by S P Venkateshan, Ane books, India

Course Code	Course/Subject Name	Credits
MEC 503	Heat Transfer*	04

- 1. To Study basic heat transfer concepts applicable for steady state and transient conditions
- 2. To Study mathematical modelling and designing concepts of heat exchangers

- 1. Identify the three modes of heat transfer (conduction, convection and radiation).
- 2. Illustrate basic modes of heat transfer
- 3. Develop mathematical model for each mode of heat transfer
- 4. Develop mathematical model for transient heat transfer
- 5. Demonstrate and explain mechanism of boiling and condensation Analyse different heat exchangers and quantify their performance

Module	Detailed Contents	Hrs.
	Basic concepts of heat transfer: Define heat transfer and its importance in engineering	~
01	applications, Difference between heat transfer and Thermodynamics, Physical Mechanism of modes of heat transfer, Governing laws of heat transfer, Conduction mode: Thermal conductivity, Thermal diffusivity, Convection mode: Free and Forced convection, Heat transfer Coefficient, Radiation mode: Emissivity, transmissivity, reflectivity, absorptivity, Black body, Grey body, Opaque body, Steady and unsteady heat transfer, One dimensional, two dimensional and three dimensional heat transfer, Thermal resistance concept in heat transfer, Thermal contact resistance	04
02	Conduction: Assumptions in heat conduction, Generalized heat conduction equation in rectangular, cylindrical coordinates, Initial and boundary conditions, Steady state heat conduction through plane wall, Composite wall, cylinder, composite cylinder wall, sphere, Internal Heat generation concept, Heat conduction with heat generation in plane wall, solid cylinder and solid sphere, Critical radius of insulation in cylinder and sphere	08
03	 Heat transfer from Extended Surface: Types of extended surface and its significance, Governing differential equation for fin and its solution, Fin performance: Fin effectiveness and Fin efficiency, Thermo Well Unsteady state heat transfer: Applications of unsteady state heat transfer, Lumped system Analysis, Criteria for lumped system analysis: characteristic length, Biot Number, Thermal time constant and Response of a thermocouple, Heisler Charts Numerical methods in heat transfer:Significance of numerical methods in heat transfer, Finite difference formulation of differential equations, One-dimensional heat conduction. 	08
04	 Convection:Determination of heat transfer coefficient, Dimensional Analysis, Dimensionless numbers in free and forced convection and their significance External Flow:Velocity Boundary layer and Thermal Boundary layer, Laminar and turbulent flow over a flat plate, Flow across cylinder and sphere, Flow across bank of tubes Internal Flow:Velocity Boundary layer and Thermal Boundary layer, Laminar and Turbulent flow in tubes, General thermal analysis: Constant heat flux and constant surface temperature 	10
05	Radiation: Basic laws of radiation, Black body radiation, Planck's law, Kirchhoff's law, Wein displacement law, Lambert cosine law, Radiation intensity, Radiation heat exchange between black bodies, Shape factor algebra, Radiation heat exchange between nonblack bodies, Electrical network approach for radiation heat exchange: Radiosity and irradiation, Radiation shield	08
06	 Boiling and Condensation: Boiling heat transfer, Pool boiling: different regimes and pool boiling curve, Flow boiling: Different Regimes and Boiling curve, Condensation heat transfer, Film condensation, Dropwise Condensation Heat Exchangers: Types of heat exchangers, Overall heat transfer coefficient, Fouling factor, Analysis of heat exchangers, LMTD, Effectiveness –NTU method, Correction factor, Effectiveness of heat exchangers Heat Pipe: Introduction and application 	10
Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of content and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the syllabus.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the syllabus
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

ReferenceBooks:

- 1. Introduction to thermodynamics and Heat transfer by Yunus A Cengel 2ndEdition, McGraw Hill International
- 2. Fundamentals of Heat and Mass Transfer by FPIncropera and D P deWitt, Wiley India
- 3. Heat Transfer by P S Ghoshdastidar, 2nd Edition, Oxford University Press
- 4. Heat and Mass Transfer, by R Rudramoorthy and L Malaysamy, 2ndEdition, PEARSON
- 5. Heat Transfer by J P Holman, Mcgraw Hill
- 6. Heat Transfer by S P Sukhatme, University Press
- 7. Heat and Mass Transfer by PK Nag, TMH
- 8. Heat and Mass Transfer by Mahesh Rathod, Laxmi Publications
- 9. Heat and Mass Transfer by RK Rajput, S Chand and company

Course Code	Course/Subject Name	Credits
MEC504	Dynamics of Machinery*	4

- 1. To acquaint with working principles and applications of Governors / Gyroscope
- 2. To study static and dynamic force analysis in the mechanisms
- 3. To familiarise with basics of mechanical vibrations
- 4. To study the balancing of mechanical systems

- 1. Demonstrate working Principles of different types of governors and Gyroscopic effects on the mechanical systems
- 2. Illustrate basic of static and dynamic forces
- 3. Determine natural frequency of element/system
- 4. Determine vibration response of mechanical elements / systems
- 5. Design vibration isolation system for a specific application
- 6. Demonstrate basic concepts of balancing of forces and couples

Module	Details	Hrs.
1	 Governors and Gyroscopes: 1.1 Governors: Introduction to Centrifugal and Inertia governors, Force analysis of governors- Porter and Hartnell governors, Performance characteristics of governors, Governors effort and power 1.2 Gyroscope: Introduction, Gyroscopic couple and its effect on spinning bodies, naval ships during steering, pitching, rolling and their stabilization. Effect of gyroscopic and centrifugal couples, permissible speeds on curve paths, gyroscopic effect due to lateral misalignment of rigid disc mounted on shaft. 	09
2	 2.1 Static and Dynamic force analysis, in slider crank mechanism (neglecting mass of connecting rod and crank), Engine force analysis, Turning moment on crank shaft 2.2 Dynamically equivalent systems, to convert rigid body in to two mass with and without correction couple 	06
3	 3.1 Basic Concepts of Vibration: Vibration and oscillation, causes and effects of vibrations, Vibration parameters - springs, mass, damper, damper models, Motion- periodic, non-periodic, degree of freedom, static equilibrium position, vibration classification, steps involved in vibration analysis 3.2 Free Undamped Single Degree of Freedom Vibration System: Longitudinal, transverse, torsional, vibration system, methods for formulation of differential equations by Newton, Energy, Lagrangian and Rayleigh's method 	08
4	 4.1 Free Damped Single Degree of Freedom Vibration System: Viscous damped system - under damped, critically damped, over damped; Logarithmic decrement; Coulomb's damping 4.2 Equivalent Single Degree of Freedom Vibration System: Conversion of multi-springs, multi masses, multi-dampers into a single spring and damper with linear or rotational co-ordinate system, Introduction to free multi-degree of freedom vibration systems 	07
5	 5.1 Forced Single Degree of Freedom Vibratory System: Analysis of linear and torsional systems subjected to harmonic force excitation and harmonic motion excitation (excluding elastic damper) 5.2 Vibration Isolation and Transmissibility: Force Transmissibility, motion transmissibility, typical isolators & mounts. 	10

	5.3 Vibration Measuring instruments: Principle of seismic instruments, vibrometer,	
	accelerometer - undamped and damped, Introduction to conditioning monitoring and fault	
	diagnosis	
	6.1 Rotor Dynamics:	
6	Critical speed of single rotor, undamped and damped	00
U	6.2 Balancing: Static and Dynamic balancing of multi rotor system, balancing of reciprocating	Vð
	masses in In-line engines, V-engines (excluding other radial engines)	

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of content and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the syllabus.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the syllabus
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

References:

- 1. Theory of Machines Thomas Bevan CSB Publishers & Distributors
- 2. Theory of Machines by Jagdishlal Metropolitan Book New Delhi, Company, Daryaganj, Delhi
- 3. Theory of Machines by S.S.Ratan Tata McGraw Hill, New Delhi
- 4. Theory of Machines by P.L.Bellaney Khanna publication, NewDelhi
- 5. Theory of Machines and Mechanisms by John J Uicker, Gordon R Pennock and Joseph E Shigley, Oxford University Press
- 6. Theory of Vibration with Applications, by W. Thomson, 2nd edition, Pearson Education
- 7. Mechanical Vibrations by S.S.Rao, fourth edition, Pearson Education
- 8. Mechanical Vibraitons by G.K.Grover
- 9. Fundamentals of Mechanical Vibration by S.Graham Kelly, Tata McGraw Hll
- 10. Principles of Vibration by Benson H Tongue, 2nd Edition, Oxford University Press
- 11. Vibration Analysis by P. Srineevasan, TMH
- 12. Mechanical Vibrations- Schaum's outline series, William W.Seto, McGraw Hill
- 13. Theory and Practice of Mechanical Vibrations by J S Rao and K Gupta, New Age International
- 14. Elements of Vibration Analysis by Leonard Meirovitch, McGrav-Hill, New York

Course Code	Course/Subject Name	Credits
MEDLO5011	Press Tool Design	4

- 1. To acquaint with various press working operations for mass production of sheet metal components
- 2. To familiarise with sheet metal working techniques for design of press tools
- 3. To inculcate knowledge about scrap minimization, safety aspects and automation in press working

- 1. Demonstrate various press working operations for mass production of sheet metal parts
- 2. Identify press tool requirements to build concepts pertaining to design of press tools
- 3. Prepare working drawings and setup for economic production of sheet metal components
- 4. Select suitable materials for different elements of press tools
- 5. Illustrate the principles and blank development in bent & drawn components
- 6. Elaborate failure mechanisms of pressed components, safety aspects and automation in press working

Module	Contents	Hours
1	 Introduction to Press Working – 1.1 Classification of common Press working operations, Benefits and limitations of using Press tools. Applications of pressed parts/components. 1.2 Theory of Shearing in Press Working. Optimum Cutting clearance & its effect on tolerances of pressed components. Construction of Basic shearing die. Functions of different elements of a press tool. Methods of feeding the strip/coil material. 	08
2	 Design and Calculations of Piercing & Blanking Die– 2.1 Calculations for Economic Strip Layout, Calculations of Cutting force and Stripping force, Recommending minimum tonnage of a press. Centre of Pressure (its importance and calculation) 2.2 Design aspects of Press tool elements viz. Punches & methods of retaining punches, Die block, Stripper, Pilot, etc. Methods of reducing cutting loads on press tools 2.3 Different types Die sets and its selection 	14
3	3.1 Selection of Material & Hardware –Selection and arrangement of Hardware used in Press tools. Selection of steels and its hardness for different elements of Press tools.	03
4	 Bending and Drawing- 4.1 Theory of Bending, Spring back and measures to control it, Calculations for Blank development of Simple Bent components, Minimum bend radius, Types of Bending dies 4.2 Theory of Drawing, Metal flow in Drawing & forming operations; reduction ratio and redrawing limits, draw clearance, drawing and blank holding forces for cylindrical draws only. Blank development of Cup 4.3 Defects in drawn as well as bent parts, Presses selection for drawing/forming operations 4.4 Basic construction and working of Bending and Drawing dies 	12
5	5.1 Miscellaneous Dies- Basic construction & working of Shaving dies, Trimming dies, Compound dies, Combination dies, Coining dies, Embossing dies, Simple Progressive & Compound Progressive dies	05
6	 Selection of Presses and its setting – 6.1 Selection of Press and Press setting for Shearing, Bending, Progressive and Drawing dies, Equipment for Sheet metal operations (Basics only), Overloading of presses (load, energy considerations) 6.2 Introduction to Automation & Safety in Press shop 	06

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

References

- 1. Die Design Fundamentals by J. R. Paquin, Industrial Press
- 2. Techniques of Press Working Sheet Metal by D F Eary and E A Reed
- 3. Press Tools Design and Construction by P H Joshi, S Chand Publishing
- 4. Tool Design by C. Donaldson and V C Goold, TMH
- 5. Production Engineering by P. C. Sharma, S Chand Publishing
- 6. Metal working ASM Handbook

Course Code	Course/Subject Name	Credits
MEDLO5012	Machining Sciences And Tool Design	4

- 1. To familiarise with the basic concepts of machining science like mechanics of machining, tool wear, tool life and surface roughness.
- 2. To familiarise with various single and multipoint cutting tools designing processes
- 3. To study the economics of machining process

- 1. Calculate the values of various forces involved in the machining operations
- 2. Design various single and multipoint cutting tools
- 3. Analyse heat generation in machining operation and coolant operations
- 4. Illustrate the properties of various cutting tool materials and hence select an appropriate tool material for particular machining application
- 5. Demonstrate the inter-relationship between cutting parameters and machining performance measures like power requirement, cutting time, tool life and surface finish
- 6. Analyse economics of machining operations

Module	Details	Hrs.
01	 1.1 Metal Cutting Theory: Orthogonal and oblique cutting, various types of chips, Mechanics of orthogonal steady state metal cutting, shear plane and shear plane angle, Merchant's force circle, stresses, shear strain, velocity relations, rate of strain, energy considerations, Concept of specific power consumption in machining, Ernst and Merchant's model& modified model for orthogonal cutting, Lee and Shaffer model, Analytical modelling of machining operations, mechanistic modelling of machining, slip line field analysis, finite element analysis, modelling of material properties 1.2 Dynamometry: Dynamometer requirements, force measurement, electric transducers, strain gage lathe dynamometer, strain rings, milling dynamometer, drilling dynamometer, surface grinding dynamometer, piezoelectric dynamometry 	10
02	2.1 Temperatures in metal cutting and cutting fluids: Heat generation in metal cutting, heat transfer in a moving material, temperature distribution in metal cutting, temperature in primary deformation zone, temperature in secondary deformation zone, effect of cutting speed on temperature, prediction of temperature distribution in machining, measurement of cutting temperature, work-tool thermocouple, direct thermocouple measurement, radiation methods, hardness and microstructure changes in steel tools Cutting fluid types, the action of coolants, the action of lubricants, characteristics of an efficient lubricant in metal cutting, application methods of cutting fluid, cutting fluid maintenance and environmental considerations, disposal of cutting fluids, dry cutting and minimum quantity lubrication, cryogenic cooling	06
03	 Cutting tool materials and machining induced surface integrity 3.1 Properties of cutting tool materials, Major tool material types, Plain carbon steel, high speed steel, cast alloys, cemented tungsten carbide, titanium carbides, ceramic and cermet tools, synthetic diamond, polycrystalline diamond (PCD), cubic boron nitride (CBN), coated tools 3.2 Measurement and specification of surface finish, primary cutting edge finish, fracture roughness, BUE formation and its influence on finish, secondary cutting edge finish, 	06

	geometrical contribution to roughness, edge finishing, residual stress and micro hardness	
04	4.1 Tool life and machining economics: Definition, flank wear and crater wear, criteria for tool failure, effect of cutting parameters and tool geometry on tool life, Taylor's tool life equation, Experimental methods to find Taylor exponents, Components of product cost,Optimum cutting velocity for minimum cost of production and maximum production rate	06
05	5.1 Design of single point cutting tools : Different systems of tool nomenclature like MRS, ORS and NRS, Interrelationship among different systems of nomenclature for tool angles, Constructional features of solid tool, tipped tools, mechanically held regrind able insert type tools and throw away tip type tools, Design of shanks, cutting tip and chip breakers for HSS and Carbide tools, ISO coding system for tipped tools and tool holders	08
06	6.1 Design of multi point cutting tools : Various types such as flat form tool, tangential form tool, circular form tool, constructional details and fields of application, Profile design of flat and circular form tools,Broach nomenclature, design steps for circular pull type, key way and spline broaches, Design of face and peripheral milling cutters	10

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

References

- 1. Fundamentals of Metal Machining and Machine Tools, Third Edition by Winston A. Knight, Geoffrey Boothroyd, CRC press Taylor and Francis group
- 2. Metal Cutting Principles by Milton Clayton Shaw, 2nd Edition, Oxford University Press
- 3. Cutting Tools by P H Joshi, A H Wheeler Publishing Co Ltd
- 4. ASM Handbook, Vol. 16: Machining by Joseph R. Davis,9th Edition, ASM International
- Fundamentals of Metal Cutting and Machine Tools by B. L. Juneja, G. S. Sekhon and Nitin Seth,2nd Edition, New Age International
- 6. Metal Cutting Theory and Cutting Tool Design, by V. Arshinov and G. Alekseev, Mir publishers, Moscow
- 7. Typical Examples and Problems in Metal Cutting and Tool Design, by N. Nefedov and K. Osipov, Mir publishers, Moscow

Course Code	Course/Subject Name	Credits
MEDLO5013	Design of Jigs and Fixtures	4

- 1. To acquaint with the concepts of planning and writing sequence of operations
- 2. To acquaint basics of identification and selection of location and clamping points on work-piece
- 3. To familiarise design principles in designing simple productive and cost effective jigs and fixtures

- 1. Write methodically, the sequence of operations of simple work-piece
- 2. Identify and select locating and clamping points on work-piece
- 3. Demonstrate construction of drill jig
- 4. Illustrate construction of milling fixture
- 5. Identify appropriate combination of tools, jigs and fixture, suitable for a particular machining operation
- 6. Design assembly of jigs and fixtures on simple work-piece

Module	Details	Hrs
01	1.1 Introduction to Tool Design Production Tooling's Jigs, Fixtures and their difference, their requirement(accuracy, machinability, quantity modifications so as to assist production, Interchange ability, Simplicity, Swarf disposal, Handling, Ease of operation, Skill reduction, Cost reduction), Analysis for Operation planning, sequencing of operations.	08
02	 Basic Construction of Jig & Fixture 1.1 Location & Locating Devices Locating principles: Degrees of freedom, Redundant location, Fool-proofing, nesting, Locators: locators that control work piece on flat surfaces, location of cylindrical surfaces, conical locators, centralizers. 1.2 Clamping & clamping Devices Requirement of clamping system, Position of clamps, Types of clamps, Clamping devices; examples of typical clamps(multiple clamping and equalizing devices, quick acting clamping mechanisms such as link, toggle, cam, eccentric, pneumatic, hydraulic and electric devices), Component distortion under clamping and cutting forces, Material used for different clamping devices of jigs/fixture and recommended hardness 	10
03	3.1 Construction of Drill Jig Introduction, Selection of location, supporting and clamping faces /points, cutting tools and means of guiding and supporting Jigs, various types of Jig Bushes, Commonly used drill jigs, Case Study on Design of Drill Jig	10
04	4.1 Construction of Milling fixture Introduction, Selection of location, supporting and clamping faces /points choice, tool setting block and Tennon's, Case Study on Design of Milling Fixture	08
05	5.1 Introduction to Commonly used Fixtures Turning Fixture (Chucks, collets, Mandrels) Grinding Fixture, Broaching Fixture, and Welding Fixture	08
06	6.1 Indexing Jig & Fixture Introduction, Application of indexing, Essential features of an indexing jig /fixture, Indexing Devices	04

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

References

- 1. Jig and Fixture Design Manual, Erik K. Henrikson, Industrial Press
- 2. An introduction to jig and tool Design, MH A Kempster, 3rd Edition, ELBS
- 3. Jigs and Fixture, P. H. Joshi, TMH
- 4. Tool design, C. Donaldson, George H. Lecain, V.C. Goold, TMH
- 5. Jigs and Fixture Handbook, A.K. Goroshkin, Mir Publication
- 6. Jigs and Fixture, ASTME
- 7. Non- Standards Calming Devices, Hiran E. Grant TMH, New Delhi

Subject Code	Subject Name	Credits
MEL 501	Internal Combustion Engines Lab	01

- 1. To familiarise concept of thermal conductivity, heat transfer coefficient through experiments
- 2. To familiarise experimental verification of the concepts of heat transfer

Outcomes: Learner will be able to...

- 1. Dismantle engine assembly
- 2. Overhaul and Assemble engine components
- 3. Perform load test/speed test on engine setup
- 4. Calculate performance of multi cylinder engine
- 5. Analyse engine performance and draw heat balance sheet
- 6. Perform exhaust gas analysis

Part A: Dismantle, overhaul and assemble the following

- 1. 2 Stroke/ 4 Stroke Engines
- 2. Carburettor
- 3. Ignition system
- 4. Fuel injection system

Part B: Performing experiments on engine test rigs

- 1. Morse Test on petrol engine
- 2. Speed Test on petrol or/and diesel engine
- 3. Load Test on diesel engine (engines)
- 4. Heat Balance test on diesel or petrol engines
- 5. Experimental determination of Air fuel ratio and volumetric efficiency of the engine
- 6. Exhaust Gas/Smoke analysis of S.I./ C.I. engines
- 7. Effect of Supercharging on Performance Characteristics of an engine

Term Work

Term work shall consist of minimum 6 exercises, from the list, out of which minimum 4 must be actual experiments from Part B and 1 case study/report (in group of not more than 3 students) on latest trends/developments in IC Engines.

The distribution of marks for term work shall be as follows:

- 1. Laboratory work (Exercises) :15 marks
- 2. Case study:05 marks
- 3. Attendance: 05 marks

End Semester Practical/Oral Examination:

- 1. Pair of Internal and External Examiner should conduct practical/viva based on contents
- 2. Distribution of marks for practical/viva examination shall be as follows:
 - Practical performance15 marksOral10 marks
- 3. Evaluation of practical examination to be done based on the experiment performed and the output of the experiment during practical examination
- 4. Students work along with evaluation report to be preserved till the next examination

Course Code	Course/Subject Name	Credits
MEL 502	Mechanical Measurement and Control	1

- 1. To study calibration of different measuring instruments
- 2. To study working of mechanical measurement system
- 3. To familiarise with different types of control systems

Outcomes: Learner will be able to...

- 1. Calibrate displacement sensors
- 2. Calibrate pressure and vacuum gauges
- 3. Measure torque using strain gauges
- 4. Identify system/process characteristics for standard input responses
- 5. Identify various types of control systems and time domain specifications
- 6. Analyse the problems associated with stability

List of Experiments

Sr. No.	Topic
1	Calibration of Displacement sensors like LVDT, Potentiometers etc.
2	Calibration of Pressure Gauges
3	Calibration of Vacuum Gauges
4	Torque measurement using strain gauges
5	Calibration of tachometers
6	Vibration Measurement & Calibration of Accelerometers.
7	Experiments on feedback control systems and servomechanisms
8	System Identification of any one of the sensor
9	Experiment on frequency response system identification
10	Experiment on transient state response of a control system.
11	Experiment on design of PID controller for a system.

(a) Design based experiments shall be encouraged using standard National Instrument/ texas instrument/ dSPACEGmbh/ Arduino or any other platform),<u>Learners (in a group) may be encouraged for</u> <u>Project Based Learning. Appropriate weightage may be given in term work assessment</u>

Term Work

Term work shall consist of minimum 8experiments (04 from the measurement group and 4 from the control group),

The distribution of marks for term work shall be as follows:

•	Laboratory work (Experiments) :	15 marks
•	Design based experiment:	05 marks
•	Attendance:	05 marks

End Semester Practical/Oral Examination:

- 1. Pair of Internal and External Examiner should conduct practical/viva based on contents
- 2. Distribution of marks for practical/viva examination shall be as follows:

Practical performance	15 marks
Oral	10 marks

- 3. Evaluation of practical examination to be done based on the experiment performed and the output of the experiment during practical examination
- 4. Students work along with evaluation report to be preserved till the next examination

University of Mumbai, B. E. (Mechanical Engineering), Rev 2016

Subject Code	Subject Name	Credits
MEL 503	Heat Transfer Lab	01

- 1. To familiarise concept of thermal conductivity, heat transfer coefficient through experiments
- 2. To familiarise experimental verification of the concepts of heat transfer

Outcomes: Learner will be able to...

- 1. Estimate thermal conductivity of metals/non metals/liquids
- 2. Compute heat transfer coefficient in natural as well forced convection
- 3. Measure emissivity of grey body
- 4. Quantify fin effectiveness/efficiency
- 5. Analyse heat exchanger performance
- 6. Demonstrate energy balance for heat exchanger

The laboratory experiments should be based on the following:

Expt.No	Name of Experiments	Time
	Conduction: (Any Two)	
1	1. Measurement of thermal conductivity of metal rod	
	2. Measurement of thermal conductivity of insulating material	$2U_{ro}$
1	3. Measurement of thermal conductivity of liquid	21115
	4. Determination of contact resistance	
	5. Effect of area on heat transfer	
	Convection: (Any One)	
2	1. Measurement of heat transfer coefficient in natural convection	$2U_{ro}$
2	2. Measurement of heat transfer coefficient in forced convection	21115
	3. Comparison of heat transfer coefficient of free and forced convection	
	Radiation: (Any One)	
3	1. Verification of Stefan Boltzmann Law	2Hrs
	2. Measurement of Emissivity of Grey surface	
4	Transient Conduction:	2Hrs
	1. Unsteady state heat transfer in cylinder/rod/wall	21113
	Fins: (Any One)	
5	1. Determination of fin efficiency and fin effectiveness	2Hrs
	2. Comparison of fin performance of Various type of fins	
	Boiling and Condensation: (Any One)	
6.	1. Measurement of heat transfer coefficient in boiling process of water.	2Hrs
	2. Measurement of heat transfer coefficient in condensation of saturated steam.	
	Heat Exchangers: (Any One)	
7	1. Estimation of overall heat transfer coefficient and effectiveness of double pipe heat	
	exchanger (parallel flow and Counter flow arrangement)	
	2. Estimation of overall heat transfer coefficient and effectivenessof shell and tube	2Hrs
	heat exchanger (parallel flow and Counter flow arrangement)	
	3. Estimation of overall heat transfer coefficient and effectiveness of plate type heat	
	exchanger.	

Assignments: Assignment consisting of at least 3 numerical on each of the following topics

- 1. Steady state conduction
- 2. Fins and unsteady state conduction
- 3. Convection and dimensional analysis

University of Mumbai, B. E. (Mechanical Engineering), Rev 2016

- 4. Radiation
- 5. Heat Exchangers

Note: Preferably, the assignments shall be based on live problems. **Project Based Learning may be incorporated by judiciously reducing number of assignments.**

Assessment:

Term work Mark distribution will be as follows:Laboratory work15 marksAssignments05 marksAttendance05 marks

End Semester Practical/Oral Examination:

1. Pair of Internal and External Examiner should conduct practical/viva based on contents Distribution of marks for practical/viva examination shall be as follows:

Theorem performance	J marks
Oral 10	0 marks

- 2. Evaluation of practical examination to be done based on the experiment performed and the output of the experiment during practical examination
- 3. Students work along with evaluation report to be preserved till the next examination

Course Code	Course Name	Credits
MEL504	Dynamics of Machinery*	1

- 1. To acquaint with working principles and applications of gyroscope and governors
- 2. To acquaint with the principles of vibration measuring instruments
- 3. To study balancing of mechanical systems

Outcomes: Learner will be able to...

- 1. Plot and analyse governor characteristics
- 2. Analyse gyroscopic effect on laboratory model
- 3. Estimate natural frequency of mechanical systems
- 4. Analyse vibration response of mechanical systems
- 5. Determine damping coefficient of a system
- 6. Balance rotating mass

Term Work: (Comprises part a and b)

a) List of Experiments: (Minimum Eight)

Sr.	Title of Experiment	Laboratory
No.		Sessions
1	Experiments on Governors- Porter Governor, Hartnell Governor	2 hrs
2	Experiments on Gyroscope	2 hrs
3	Determine natural frequency of compoundpendulum, equivalent simple pendulum system.	2 Hrs.
4	Determine natural frequency for longitudinal vibrations of helical springs, and springs in series	2 Hrs
	and parallel	
5	Determine natural frequency and nodal points for single rotor and two-rotor vibratory system	2 Hrs
6	Experimenton whirling of shaft	2 Hrs
7	Determination of damping coefficient of any system/media	2 Hrs
8	Experimental balancing of single and multi-rotor system	2 Hrs
9	Measurement of vibration response of a system	2 Hrs
10	Vibration analysis of mechanical system using MATLAB/SCILAB/GNU Octave	2 Hrs

b) Assignment: Minimum two problems on each of the following topics:

- 1. Governors and Gyroscope
- 2. Static and dynamic force analysis
- 3. Vibration, isolation and control
- 4. Vibration measuring instruments
- 5. Rotor dynamics

Project Based Learning may be incorporated by judiciously reducing number of assignments

Term Work

The distribution of marks for term work shall be as follows:

- Laboratory work : 15 marks.
- Assignments : 05 marks.
- Attendance : 05 Marks.

Course Code	Course/Subject Name	Credits
MEL 505	Manufacturing Sciences Lab	1

- 1. To study conventional machining operations
- 2. To familiarise with CNC machining operation
- 3. To acquaint with Non Traditional machining operations

Outcomes: Learner will be able to...

- 1. Estimate machining time for simple and taper turning operations on lathe
- 2. Estimate machining time for threading/knurling operations on lathe
- 3. Estimate machining time for various machining operations on shaper
- 4. Perform NC, CNC and DNC machining operations
- 5. Write CNC program for different operations
- 6. Identify machining parameters for various Non Traditional machining operations

Sr No.	Details
1	Introduction to machining operations
2	Introduction to lathe machine (other than plain turning operation) and shaping machine
3	Machining and machining time estimation for taper turning
4	Machining and machining time estimation for thread cutting
5	Machining and machining time estimation for internal thread cutting
6	Machining and machining time estimation for knurling
7	Machining and machining time estimation for eccentric turning
8	Machining of hexagon and square in shaping machine
9	NC, CNC, DNC machining operations
10	CNC programming for Turning and Drilling operations
11	Different Non Traditional machining operations with process parameters

Term Work:

All the assignments mentioned above with relevant sketches.

Distribution of marks for Term work shall be as follows:

All the above listed assignments:

Attendance:

20 marks 05 marks

Subject Code	Subject Name	Credits
MEL506	Business Communication & Ethics	02

- 1. To inculcate professional and ethical attitude at the workplace
- 2. To enhance effective communication and interpersonal skills
- 3. To build multidisciplinary approach towards all life tasks
- 4. To hone analytical and logical skills for problem-solving

Outcomes: Learner will be able to...

- 1. Design a technical document using precise language, suitable vocabulary and apt style.
- 2. Develop the life skills/ interpersonal skills to progress professionally by building stronger relationships.
- 3. Demonstrate awareness of contemporary issues knowledge of professional and ethical responsibilities.
- 4. Apply the traits of a suitable candidate for a job/higher education, upon being trained in the techniques of holding a group discussion, facing interviews and writing resume/SOP.
- 5. Deliver formal presentations effectively implementing the verbal and non-verbal skills

Module	Detailed Contents	Hrs.
01	Report Writing	05
1.1	Objectives of Report Writing	
1.2	Language and Style in a report	
1.3	Types : Informative and Interpretative (Analytical, Survey and Feasibility)and	
	Formats of reports (Memo, Letter, Short and Long Report)	
02	Technical Writing	03
2.1	Technical Paper Writing (IEEE Format)	
2.2	Proposal Writing	
03	Introduction to Interpersonal Skills	09
3.1	Emotional Intelligence	
3.2	Leadership and Motivation	
3.3	Team Building	
3.4	Assertiveness	
3.5	Conflict Resolution and Negotiation Skills	
3.6	Time Management	
3.7	Decision Making	
04	Meetings and Documentation	02
4.1	Strategies for conducting effective meetings	
4.2	Notice, Agenda and Minutes of a meeting	
4.3	Business meeting etiquettes	
05	Introduction to Corporate Ethics	02
5.1	Professional and work ethics (responsible use of social media - Facebook, WA,	
	Twitter etc.	
5.2	Introduction to Intellectual Property Rights	
5.4	Ethical codes of conduct in business and corporate activities (Personal ethics,	
	conflicting values, choosing a moral response and making ethical decisions)	
06	Employment Skills	07
6.1	Group Discussion	

University of Mumbai, B. E. (Mechanical Engineering), Rev 2016

6.2	Resume Writing	
6.3	Interview Skills	
6.4	Presentation Skills	
6.5	Statement of Purpose	
		28

List of Assignments

- 1. Report Writing (Theory)
- 2. Technical Proposal
- 3. Technical Paper Writing (Paraphrasing a published IEEE Technical Paper)
- 4. Interpersonal Skills (Group activities and Role plays)
- 5. Interpersonal Skills (Documentation in the form of soft copy or hard copy)
- 6. Meetings and Documentation (Notice, Agenda, Minutes of Mock Meetings)
- 7. Corporate ethics (Case studies, Role plays)
- 8. Writing Resume and Statement of Purpose

Term Work

Term work shall consist of all assignments from the list.

The distribution of marks for term work shall be as follows:

Book Report	10 marks
Assignments:	10 marks
Project Report Presentation:	15 marks
Group Discussion:	10 marks
Attendance:	05 marks

References:

- 1. Fred Luthans, "Organizational Behavior", Mc Graw Hill,
- 2. Lesiker and Petit, "Report Writing for Business", Mc Graw Hill
- 3. R.Subramaniam, "Professional Ethics" Oxford University Press
- 4. Huckin and Olsen, "Technical Writing and Professional Communication", McGraw
- 5. Raman and Sharma, Fundamentals of Technical Communication, Oxford University Press
- Hill Wallace and Masters, "Personal Development for Life and Work", Thomson Learning, 12th Edition
- 7. Heta Murphy, "Effective Business Communication", Mc Graw Hill, edition
- 8. R.C Sharma and Krishna Mohan, "Business Correspondence and Report Writing",
- 9. Raman Sharma, Communication Skills, Oxford University Press
- 10. B N Ghosh, "Managing Soft Skills for Personality Development", Tata McGraw Hill Lehman,
- 11. Dufrene, Sinha, "BCOM", Cengage Learning, 2nd edition
- 12. Bell . Smith, "Management Communication" Wiley India Edition, 3rd edition.
- 13. Dr. K. Alex ,"Soft Skills", S Chand and Company
- 14. Robbins Stephens P., "Organizational Behavior", Pearson Education
- 15. https://grad.ucla.edu/asis/agep/advsopstem.pdf

Course Code	Course/Subject Name	Credits
MEC 601	Metrology and Quality Engineering	4

- 1. To acquaint with measuring equipment used for linear and angular measurements.
- 2. To familiarize with different classes of measuring instruments and scope of measurement in industry and research
- 3. To acquaint with operations of precision measurement, instrument/equipment for measurement
- 4. To inculcate the fundamentals of quality concepts and statistics in metrology

- 1. Demonstrate inspection methods and different gauges
- 2. Illustrate working principle of measuring instruments and calibration methodology
- 3. Illustrate basic concepts and statistical methods in quality control
- 4. Demonstrate characteristics of screw threads, gear profile, and tool profile
- 5. Illustrate the different sampling techniques in quality control
- 6. Illustrate different nondestructive techniques used for quality evaluation

Module	Details	Hours
1	1.1 Introduction to Metrology:	06
	Fundamental Definitions, Types of Standards, Precision and Accuracy, Measurement	
	Errors, linear measurements by Vernier calliper, micrometer, slip gauges, Angular	
	Measurement: Universal bevel protractor, clinometers, sine bar, angle gaugescase	
	studies on Industrial and Research Applications and Scope	
	1.2 Introduction to Nano-Metrology	
2	1.3 Design of Gauges :	14
	Limits, Fits, Tolerances, Types of Gauges, Taylor's Principle of Limit Gauges, IS 919	
	for design of gauges	
	1.4 Comparators :	
	Definition, Classification, Working principle of Mechanical, Opto-mechanical,	
	Pneumatic and Electrical/Electronic comparators with advantages, limitations and uses	
	1.5 Surface Texture measurement:	
	Surface roughness, Waviness, Roughness Parameter Ra, Rz, RMS etc., working of	
	Tomlinson surface meter, Taly-surf surface roughness tester, Surface roughness symbols	
	1.6 Flatness Test measurement by Interference principle:	
	Concept of Flatness, Interferometer principle for measurement, Optical Flats – study of	
	Surface textures under monochromatic light source, fingertip test technique	
3	3.1 Screw Thread Measurement :	12
	Screw threads Terminology, screw thread errors, Effective diameter measurement of	
	screw thread by Floating Carriage micrometer	
	3.2 Gear Measurement :	
	Gear Terminology, Gear errors, Measurement by Parkinson Gear tester and Gear tooth	
	Vernier Calliper	
	5.3 Special Measuring Instruments :	
	Measurement by Tool Maker's Microscope, Optical Profile Projector, CMM and	
	Autocollimator	

4	4.1 Quality Engineering	08
	Introduction to Quality, Classification of Quality Tools, Quality of Design, Quality of	
	Conformance, Compromise between Quality and Cost, Introduction to Six Sigma	
	4.2 SQC & SQC tools	
	Statistics in Quality control, Variables and Attributes data, Process Capability, Control	
	charts for variables and for attribute data(\overline{X} and R-Chart, p-chart np-chart, c-chart, U-	
	chart), Applications of SQC in engineering – case studies	
5	5.1 Sampling Techniques	04
	Advantages of Sampling Inspection, operating characteristic (OC) curve. Choosing OC	
	curve for appropriate sampling plan, acceptance sampling	
	5.2 Role of computers in metrology	
6	6.1 Non-destructive Testing	04
	Visual, Dye Penetrant, Magnetic Particle, X ray Radiography, Ultrasonic Testing, Eddy	
	Current testing methods.	

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3. Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

References

- 1. Engineering Metrology, K.J. Hume, Kalyani Publications
- 2. Mechanical Measurements and Metrology by RKJain, Khanna Publishers
- 3. A text book of Engineering Metrology by IC Gupta, DhanpatRai Publications
- 4. Metrology and Measurement by Anand, Bewoor and VinayKulkarni, McGraw Hill
- 5. Engineering Metrology and Measurement by N V Raghavendra and Krishnamurthy, Oxford University Press
- 6. Engineering Metrology and Measurements, Bentley, Pearson Education
- 7. Statistical Quality Control by AL Grant, McGraw Hill, New York
- 8. Statistical Quality Control by R C Gupta, Khanna Publishers
- 9. Juran on Planning for Quality, Juran J M, TheFree Press, 1988.
- 10. Statistical Quality Control by M Mahajan, Dhanpat Rai and Sons

Course Code	Course Name	Credits
MEC602	MACHINE DESIGN – I*	4

- 1. To study basic principles of machine design
- 2. To acquaint with the concepts of design based on strength & rigidity
- 3. To familiarize with use of design data books & various codes of practice
- 4. To make conversant with preparation of working drawings based on designs

Outcomes: Learner will be able to...

- 1. Demonstrate understanding of various design considerations
- 2. Illustrate basic principles of machine design
- 3. Design machine elements for static as well as dynamic loading
- 4. Design machine elements on the basis of strength/ rigidity concepts
- 5. Use design data books in designing various components
- 6. Acquire skill in preparing production drawings pertaining to various designs

Modules	Details	Hrs.
1	Mechanical Engineering Design, Design methods, Aesthetic and Ergonomics consideration in design, Material properties and their uses in design, Manufacturing consideration in design, Design consideration of casting and forging, Basic principle of Machine Design, Modes of failures, Factor of safety, Design stresses, Theories of failures (Selection in the process of designing), Standards, I.S. Codes, Preferred Series and Numbers	06
2	Curved Beams: Assumptions made in the analysis of curved beams, Design of curved beams: Bending stresses in curved beams, such as crane hook, C-frame, etc. Thick Cylinders: Design of thick cylinders subjected to an internal pressure using Lame's equation	06
3	Design against static loads: Cotter joint, Knuckle joint, Turn buckle, Bolted and welded joints under eccentric loading;Power Screw – screw presses, C-clamps along with the Frame, Screw Jack	12
4	Design against fluctuating loads: variables stresses, reversed, repeated, fluctuating stresses. Fatigue failure: static and fatigue stress concentration factors, Endurance limit- estimation of endurance limit, Design for finite and infinite life, Soderberg and Goodman design criteria, Fatigue design under combined stresses	06
5	 Design of Shaft: power transmitting, power distribution shafts, Module (excluding crank shaft) under static and fatigue criteria Keys: Types of Keys and their selection based on shafting condition Couplings: Classification of coupling, Design of Flange couplings, Bush pin type flexible couplings 	11
6	Design of Springs: Helical compression, Tension Springs under Static and Variable loads, Leaf springs	07

Assessment:

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

References:

- 1. Design of Machine Elements V.B. Banadari, Tata McGraw Hill Publication
- 2. Design of Machine Elements Sharma, Purohil. Prentice Hall India Publication
- 3. Machine Design An Integrated Approach Robert L. Norton, Pearson Education
- 4. Machine Design by Pandya & Shah, Charotar Publishing
- 5. Mechanical Engineering Design by J.E.Shigley, McGraw Hill
- 6. Recommended Data Books PSG
- 7. Machine Design by Reshetov, Mir Publication
- 8. Machine Design by Black Adams, McGraw Hill
- 9. Fundamentals of Machine Elements by Hawrock, Jacobson McGraw Hill
- 10. Machine Design by R.C.Patel, Pandya, Sikh, Vol-I & II C. Jamnadas & Co
- 11. Design of Machine Elements by V.M.Faires
- 12. Design of Machine Elements by Spotts

Course Code	Course Name	Credits
MEC603	Finite Element Analysis	4

- 1. To familiarise with concepts of FEM
- 2. To study the applicability of FEM to engineering problems
- 3. To acquaint with application of numerical techniques for solving problems

- 1. Solve differential equations using weighted residual methods
- 2. Develop the finite element equations to model engineering problems governed by second order differential equations
- 3. Apply the basic finite element formulation techniques to solve engineering problems by using one dimensional elements
- 4. Apply the basic finite element formulation techniques to solve engineering problems by using two dimensional elements
- 5. Apply the basic finite element formulation techniques to find natural frequency of single degree of vibration system
- 6. Use commercial FEA software, to solve problems related to mechanical engineering

Module	Details	Hrs.
01	 Introduction: 1.1 Introductory Concepts: Introduction to FEM, Historical Background, General FEM procedure, Applications of FEM in various fields Advantages and disadvantages of FEM 1.2 Mathematical Modelling of field problems in engineering, Governing equations, Differential equations in different fields 1.3 Approximate solution of differential equations, Weighted residual techniques, Boundary value problems 	08
02	 FEA Procedure: 2.1 Discrete and Continuous Models, Weighted Residual Methods - Ritz Technique- Basic Concepts of the, Finite Element Method 2.2 Definitions of various terms used in FEM like element, order of the element, internal and external node/s, degree of freedom, primary and secondary variables, boundary conditions. 2.3 Minimization of a functional, Principle of minimum total potential, Piecewise Rayleigh-Ritz method, Formulation of 'stiffness matrix', transformation and assembly concepts 	08
03	 One Dimensional Problems: 3.1 One dimensional second order equations - discretization-element types - linear and higher order elements -derivation of shape functions and stiffness matrices and force vectors 3.2 Assembly of Matrices- solution of problems in one dimensional structural analysis, heat transfer and fluid flow (stepped and taper bars, fluid network, spring-Cart Systems) 3.3 Analysis of Plane trusses, Analysis of Beams 3.4 Solution of one dimensional structural and thermal problems using FE Software, Selection of suitable element type, modelling, meshing, boundary condition, convergence of solution, result analysis, case studies 	10
04	 Two Dimensional Finite Element Formulations: 4.1 Introduction, three node triangular element, four node rectangular element, four node quadrilateral element, eight node quadrilateral element 4.2 Natural coordinates and coordinates transformations: serendipity and Lagrange's methods for deriving shape functions for triangular and quadrilateral element 4.3 Sub parametric, Isoparametric, super parametric elements, Compatibility, Patch test, Convergence criterion, sources of errors 	08

	Two Dimensional Vector Variable Problems:	
05	5.1 Equations of elasticity - Plane stress, plane strain and axisymmetric problems	08
	5.2 Jacobian matrix, stress analysis of CST and four node Quadratic element	
	Finite Element Formulation of Dynamics and Numerical Techniques:	
	6.1 Applications to free vibration problems of rod and beam, Lumped and consistent mass	
06	matrices	06
	6.2 Solutions techniques to Dynamic problems, longitudinal vibration frequencies and mode	
	shapes, Fourth order beam equation, transverse deflections and natural frequencies of beams	

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

References:

- 1. Text book of Finite Element Analysis by Seshu P, Prentice Hall of India
- 2. Finite Element Method by JNReddy, TMH
- 3. 'Introduction to Finite Elements in Engineering, Chandrupatla and Belegundu, Pearson Education
- 4. Finite Element Methods by R Dhanraj and K Prabhakaran Nair, Oxford University Press
- 5. A first course in Finite Element Method by Logan D L, Thomson Asia PvtLtd
- 6. 'Concepts and Applications of Finite Element Analysis by Cook R D, Malkus D S, Plesha ME, John-Wiley Sons
- 7. The Finite Element Method in Engineering by SSRao, Butter WorthHeinemann
- 8. Fundamental Finite Element Analysis and Application with Mathematica and MATLAB Computations by M. Asghar Bhatti, Wiley India Pvt. Ltd.

Course Code	Course/Subject Name	Credits
MEC604	Refrigeration and Air Conditioning	4

- 1. To study working and operating principles of Air Refrigeration, Vapour Compression and Vapour Absorption system
- 2. To study components of refrigeration and air conditioning systems
- 3. To study controls and applications of refrigeration and air conditioning

- 1. Demonstrate fundamental principles of refrigeration and air conditioning
- 2. Identify and locate various important components of the refrigeration and air conditioning system
- 3. Illustrate various refrigeration and air conditioning processes using psychometric chart
- 4. Design Air Conditioning system using cooling load calculations.
- 5. Estimate air conditioning system parameters
- 6. Demonstrate understanding of duct design concepts

Module	Detailed Contents	Hrs.
01	Introduction to Refrigeration: Methods of refrigeration, First and Second Law applied to refrigerating machines, Carnot refrigerator, Carnot heat pump, unit of refrigeration, Co- efficient of Performance, Energy Efficiency Ratio (EER), and BEE star rating Air refrigeration systems: Bell Coleman cycle, applications Aircraft air refrigeration systems: Need for aircraft refrigeration, Simple, Bootstrap including evaporative cooling, Reduced ambient, Regenerative air cooling system, Comparison of these systems based on DART rating.	08
02	Vapour Compression Refrigeration System: Simple vapour compression cycle, Effect of liquid sub cooling& superheating, effect of evaporator and condenser pressures, methods of subcooling, use of P-h charts, Actual VCR cycle, Use of P-h Charts, Comparison between air-cooled and water- cooled condenser based air conditioning systems, Types of condensers, evaporators, expansion devices and Compressors Cooling tower: Types of cooling towers, tower approach, tower range, tower efficiency, tower losses, tower maintenance Refrigerants: Desirable properties of refrigerants, ASHRAE numbering system for refrigerants. Thermodynamic, Chemical and Physical properties, Secondary refrigerants, ODP and GWP, Montreal protocol and India's commitment, Recent substitutes for refrigerants	12
03	Other Refrigeration Systems: Vapour Absorption Refrigeration, Importance of VAR system, COP of ideal VAR system, Ammonia-water VAR system, Lithium Bromide – Water VAR system, Single and double effect, Electrolux refrigeration system, Non-Conventional Refrigeration Systems: Thermoelectric Refrigeration, Thermo-acoustic Refrigeration, Vortex Tube Refrigeration	06
04	Psychrometry: Need for air conditioning, Principle of psychrometry, Psychrometric properties, chart and processes, air washers, requirements of comfort air conditioning, summer and Winter Air conditioning	05
05	Design of Air Conditioning Systems : Different Heat sources,- Adiabatic mixing of two air streams, Bypass factor, sensible heat factor, RSHF, GSHF, ERSHF, Room apparatus dew point and coil apparatus dew point, Ventilation and infiltration, Inside and Outside Design condition, Cooling Load estimation , Introduction to Unitary Products viz. Room/Split and Packaged Air Conditioners, Introduction to recent developments viz. Variable Refrigerant Flow systems, VAV control systems, Inverter Units. Human Comfort, Thermal exchange of body with environment, Effective temperature, Comfort chart, Comfort zone, Indoor Air Quality, Green Buildings	12

	Duct Design Friction chart for circular ducts, Equivalent diameter of a circular duct for rectangular ducts, Static pressure regain and equal pressure drop methods of duct design, Factors considered in	
	air distribution system, Air distribution systems for cooling and heating	
	Controls and Applications:	
	Controls – LP/HP cutoff, Thermostats, Humidistats, Interlocking control, Electronic Controllers	
06	Applications Refrigeration & A/C Ice plant – food storage plants – diary and food processing plants,	05
	Food preservation, Freeze Drying, A/c in textile, printing pharmaceutical industry and Hospitals,	
	Liquefaction of LNG, Liquefaction of gases (cryogenics), Deep sea water air-conditioning	

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

References

- 1 Refrigeration and air-conditioning C P Arora, TMH
- 2 Principles of refrigeration R J Dossat, Willey Eastern Publication
- 3 Refrigeration and air-conditioning W F Stoeker and J W Jones, TMH
- 4 Modern Air-conditioning practice C P Arora, TMH
- 5 Refrigeration and air-conditioning- Manohar Prasad, New Age Int (P) Ltd
- 6 Basic Refrigeration and air-conditioning- P.Ananthanarayana, TMH
- 7 ASHRAE Handbook of Fundamentals
- 8 ASHRAE Handbook of Systems
- 9 ASHRAE Handbook of Equipment
- 10 ISHRAE Air Conditioning Handbook
- 11 ISHRAE Refrigeration Handbook

Course Code	Course Name	Credits
MEDLO6021	Mechatronics	4

- 1. To study key elements of Mechatronics system and its integration
- 2. To familiarise concepts of sensors characterization and its interfacing with microcontrollers
- 3. To acquaint with concepts of actuators and its interfacing with microcontrollers
- 4. To study continuous control logics i.e. P, PI, PD and PID
- 5. To study discrete control logics in PLC systems and its industrial applications

- 1. Identify the suitable sensor and actuator for a mechatronics system
- 2. Select suitable logic controls
- 3. Analyse continuous control logics for standard input conditions
- 4. Develop ladder logic programming
- 5. Design hydraulic/pneumatic circuits
- 6. Design a mechatronic system

Module	Detailed Contents	Hrs.
	Introduction of Mechatronics and its block diagram representation	
1	Key elements of mechatronics, Applications of Mechatronics domestic, industrial etc. Representation of mechatronic system in block diagram and concept of transfer function for each element of mechatronic system, Reduction methods and its numerical treatment for represented block diagram	08
2	Selection of Sensors & Actuators Sensors: Criteria for selection of sensors based on requirements, principle of measurement, sensing method, performance chart etc. (Displacement, temperature, acceleration, force/pressure) based on static and dynamic characteristics. Actuators: Selection of actuators based on principle of operation, performance characteristics, maximum loading conditions, safety etc. Principle and selection of mechano-electrical actuators (1) DC motors (2) Stepper Motors (3) Solenoid Actuators (4) Servo Motors (5) BLDC	08
3	Data Acquisition, Signal Conditioning & Microcontroller System Theory: Concept of Bit accuracy/width and Sampling speed, sampling theorem, aliasing, Nyquist criteria, ADC (Analog to Digital Convertor) Successive approximation method and sample and hold circuitry, DAC (Digital to Analog Convertor) R-2R circuit and DAC resolution Signal Filters: Low pass, High Pass and Band Pass with circuit diagrams for simple cases	08
4	Pneumatics and hydraulics: Hydraulic and pneumatic devices: Different types of valves, Actuators and auxiliary elements in Pneumatics and hydraulics, their applications and use of their ISO symbols, Synthesis and design of circuits (up to 2 cylinders)–pneumatic, electro- pneumatics and hydraulics, electro- hydraulics	08
5	Control System Control system design and analysis by Root Locus Method, Control system Design by Frequency response method, stability margin, Nyquist diagram, Bode diagram P, I and D control actions, P, PI, PD and PID control systems, Transient response:- Percentage overshoot, Rise time, Delay time, Steady state error, PID tuning (manual), Zigler Method	08
6	Discrete Control System PLC (Programming Logic Control)Theory: Introduction to PLC, Architecture, Ladder Logic programming for different types of logic gates, Latching, Timers, Counter, Practical Examples of Ladder Programming	08

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

References

- 1. Mechatronics, Kenji Uchino and Jayne R. Giniewicz, publication: Marcel Dekker, Inc
- 2. Applied Mechatronics- A. Smaili and F. Mrad, OXFORD university press
- 3. Mechatronics System Design , Shetty and Kolk, Cengage Learning, India Edition
- 4. Introduction to Mechatronics and Measurement Systems, Alciatore and HistandTata McGraw-Hill
- 5. Mechatronics, Necsulescu, Pearson education
- 6. Mechatronics Electromechanics and Control Mechanics , Mill Springer-Verlag
- 7. Mechatronics Electronic Control Systems in Mechanical Engineering, Bolton Pearson eduaction
- 8. Mechatronics Electronics in products and processes , Bradley, et al. Chapman and Hall
- 9. Mechatronics Mechanical System Interfacing, Auslander and Kempf, Prentice Hall
- 10. Introduction to Mechatronics, AppuKuttan K.K., OXFORD Higher Education
- 11. Pneumatic Circuits and Low Cost Automation by Fawcett JR
- 12. The Art of Electronics, Horowitz and Hill Cambridge, University Press
- 13. Electromechanical Design Handbook, Walsh, McGraw-Hill
- 14. Electro-mechanical Engineering An Integrated Approach , Fraser and Milne
- 15. Handbook of Electromechanical Product Design , Hurricks Longman, John Wiley, Addison Wesley
- 16. Principles and Applications of Electrical Engineering, Rizzoni, Irwin Publishing
- 17. Understanding Electro-Mechanical Engineering An Introduction to Mechatronics , KammIEEE
- 18. Modeling and control of Dynamic Systems, Macia and Thaler, Cengage Learning, India Edition
- 19. Mechatronics, A. Smaili, F. Mrad, OXFORD Higher Education.
- 20. Pneumatic and Hydraulic Control Systems: Aizerman. M.A.
- 21. Industrial Hydraulics: Pippenger
- 22. Vickers Manual on Hydraulics
- 23. Computer Numerical Control of Machine Tools: Thyer. G.R.
- 24. Pneumatic Applications: Deppert Warner & Stoll Kurt
- 25. Mechanization by Pneumatic Control: Vol. 1 & 2 Deppert Warner & Stoll kurt
- 26. Hydraulics and Pneumatics for Production: Stewart
- 27. Hydraulic Valves and Controls: Pippenger
- 28. Fundamentals of pneumatics: Festo series
- 29. Automatic Control Engineering: Francis. H. Raven.
- 30. Mechatronics, NitaigourMahalik, Tata McGraw-Hill
- 31. Mechatronics, HMT
- 32. System Identification: Theory for the User (2nd Edition), Lennart Ljung
- 33. Design with Microprocessors for Mechanical Engineers, StifflerMcGraw-Hill

University of Mumbai, B. E. (Mechanical Engineering), Rev 2016

Course Code	Course/Subject Name	Credits
MEDLO6022	Robotics	04

- 1. To study the basics of robotics and its control
- 2. To study various design principles of robotics through kinematic analysis, workspace analysis, and trajectory planning
- 3. To study applications of robots in industrial inspection and material handling
- 4. To study the role of a robot as a humanoid

- 1. Demonstrate the basic functioning of a robot
- 2. Identify various components of robots
- 3. Carryout kinematic analysis, workspace analysis, and trajectory planning for a robot
- 4. Identify suitable sensors/actuators for robot
- 5. Select an appropriate robot for given industrial inspection and material handling systems.
- 6. Illustrate various aspects of a robot as a humanoid

Module	Details	Hrs.		
01	Introduction	08		
	Definition of robot, Evolution of robots, Laws of robots, International Robotic Standards, Types of			
	robots, Selection of robots, Robot Classifications, Degrees of freedom, Robot configuration,			
	Accuracy and repeatability, Specification of a robot, Robot feedback controls: Point to point control			
	and Continuous path control, Control system for robot joint, Adaptive control, Actuators and			
	sensors, Drives and transmission systems, End effectors, Applications of robots			
02	Kinematics of Robots	10		
	Direct: Link coordinates D-H Representation, The ARM equation, Direct kinematic analysis for			
	Four axis, SCARA Robot and three, five, and six axis Articulated Robots.			
	Inverse: The inverse kinematics problem, General properties of solutions, Tool configuration,			
	Inverse kinematics of four axis SCARA robot and three and five axis Articulated robot.			
	Mobile Robot Kinematics			
	Introduction, Kinematic models and constraints, Representing robot position, Forward kinematic			
	models, Wheel kinematic constraints, Robot kinematic constraints, Mobile robot maneuverability,			
	Degree of mobility, Degree of steerability, Mobile robot workspace, Degree of freedom, Holonomic			
	robots, Path and trajectory considerations, Motion control, Open loop control, Feedback control.			
03	Workspace Analysis and Trajectory Planning	10		
	Workspace Analysis, work envelope of a Four axis SCARA robot and five axis articulated robot			
	workspace fixtures, the pick and place operations, Joint space technique - Continuous path motion,			
	Interpolated motion, Straight line motion and Cartesian space technique in trajectory planning.			
04	Sensors & Actuators	08		
	Sensors: Selection of sensors (Displacement, temperature, acceleration, force/pressure) based on			
	static and dynamic charecterstics, Interfacing: Concept of interfacing, bit accuracy and sampling			
	speed, amplifying electronics, and microcontroller			
	(3) Solenoid Actuators (4) Servo Motors (5) BLDC			

05	Robots for Inspection and Material Handling	08		
	Robotic vision systems, Image representation, Object recognition and categorization, Depth			
	measurement, Image data compression, Visual inspection, Software considerations			
	Concepts of material handling, Principles and considerations in material handling systems design,			
	Conventional material handling systems - Industrial trucks, Monorails, Rail guided vehicles,			
	Conveyor systems, Cranes and Hoists, Advanced material handling systems, Automated guided			
	vehicle systems, Automated storage and retrieval systems, Bar code technology, Radio frequency			
	identification technology			
06	Humanoids	08		
	Wheeled and legged, Legged locomotion and balance, Arm movement, Gaze and auditory			
	orientation control, Facial expression, Hands and manipulation, Sound and speech generation,			
	Motion capture/Learning from demonstration, Human activity recognition using vision, touch, and			
	sound, Vision, Tactile Sensing, Models of emotion and motivation, Performance, Interaction, Safety			
	and robustness, Applications, Case studies			

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

References

- 1. Yoram Korean, "Robotics for engineers", McGrew Hill Co.
- 2. M.P. Groover, M. Weiss, R.N. Nagel, and N.G. Odrey, "Industrial Robotics Technology programming and Applications", McGraw-Hill,
- 3. Robotics: Fundamental Concepts and Analysis by Ashitava Ghosal, Oxford University Press
- 4. R.K. Mittal and I.J. Nagrath, "Robotics and Control", TMH Publications
- 5. Robert J. Schilling, "Fundamentals of Robotics Analysis and Control", PHI Learning
- 6. Bijay K. Ghosh, Ning Xi, T.J. Tarn, Control in Robtics and Automation Sensor Based integration, Academic Press
- 7. K.S.Fu, R.C.Gonzalex, and C.S.G.Lee, "Robotics Control Sensing, Vision and Intelligence", McGrew hill Book co.
- 8. Hartenberg and Denavit, "Kinematics and Synthesis of linkages", McGrew Hill Book Co.
- 9. A.S. Hall, "Kinematics and Linkage Design", Prentice Hall
- 10. J.Hirchhorn, "Kinematics and Dynamics of Machinery", McGrew Hill Book Company

- 11. P.A. Janaki Raman, "Robotics and Image Processing An Introduction", Tata McGraw Hill Publishing company Ltd.
- 12. Richard D Klafter, Thomas A Chmielewski, and Michael Negin, "Robotics Engineering An Integrated Approach", Eastern Economy Edition, Prentice Hall of India P Ltd.
- 13. Roland Siegwart, Illah Reza Nourbakhsh, and Davide Scaramuzza, "Introduction to Autonomous Mobile Robots", Bradford Company Scituate, USA
- 14. Alonzo Kelly, Karl Iagnemma, and Andrew Howard, "Field and Service Robotics", Springer
- 15. Riadh Siaer, "The future of Humanoid Robots- Research and applications", Intech Publications

Course Code	Course Name	Credits
MEDLO6023	Industrial Automation	4

- 1. To study the need for the automation, its advantages and limitations
- 2. To study the basic functional elements of automation
- 3. To familiarise with the levels of automation and strategies of automation
- 4. To acquaint with control of mechanical operations involving pneumatic, electric, hydraulic and electronic systems

- 1. Demonstrate basics of industrial automation
- 2. Identify various types of automation
- 3. Demonstrate use of automated controls using pneumatic and hydraulic systems.
- 4. Illustrate the control systems in automated system.
- 5. Demonstrate applicability of PLC in process industry
- 6. Design elecrto-pneumatic circuits

Module	Detailed Contents	
	Introduction to Automation: Definition and fundamentals of automation reasons for	
	Automating basis elements of an automated system: Dower, Program and control system	
	Automating, basic elements of an automated system. Fower, Flogram and control system	
01	Advanced automation functions: safety, maintenance & repair diagnosis, error detection and	06
	Levels of automation	00
	Automation principles and strategies: USA principle ten strategies of automation and	
	production system automation migration strategy	
	Mechanization and Automation: Mechanization and automation, product cycle, hard Vs	
	flexible automation. Capital- intensive Vs low cost automation	
	Types of systems-mechanical, electrical, hydraulic, pneumatic and hybrid systems	08
00	Automation using CAMS, Geneva mechanisms, gears etc.	
02	Assembly line Automation: automated assembly systems, transfer systems, vibratory bowl	
	feeders, non-vibratory feeders, part orienting, feed track, part placing & part escapement	
	systems	
	Introduction to Material storage/ handling and transport systems, and its automation using	
	AS/RS, AGVS and conveyors etc.	
	Pneumatics and hydraulics: Hydraulic and pneumatic devices-Different types of valves,	
	Actuators and auxiliary elements in Pneumatics & hydraulics, their applications and use of	
03	their ISO symbols	14
05	Synthesis and design of circuits (up to 3 cylinders)-pneumatic, electro pneumatics and	
	hydraulics	
	Design of Electro-Pneumatic Circuits using single solenoid and double solenoid valves; with	
	and without grouping	
	Sensors & Actuators Sensors: Selection of sensors (Displacement, temperature, acceleration,	
04	force /pressure) based on static and dynamic characteristics	
	Interfacing: Concept of interfacing, bit accuracy and sampling speed, amplifying electronics,	06
	and microcontroller	
	Actuators: Principle and selection of mechano-electrical actuators (1) DC motors (2) Stepper	
	Motors (3) Solenoid Actuators (4) Servo Motors (5) BLDC	

05	Industrial control systems: Process industries versus discrete manufacturing industries, Continuous verses discrete control, Computer process control, Forms of computer process control Discrete control using PLC- discrete process control, Programmable logic controller, its architecture, ladder digs, Ladder Logic Programming for different types of logic gates, Latching, Timers, Counter, Practical Examples of Ladder Programming	10
06	Robots and their applications: Introduction to robots, Types, Classifications, Selection of robots, Robot Degrees of freedom, Robot configuration, Accuracy and repeatability, Specification of a robot, Robot feedback controls: Point to point control and Continuous path control, Control system for robot joint, Adaptive control, Drives and transmission systems, End effectors, Industrial robot applications of robots	08

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

Reference Books:

- 1. M.P.Groover "Automation, Production Systems and Computer Integrated Manufacturing", Pearson Education,New Delhi
- 2. Joffrey Boothroyd, Peter Dewhurst and Winston A. Knight, "Product Design for manufacture and Assembly", CRC Press
- 3. M.P. Groover, M. Weiss, R.N. Nagel, and N.G. Odrey, "Industrial Robotics Technology programming and Applications", McGraw-Hill,
- 4. Yoram Korean, "Robotics for engineers", McGrew Hill Co
- 5. John W Webb and Reis, Ronald A., "Programmable Logic Controllers: Principles & Applications", Prentice Hall.
- 6. Frank Petruzella," Programmable Logic Controllers", McGraw-Hill Education; 4 edition
- 7. Industrial Hydraulics: Pippenger
- 8. Mechatronics Mechanical System Interfacing, Auslander and Kempf, Prentice Hall
- 9. Pneumatic Circuits and Low Cost Automation: by Fawcett J.R.
- 10. Fundamentals of pneumatics: Festo series

Course Code	Course/Subject Name	Credits
MEL601	Metrology and Quality Engineering	1

- 1. To familiarise with working of gauges
- 2. To acquaint with gear parameter measurement
- 3. To acquaint with operations of precision measurement, instrument/equipment for measurement
- 4. To inculcate the fundamentals of quality concepts and statistics in metrology

Outcomes: Learner will be able to...

- 1. Measure linear and angular dimensions
- 2. Measure surface roughness
- 3. Measure various parameters of gear tooth profile
- 4. Use optical profile projector for measurement
- 5. Use various instruments for measurement of screw threads
- 6. Measure flatness by Autocollimator / Interferometry method

Six Experiments need to be performed on the below mentioned topics:

Sr.	Торіс
No.	
1	Vernier Calliper, Micrometer and Bevel Protractor for linear and angular measurement
2	Surface measurement by Surface roughness tester
3	Gear measurement – Gear tooth Vernier calliper / Parkinson gear tester
4	Screw Thread Measurement – screw thread Micrometer, Floating carriage micrometer /bench micrometer
5	Optical profile projector for miniature linear / angular measurements of screw / gear or components
6	Tool maker's microscope for linear / angular measurement of single point tools
7	Comparator – Mechanical / Pneumatic type
8	Flatness measurement by Autocollimator / Interferometry method
9	QC charts for 50 sample readings of OD / ID of specimen and printouts

Term-Work

Consists of minimum six experiments from the above list and presented with Aim, Apparatus/equipment's, and Introduction, Working principle, Diagram, method, observation table, Analysis, Results and conclusion/inferences.

Also, minimum 5 assignments to help smooth conducting of laboratory exercises and one case study relevant to contents

Project Based Learning may be incorporated by judiciously reducing number of assignments

Distribution of marks for term work shall be as follows:

Laboratory work:	15 marks
Assignments:	05 marks
Attendance:	05 marks

End Semester Practical/Oral examination

- 1. Pair of Internal and External Examiner should conduct practical/viva based on contents
- 2. Distribution of marks for practical/viva examination shall be as follows:
 - a) Practical performance15 marks
 - b) Oral10 marks
- 3. Evaluation of practical examination to be done based on the experiment performed and the output of the experiments during practical examination.
- 4. Students work along with evaluation report to be preserved till the next examination

University of Mumbai, B. E. (Mechanical Engineering), Rev 2016

Course Code	Course Name	Credits
MEL602	Machine Design –I *	1

- 1. To study the basic design principles
- 2. To familiarize with use of design data books & various codes of practice
- 3. To make conversant with preparation of working drawings based on designs

Outcomes: Learner will be able to...

- 1. Design shaft under various conditions
- 2. Design Knuckle Joint / cotter joint
- 3. Design Screw Jack/C-clamp along with frame
- 4. Design Flexible flange couplings/ Leaf spring
- 5. Convert design dimensions into working/manufacturing drawing
- 6. Use design data book/standard codes to standardise the designed dimensions

Term Work: (Comprises a & b)

- a) Term work Shall consist of (minimum 3) design exercises from the list which may include computer aided drawing on A3 size sheets.
 - 1) Knuckle Joint / cotter joint
 - 2) Screw Jack
 - 3) Flexible flange couplings
 - 4) Leaf springs
 - 5) C-clamps along with the Frame

b) Assignment: Design exercises in the form of design calculations with sketches and/ or drawings on following machine elements.

- 1) Bolted and welded joints
- 2) Combined stresses problem using theory of failure.
- 3) Shaft design (solid and hollow shaft)
- 4) Design against fluctuating loads (finite and infinite life)

The distribution of marks for term work shall be as follows:

- Part a : 15 marks.
 Part--b : 05 marks.
- Attendance: 05 Marks.

Course Code	Course Name	Credits
MEL603	Finite Element Analysis	1

- 1. To familiarise FEA concept for practical implementation
- 2. To acquaint with FEA application software

Outcomes: Learner will be able to...

- 1. Select appropriate element for given problem
- 2. Select suitable meshing and perform convergence test
- 3. Select appropriate solver for given problem
- 4. Interpret the result
- 5. Apply basic aspects of FEA to solve engineering problems
- 6. Validate FEA solution

Term Work: (Comprises a and b)

a) List of Experiments: Students should use the commercial software or programmes form the text-books or self-developed programs, to verify the results obtained by manual calculations. The input data and output results of the problem solved using the computer programs should be included in the Journal. The proposed list is given below:

- 1. Any two problems using bar element
- 2. Any two problems using truss element
- 3. Any two problems using CST element
- 4. Any two problem using axisymmetric element
- 5. Any one problem of free vibration analysis using bar element
- 6. Any one problem on steady state heat conduction

While performing the analysis the students should understand the concepts of selection of element type, meshing and convergence of solution.

b) Course Project:

A group of not more than four students, shall do Finite Element Analysis of any mechanical engineering element /system, which involves element selection, assigning properties, meshing, assigning loads, and boundary conditions, analysis and result interpretation.

The distribution of marks for term work shall be as follows:

Part a:	15 marks.
Part b:	05 marks.
Attendance:	05 Marks.

End Semester Practical/Oral examination

1. Pair of Internal and External Examiner should conduct practical/viva based on contents

- 2. Duration of practical examination is 2 hour
- 3. Distribution of marks for practical/viva examination shall be as follows:
 - a) Practical performance15 marks
 - b) Oral10 marks
- 4. Evaluation of practical examination to be done based on the experiment performed and the output of the experiments during practical examination.
- 5. Students work along with evaluation report to be preserved till the next examination

Course Code	Course/Subject Name	Credits
MEL604	Refrigeration and Air Conditioning TW/Practical	1

- 1. To study operating principles of Vapour Compression system
- 2. To study components of refrigeration and air conditioning systems
- 3. To study controls and applications of refrigeration and air conditioning

Outcomes: Learner will be able to...

- 1. Demonstrate fundamental principles of refrigeration and air conditioning
- 2. Identify and locate various important components of the refrigeration and air conditioning system
- 3. Represent various refrigeration and air conditioning processes using psychometric chart
- 4. Operate and maintain refrigeration system
- 5. Operate and maintain air conditioning system
- 6. Simulate VCRS

Part A: List of Experiments

Trial on window air conditioner or Air Conditioning Test Rig Trial on water cooler/Refrigeration Test Rig Trial on Ice Plant Trial on cooling tower

Part B: Demonstrations/Reports/Assignments/Simulations

Demonstration of domestic refrigerator along with wiring diagram

Demonstration of leak detection, evacuation and charging of refrigerant

Report on different protocols to regulate global warming

Visit report of Refrigeration establishment like Cold storage plant or ice plant or air-conditioning plant Assignment on humidification and dehumidification, heating and cooling, mixing of two air streams Steady state Simulation of VCR system with developed code or any analytical software

Term work

Term work shall consists of minimum Three Laboratory Experiments, at least one demonstration exercise, Industrial Visit Report, at least one assignment consisting of numerical based on Refrigeration and Air Conditioning and one simulation exercise on VCR

The distribution of marks for term work shall be as follows:

Part a:	15 marks.
Part b:	05 marks.
Attendance:	05 Marks.

End Semester Practical/Oral examination:

- 1. Pair of Internal and External Examiner should conduct practical/viva based on contents
- 2. Practical examination (in a group of not more than 5 students) duration is 2 hours
- 3. Distribution of marks for practical/viva examination shall be as follows:
 - a. Practical performance15 marks
 - b. Oral 10 marks
- 4. Evaluation of practical examination to be done based on the experiment performed and the output of the experiments during practical examination.
- 5. Students work along with evaluation report to be preserved till the next examination

University of Mumbai, B. E. (Mechanical Engineering), Rev 2016
Subject Code	Subject Name	Credits
MEL 605	Mechatronics Lab	01

- 1. To study sensors and actuators
- 2. To study control systems
- 3. To study automation

Outcomes: Learner will be able to...

- 1. Demonstrate implementation of interfacing sensors and actuators using microcontrollers
- 2. Demonstrate of interfacing various utilities with microcontrollers
- 3. Demonstrate discrete control system using PLC microcontroller
- 4. Design and develop a control system for specific use
- 5. Implement program to PLC system and demonstrate its application
- 6. Develop pneumatic circuits for a specific system

The laboratory experiments should be based on the following

Group 1: Sensors & Actuators

- Theoretical & Experimental Implementation of Interfacing of Sensors using microcontroller and determination of sensor characteristics such as Static Characteristics (Sensitivity, Accuracy, Range, Resolution etc.), Dynamic Characteristics (Transient Response and Frequency Response)
- 2. Measurement and Calibration of Load / Force (*It is suggested to determine all characteristics of sensor mentioned in previous experiments*)
- 3. Measurement, Calibration and Comparison of Temperature Sensors (Thermocouple, RTD and Thermistor) (*It is suggested to determine all characteristics of sensor mentioned in previous experiments*)
- 4. Interfacing of Stepper Motor with microcontroller and its programming for Rotational or XY table (*It is suggested to program to vary the position of rotary or XY table and compare the positioning accuracy using standard calibrated angular or linear sensor*)
- 5. Interfacing of DC Motor with microcontroller and its programming for characterization of DC motor setup (*It is suggested to program to vary the speed of DC motor and determine its load-speed characteristics*)
- 6. Interfacing of Water Heater with microcontroller and its programming for determination of its transient and steady state characteristics (*It is suggested to program to vary the input current to heater and determine its transient and steady state characteristics*)

Group 2: Control Systems

- Experimental demonstration of Discrete control system using PLC microcontroller using standard PLC demo setup (Bottle filling Machine, Traffic Light Signal, Water heater and its stirring System etc.). (here it is suggested to carry out ladder programing and demonstrate its operation)
- 2. System Identification of Spring Mass Damper System for step input & harmonic input and determination of poles and zeros of system. (*Spring Mass Damper setup with all required position sensors mounted is to be characterized for step input, it is suggested to determine transfer function (i.e. input output relation) of the setup and plotting its transient and frequency response (Bode plot))*
- 3. Design & Experimental Implementation of PID control strategy for Spring Mass Damper Setup to control precisely position of mass. (*it is suggested to conduct experimental study on effect of variation of controller parameters on its transient characteristics also to study the changes in poles and zeros of system*).
- 4. Design & Experimental Implementation of PID control strategy for DC motor speed control under varying loading conditions and effect of variation of load is to be studied.
- 5. Design & Experimental implementation of PID control strategy for Real Time Temperature Control of furnace (*it is suggested to conduct experimental study on effect of variation of controller parameters on its transient characteristics also to study the changes in poles and zeros of system*).
- 6. Modeling and design of control system for quarter car suspension model using any suitable modeling and analysis software.

Group 3: Automation

- 1. Real time Logic implementation for traffic Control demo setup and it is necessary to carry out ladder programming and implement program to PLC system and demonstrate its operations
- 2. IOT: Real time interfacing of sensors (temperature, humidity, position, level etc.) and actuator (stepper motor, dc motor, servo motor etc.) with microcontroller and Ethernet shield and controlling the actuator and monitoring of sensor output remotely using internet.
- 3. Robotics: Real Time demonstration of line following robot using standard robotic kit
- 4. Demonstration and study of functions of components of robotics arm.
- Visualization of DH parameters in Roboanalyzer.(*Roboanalyzer is free software developed by IIT Delhi, available on www.roboanalyzer.com)
- 6. Designing sequential operation for two cylinders using electro-hydraulic circuits
- 7. Designing sequential operation for two cylinders using electro- pneumatic circuits
- 8. Development of pneumatic circuits to understand pneumatic components and their working

Term work

Term work shall consists of minimum Nine Experiments, Three from each group mentioned above

The distribution of marks for term work shall be as follows:

Laboratory Work:	20 marks.
Attendance:	05 Marks.

End Semester Practical/Oral examination:

- 1. Pair of Internal and External Examiner should conduct practical/oral based on contents
- 2. Practical examination (in a group of not more than 4 students) duration is 2 hours
- 3. Distribution of marks for practical/Oral examination shall be as follows:
 - a. Practical performance15 marks
 - b. Oral**10** marks
- 4. Evaluation of practical examination to be done based on the experiment performed and the output of the experiments during practical examination.
- 5. Students work along with evaluation report to be preserved till the next examination

Course Code	Course/Subject Name	Credits
MEC701	Machine Design – II	4

- 1. To acquaint with functional and strength design principles of important machine elements
- 2. To familiarise selection of standard elements such as rolling element bearings, belts etc.

Outcomes: Learner will be able to...

- 1. Select appropriate gears for power transmission on the basis of given load and speed
- 2. Design gears based on the given conditions.
- 3. Select bearings for a given applications from the manufacturers catalogue.
- 4. Select and/or design belts and flywheel for given applications
- 5. Design cam and follower mechanisms.
- 6. Design clutches and brakes

Module	Details	Hrs.
01	 Design of Gears: 1.1 Gears: Design of spur, helical, bevel and worm gears with strength, wear and thermal considerations 1.2 Gear Box: Two stage Gear box with fixed ratio consisting of spur, helical and bevel gear pairs: gear box housing layout and housing design 	14
02	2.1 Rolling Contact Bearings: Types of bearing and designation, selection of rolling contact bearings based on constant / variable load & speed conditions (includes deep groove ball bearing, cylindrical roller, spherical roller, taper roller, self-aligning bearing and thrust bearing)	05
03	1.1 Sliding Contact Bearings: Design of hydro dynamically lubricated bearings (self-contained), Introduction to hydro static bearings, Types and selection of Mechanical seals	05
04	4.1 Design of Cams and Followers: Design of Cam and Roller follower mechanisms with spring and shaft	06
05	 5.1 Design and selection of Belts: Flat and V-belts with pulley construction 5.2 Design of Flywheel – Introduction, Fluctuation of energy and speed, turning moment diagram, estimating inertia of flywheel for reciprocating prime movers and machines, Weight of the flywheel, flywheel for punches, rim constructions, stresses in rims and arms, Construction of flywheel 5.3 Design and selection of standard roller chains 	10
06	 6.1 Design of Clutches: Introduction, types, Basic theory of plate and cone type clutches, Design of single plate, multi-plate and cone clutches, with spring, lever design and thermal, wear considerations. 6.2 Design of Brakes: Design of single shoe brake 	08

Assessment:

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

References:

- 1. Design of Machine Elements V.B. Banadari, Tata McGraw Hill Publication
- 2. Design of Machine Elements Sharma, Purohil. Prentice Hall India Publication
- 3. Machine Design An Integrated Approach Robert L. Norton, Pearson Education
- 4. Machine Design by Pandya & Shah, Charotar Publishing
- 5. Mechanical Engineering Design by J.E.Shigley, McGraw Hill
- 6. Recommended Data Books PSG
- 7. Machine Design by Reshetov, Mir Publication
- 8. Machine Design by Black Adams, McGraw Hill
- 9. Fundamentals of Machine Elements by Hawrock, Jacobson McGraw Hill
- 10. Machine Design by R.C.Patel, Pandya, Sikh, Vol-I & II C. Jamnadas & Co
- 11. Design of Machine Elements by V.M.Faires
- 12. Design of Machine Elements by Spotts

Course Code	Course/Subject Name	Credits
MEC702	CAD/CAM/CAE	04

- 1. To introduce new and exciting field of Intelligent CAD/CAM/CAE with particular focus on engineering product design and manufacturing.
- 2. To develop a holistic view of initial competency in engineering design by modern computational methods.
- 3. To develop New API for CAD

- 1. Identify proper computer graphics techniques for geometric modelling.
- 2. Transform, manipulate objects & store and manage data.
- 3. CAM Toolpath Creation and NC- G code output.
- 4. Use rapid prototyping and tooling concepts in any real life applications.
- 5. Identify the tools for Analysis of a complex engineering component.

Modules	Details	Hrs.
01	Computer Graphics and Techniques for Geometric Modeling Computer Graphics: Two dimensional computer graphics, vector generation, the windowing transformation, Three dimensional Computer graphics, viewing transformation, Homogeneous coordinates, Perspective projection, Hidden line removal & hidden surface removal algorithm, light & shade ray tracing. The parametric representation of geometry, Bezier curves, Cubic Spline curve, B-Spline curve, parametric representation of line, circle, ellipse & parabola. Constructive solid geometry (CSG), Boundary Representation (B-Rep), Wire Frame Modeling, Solid Modeling, Surface Modeling, Parametric Modeling, feature based modeling, Feature recognition, Design by feature.	08
02	 Transformation, Manipulation & Data Storage 2D & 3D Transformations (Translation, Rotation, & Scaling & Magnification), Concatenations, Matrix representation, Problems & object oriented programming on Transformations. Object transformation, mirror transformation, Artificial Intelligence in Design & Manufacturing, Representation of Knowledge, and Knowledge base Engineering. Application Programming Interface (API) Concept of customizing applications by writing programs, Fusion Object Model, Creating Scripts and Add-Ins, Document and assembly structure, Attributes, Creating Programs for Assemblies, Joint, B- Rep & Geometry. 	08
03	Design to Manufacturing (CAM) 2D Machining Strategies, 3D Machining Strategies, Fixture Component Terminology, Work Coordinate System Terminology, Create setups, Apply 2D operations, Facing, 2D adaptive clearing, 2D contour. Chamfer milling, Bore ,Tool simulation and stock material removal, Produce setup sheets, Product NC code via post processing,	08
04	Computer Aided Engineering (CAE) Fundamentals of computer aided engineering, CAE includes mass property calculations, kinematic analysis and animation (movement, visualization, simulation and FEA). Case study based on modeling and analysis of structural, thermal/fluid, and dynamic (vibration analysis) system. Parameter optimization.	08
05	Computer Integrated Manufacturing & Technology Driven Practices Introduction, Evolution, Objectives, CIM Hardware and Software, CIM Benefits, Nature and role of the elements of CIM, Identifying CIM needs, Data base requirements of CIM, Role of CAD/CAM in CIM, Obstacles to Computer Integrated Manufacturing, Concept of the future CIM systems, Socio -techno- economic aspects of CIM.	08

Rapid Prototyping and Tooling

Introduction to RP, Technology Description, Overview of RP, Benefits and Application. RP Processes: Process overviews, STL file Generation, Classes of RP systems: Stereo-lithography Approach (SLA), SLA with photo-polymerization (mathematical modelling of the process), SLA with liquid thermal polymerization, Selective Laser Sintering (SLS), Fused deposition modelling, Laminated object manufacturing, Laser powder forming. Prototype properties: Material properties, colour, dimensional accuracy, stability, surface finish, machinability, environmental resistance, operational properties. RP Applications: Design, Concept Models, Form & fit checking, Functional testing, CAD data verification, Rapid Tooling, Rapid manufacturing, Science & Medicine, RP processes for MEMS, Photolithography, Direct Laser Writer, Bulk Lithography for 3D micro fabrication (Modelling of beam propagation and curing in resin system).

Assessment:

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

References:

- 1. "CAD/CAM Computer Aided and Manufacturing" by Mikell P. Groover and Emory W. Zimmers, Jr., *Eastern Economy Edition*
- 2. "CAD/ CAM, Theory & Practice" by Ibrahim Zeid, R. Sivasubramanian, *Tata McGraw Hill Publications*
- 3. "Computer Graphics" by Donald Hearn and M. Pauline Baker, Eastern Economy Edition
- 4. "CAD/CAM Principles, Practice and Manufacturing Management" by Chris McMahon, Jimmie Browne, *Pearson Education*
- 5. "CAD/CAM/CIM" by P. Radhakrishan, S. Subramanyan, V. Raju, New Age International Publishers
- 6. "CAD/CAM Principles and Applications" by P.N. Rao, Tata McGraw Hill Publications
- 7. "Principle of Computer Graphics" by William .M. Neumann and Robert .F. Sproul, *McGraw Hill Book Co. Singapore.*
- 8. David L. Goetsch, Fundamental of CIM technology ,Delmar publication
- 9. David Bedworth, Computer Integrated Design and Manufacturing, McGraw Hill.
- 10. "CNC Machines" by B.S. Pabla and M. Adithan, New Age International Publishers.
- 11. "Numerical Control and Computer Aided Manufacturing", T.K. Kundra, P.N. Rao, N.K. Tiwari, *Tata McGraw Hill*
- 12. "CNC Technology and Programming", Krar, S., and Gill, A., McGraw Hill publishers
- 13. "Computer Integrated Manufacturing- An Introduction with Case Studies" by Paul G. Ranky, *Prentice Hall International*

University of Mumbai, B. E. (Mechanical Engineering), Rev 2016

- 14. "Flexible Manufacturing Systems" by H.K. Shivanand, M.M. Benal, V.Koti, *New Age International Publishers*
- 15. "Automation, Production Systems and Computer Integrated Manufacturing ", Groover M.P., *Prentice-Hall of India Pvt. Ltd*
- 16. "Mathematical Elements for Computer Graphics", Rogers D F I and Adams J A, McGraw-Hill.
- 17. "Computer Integrated Manufacturing Hand Book" by Eric Teicholz, Joel N. Orr, McGraw Hill International Editions
- 18. "Rapid Prototyping" Chee Kai ChuaWorld Scientific Publishing
- 19. "Rapid Prototyping:Principles and Applications" RafiqNoorani, Wiley
- 20. "Rapid Prototyping:Principles and Applications" C.K. Chua,K.F.Leong, C.S. Lim World Scientific Publishing
- 21. "Rapid Prototyping and Manufacturing" P. F. Jacobs, Society of Manufacturing Engineers.

Course Code	Course/Subject Name	Credits
MEC703	Production Planning and Control	4

- 1. To provide an exposure to Production Planning & Control (PPC) and its significance in Manufacturing Industries
- 2. To give insight into the ongoing & futuristic trends in the control of inventory
- 3. To appraise about need and benefits of planning functions related to products and processes
- 4. To give exposure to production scheduling and sequencing so as to optimise resources

Outcomes: Learner will be able to...

- 1. Illustrate production planning functions and manage manufacturing functions in a better way
- 2. Develop competency in scheduling and sequencing of manufacturing operations
- 3. Forecast the demand of the product and prepare an aggregate plan
- 4. Develop the skills of Inventory Management and cost effectiveness
- 5. Create a logical approach to Line Balancing in various production systems
- 6. Implement techniques of manufacturing planning and control

Module	Details	Hrs
1	 Concepts of PPC: 1.1. Manufacturing systems- components and types, need for PPC, functions of PPC, relationship of PPC with other functions 1.2. Factors influencing PPC in the organization, manufacturing methods- projects & jobbing products, batch, mass / flow production, continuous / process production. 1.3. Organization of PPC- status of PPC department, internal structure, degree of centralization, PPC as an integrated approach 1.4. Prerequisites of PPC – data pertaining to design, equipment, raw materials, tooling, performance standards, labour and operating systems 	06
2	 Forecasting, Aggregate planning, Capacity planning 2.1. Forecasting: Need for forecasting, role of forecasting in PPC, forecasting methods of qualitative type like judgment techniques. Forecasting methods of quantitative types like time series analysis, least square method, moving averagemethod, exponential smoothing method. Forecasting Errors and Forecasting Bias 2.2. Aggregate planning : Concept of aggregate planning, decision rules, strategies and methods 2.3. Capacity Planning: Measurement of capacity, Measures of capacity, Factors influencing effective capacity, short range, medium range and long range capacity planning, Rough cut capacity planning. 	08
3	 Inventory Control: 3.1. Basic concepts of inventory, Types of inventory, purpose of holding stock and influence of demand on inventory, Costs associated with Inventory management. 3.2. Inventory Models: Deterministic models - instantaneous stock replenishment model, Production model, planned shortages and price discount model, Probabilistic models-fixed quantity system(Q-system) and Fixed period system (p-system) 3.3. Selective Inventory Control techniques - ABC analysis, HML analysis and VED analysis 	08
4	 Process Planning and Line Balancing 4.1 Process planning: Prerequisite information requirement, steps in process planning, process planning in different situations, documents in process planning, machine / process selection & Computer Aided Process Planning 4.2 Line Balancing: objectives, constraints, terminology in assembly line, heuristic methods like Kilbridge-Wester, Largest Candidate rule, Rank positional weight 	08
5	 Production Scheduling and Sequencing 5.1 Scheduling: Inputs for scheduling, loading and scheduling devices, factors influencing scheduling, scheduling techniques, use of Gantt Charts and basic scheduling problems. 	10

University of Mumbai, B. E. (Mechanical Engineering), Rev 2016

	 Project scheduling by using elements of network analysis –PERT & CPM, cost analysis & crashing, resource leveling 5.2 Sequencing: Product sequencing, dispatching, progress report & expediting and control. Johnson's Rule for optimal sequence of N jobs on 2 machine. Process n Jobs on 3 Machines (n/3 problem) and Jackson Algorithm. Processing of 2 Jobs on m Machine (2/m) problem 	
6	 MRP, MRP II, ERP 6.1. Material Requirement planning(MRP) and Manufacturing Resource Planning (MRP-II) general concepts, types of demands, Inputs to MRP, MRP objectives, outputs of MRP, Estimation of planned orderreleases. Benefits and Limitations of MRP II 6.2. Enterprise Resource Planning (ERP): Evolution, features, purpose of modeling an enterprise, information mapping, generic model of ERP, Modules in ERP, Methodology of implementation, critical success factors of ERP, Case studies of success and failure of ERP implementations, ERP packages 	08

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3. Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

References

- 1. Production Planning and Control Samuel Eilon.
- 2. Production Planning and Control L C Jamb
- 3. Production Planning and Control, W. Boltan-Longman Scientific & Technical
- 4. Production Systems- Planning, Analysis& Control, James. L. Riggs-John Wiley & Sons
- 5. Manufacturing Planning and Control Systems, Thomas E. Vollman, WilliamL.Berry& Others-Galgotia Publishers
- 6. Manufacturing Process Planning and Systems Engineering, AnandBewoor-Dreamtech Press
- 7. Production and Operations Management, S.N.Chary- TMH publishing company
- 8. Modernization & Manufacturing Management, L.C. Jhamb Everest PublishingHouse

Course Code	Course/Subject Name	Credits
MEDLO7031	MECHANICAL VIBRATION	4

- 1. To study basic concepts of vibration analysis
- 2. To acquaint with the principles of vibration measuring instruments
- 3. To acquaint with the practices of monitoring health conditions of the systems

Outcomes: Learner will be able to...

- 1. Develop mathematical model to represent dynamic system.
- 2. Estimate natural frequency of mechanical element / system.
- 3. Analyse vibratory response of mechanical element / system.
- 4. Estimate the parameters of vibration isolation system and
- 5. Control the vibrations to the acceptable level using basic vibration principles
- 6. Handle the vibration measuring instruments

Module	Details	Hrs.
1	1.1 Basic Concepts of Vibration: Introduction, classification, terminology, modelling	
	vibration analysis	
	1.2 Free Undamped Single Degree of Freedom Vibration System: Longitudinal, transverse,	
	torsional, vibration system, methods for formulation of differential equations by D'Alembert's	
	Principle, Newton, Energy, Lagrangian and Rayleigh's method	08
2	Multi Degree of Freedom System:	
	2.1 Undamped free vibration: Free vibration equation of motion, Influence coefficients	
	(stiffness and flexibility), Reciprocity theorem, Generalized Coordinates, and Coordinate	10
	Coupling, Lagrangian equations, Rayleigh and Dunkerley method, two rotor and geared	
	systems	
	2.2 Eigen Values and Eigen vectors: for translatory and torsional two d.o.f. systems, Matrix	
	method, Holzer's method (translatory and torsional unbranched systems)	
3	Free Damped Single Degree of Freedom Vibration System: Types of dampers, Viscous	
	damped system- translatory and rotary systems, Coulomb's damping- final rest position of body	06
	in coulomb damping, motion with negative damping factor,	
4	4.1 Forced Single Degree of Freedom Vibratory System: Analysis of linear and torsional	
	systems subjected to harmonic force excitation and harmonic motion excitation	10
	4.2 Vibration Isolation and Control: Conventional Methods: By mass /Inertia, stiffness,	10
	damping (vibration isolation principles) Force Transmissibility, motion transmissibility,	
	typical isolators & mounts. Introduction to Semi-Active and Active Vibration control.	
5	5.1 Vibration Measuring Instruments: Principle of seismic instruments, vibrometer,	
	accelerometer- undamped, damped	
	5.2 Introduction to Conditioning Monitoring and Fault Diagnosis: Introduction to	07
	conditioning monitoring and fault diagnosis, Condition & Vibration Monitoring Techniques,	
	Condition / vibration monitoring data collection. Signature analysis	
	Non-Linear Vibration: Basics of Non-linear vibration, systems with non-linear elastic	
6	properties, free vibrations of system with non-linear elasticity and damping, phase –plane	07
	tecnnique, Duffing's equation, Jump phenomenon, Limit Cycle, Perturbation method.	

Assessment:

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

University of Mumbai, B. E. (Mechanical Engineering), Rev 2016

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

References:

- 1. Mechanical Vibrations by S.S.Rao, fourth edition, Pearson Education
- 2. Mechanical Vibraitons by G. K. Grover
- 3. Fundamentals of Mechanical Vibration by S.Graham Kelly, Tata McGraw Hll
- 4. Vibration Analysis by P. Srineevasan, Tata McGraw Hill
- 5. Mechanical Vibrations- Schaum's outline series, William W.Seto, McGraw Hill
- 6. Theory and Practice of Mechanical Vibrations by J.S.Rao, K. Gupta, New Age International Publications
- 7. Mechanical Vibrations by Den, Chambil, Hinckle
- 8. Mechanical Vibrations by J.P.Den Hartog, McGraw Hill Book Company Inc
- 9. Introduction to Dynamics and Control by Leonard Meirovitch, Wiley, New York
- 10. Elements of Vibration Analysis by Leonard Meirovitch, McGrmv-Hill, New York
- 11. Dynamics and Control of Strucdtures by Leonard Meirovitch, Wiley, New York
- 12. Matrices and Transformations by Antony J. Pettofrezzo, Dover, New York
- 13. Principles of Vibration by Benson H. Tongue, Oxford University Press
- 14. Theory of Vibration with Applications, by W. Thomson, 2nd edition, Pearson Education
- 15. Vibrations by Balakumar Balachandan, Edward Magrab, Cengagae Learning

Course Code	Course/Subject Name	Credits
MEDLO7032	AUTOMOBILE ENGINEERING	04

- 1. To impart the understanding of important mechanical systems of an automobile
- 2. To provide insight into the electrical systems of an automobile
- 3. To familiarize with the latest technological developments in automotive technology

- 1. Illustrate the types and working of clutch and transmission system.
- 2. Demonstrate the working of different types of final drives, steering gears and braking systems
- 3. Illustrate the constructional features of wheels, tyres and suspension systems
- 4. Demonstrate the understanding of types of storage, charging and starting systems
- 5. Identify the type of body and chassis of an automobile
- 6. Comprehend the different technological advances in automobile

Module	Details	Hrs
1	 Clutch : Requirements of Clutches, Types of Clutches; Single Plate, Multi-plate, Wet Clutch, Semicentrifugal, Centrifugal. Clutch materials. Clutch operating mechanisms; Mechanical, Electric, Hydraulic and Vacuum. Free Pedal Play. Transmission: Necessity of gear box. Sliding mesh, Constant mesh, and Synchromesh Gear selector mechanisms. Overdrives and hydrodynamic torque converter, Trouble shooting and remedies. Propeller Shaft and Axle: Propeller shafts and universal joints: Types and construction, Different types of universal joints and constant velocity joints Types of live axles; semi, three quarter and full floating axles Types of Front Stub Axles; Elliot, Reverse Elliot, Lamoine and Reverse Lamoine 	09
2	 Final Drive and Differential : Types of Final drive; spiral, bevel, Hypoid and worm drives. Necessity of differential, Working of differential, Conventional and non-slip differential, Trouble shooting and remedies Steering System : Steering geometry, Steering requirements, Steering linkages and steering gears. Over steer and under steer, Cornering power, Reversibility of steering gears. Braking System: Requirement of brake, Classification of brakes, Brake Actuation Methods; Mechanical, Hydraulic, Pneumatic, Electro and vacuum brakes. Types of Disc brakes and Drum Brakes, Brake trouble shooting, Introduction to antilock braking system (ABS) 	08
3	 Suspension System Objects of suspension, Basic requirements, Sprung and un-sprung mass, Types of Independent and rigid axle suspension. Air suspension and its features. Pitching, rolling and bouncing. Shock absorbers and its types Wheels and Tyres: Requirements of wheels and tyres. Types of wheels, types of tyres and types of carcass 	07
4	Automotive Electrical System : Storage System: Lead-Acid Battery; construction, working, ratings, types of charging methods, Alkaline, ZEBRA, Sodium Sulphur and Swing batteries Charging System:	06

	 Dynamo: Principle of operation, Construction and Working. Regulators, combined current and voltage regulator. Alternator: Principle of operation, Construction, Working. Rectification from AC to DC Starting system: Requirements, Various torque terms used, Starter motor drives; Bendix, Rubber compression, Compression Spring, Overrunning Clutch. Starter motor solenoids and switches 	
5	Body Engineering: Importance of Body design, Materials for body construction-Styling forms-Coach and bus body style, layouts of passenger cars, Bus and truck bodies. Chassis types and structure types: Open, Semi integral and integral bus structure Frames: functions and types of frames, Loads on frames, Load distribution of structure, Location of power plant	06
6	Recent trends in Automobiles : Intelligent Vehicle Systems : Cruise Control, Adaptive Cruise Control (ACC), Electronic Stability Program (ESP), Electronic Brake Distribution (EBD), Traction Control System (TCS). Integrated Starter Alternator (ISA)	04

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

Reference Books:

- 1. Automobile Engineering, Kirpal Singh, Vol I & II, Standard publishers Distributors ,Delhi
- 2. The Automobile by Harbans Singh Reyat
- 3. The Automobile Engineering by T.R. Banga and Nathu Singh
- 4. Automotive Engineering Fundamentals by Richard Stone, Jeffrey K. Ball, SAE International
- 5. Vehicle body engineering by J Powlowski
- 6. Automobile Mechanics, N. K. Giri, 8thEdition, Khanna Publishers
- 7. Bosch Automotive Hand Book, 6thEdition, SAE Publications
- 8. Automotive Mechanics by William H. Crouse and Donald L. Anglin, 10th Edition, McGraw Hill
- 9. Motor vehicles by T. K. Garrett, K. Newton and W. Steeds
- 10. Automotive Mechanics by Joseph Heitner
- 11. Automobile Electrical and Electronics by Tom Denton
- 12. Automotive Electrical Equipment by P. L. Kohli
- 13. Computerised Engine Control by Dick H. King

Course Code	Course/Subject Name	Credits
MEDLO7033	Pumps, Compressors and Fans	4

- 1. To study of Different types of Pumps, Compressors & Fans
- 2. To familiarise design aspects of Pumps, Compressors & Fans

Outcomes: Learner will be able to...

- 1. Select suitable Pump
- 2. Design a reciprocating pump and analyse its performance
- 3. Design a centrifugal pump and analyse its performance
- 4. Demonstrate basic principles of fans and blowers
- 5. Design fan/blower and analyse its performance
- 6. Design a compressor and analyse its performance

Module	Detailed Contents	Hrs.
01	Introduction to Fluid Machinery: Introduction to pumps, Introduction to blowers and compressors, Basic equations of energy transfer between fluid and rotor, Performance characteristics, Dimensionless parameters, Specific speed, stage velocity triangles, work and efficiency.	04
02	Reciprocating Pumps and Centrifugal Pumps: Introduction: Types, Component and Working of Reciprocating pump and Centrifugal Pumps, Discharge, Work done and power required to drive for single acting and double acting, Coefficient of discharge, slip, Effect of acceleration of piston on velocity and pressure, indicator diagram, Air Vessel, Operating characteristics.	06
03	Design & Analysis of Pumps: Design procedure and design optimization of Pumps, selection of pumps, Thermal design- Selection of materials for high temperature and corrosive fluids, Hydraulic design- Selection of impeller and casing dimension using industrial manuals	08
04	Introduction to Fans, Blowers and Compressors: Classification of blowers, Basics of stationary and moving air, Eulers characteristics, velocity triangles and operating pressure conditions, Equations for blowers, Losses and hydraulic efficiency, flow through impeller casing, inlet nozzle, Volute, diffusers, leakage, mechanical losses, surge and stall, Applications of blowers and fans Compressors: Basic theory, classification and application, Working with enthalpy-entropy diagram	06
05	Design and Analysis of Fans and Blowers: Rotor design airfoil theory, vortex theory, cascade effects, degree of reaction, Design procedure for selection and optimization of Blowers. Stage pressure rise, stage parameters and design parameters, Design of impeller and casing dimension in aerodynamic design	06
06	Design & Analysis of Compressors: Construction and approximate calculation of centrifugal compressors, impeller flow losses, slip factor, diffuser analysis, performance curves of centrifugal compressors, Basic design features of axial flow compressors; velocity triangles, enthalpy-entropy diagrams, stage losses and efficiency, work done factor, simple stage of axial flow compressors	06

Assessment:

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

University of Mumbai, B. E. (Mechanical Engineering), Rev 2016

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

Reference Books:

- 1. Principles of Turbo machinery by Shepherd, D.G., Macmillan
- 2. Centrifugal Pump Design by John Tuzson, John Wiley
- 3. Blowers and Pumps by Stepanff, A.J., John Wiley and Sons Inc.
- 4. Centrifugal pumps and blowers by Austin H. Chruch, John Wiley and Sons
- 5. Centrifugal Pumps Design and Applications by Val S.Labanoff and Robert Ross, Jaico P House
- 6. Pump Hand Book by Igori Karassik, McGraw-Hill International Edition
- 7. Pumps by G.K.Sahu, New age international
- 8. Turbine, Compressors and Fans by S.M.Yahya, Tata Mc-Graw Hill Publishing Company
- 9. Fluid Mechanics and Hydraulic Machines by R. K. Bansal, Laxmi Publication
- 10. Gas Turbines by V. Ganeshan, Tata Mc-Graw Hill Publishing Company
- 11. Steam and Gas Turbine by R. Yadav, Central Publishing House, Allahabad

Course Code	Course/subject Name	Credits
MEDLO7034	Computational Fluid Dynamics	4

- 1. To study basic principles of Computational Fluid Dynamics
- 2. To study grid generation and discretization methods

Outcomes: Learner will be able to...

- 1. Demonstrate methodology to work with CFD
- 2. Illustrate principles of grid generation and discritisation methods
- 3. Identify and apply specific boundary conditions relevant to specific application
- 4. Decide solution parameters relevant to specific application
- 5. Analyze the results and draw the appropriate inferences
- 6. Demonstrate basic principles of FVM

Module	Detailed Contents	Hrs.
01	Introduction: What is CFD, Scope and Application of CFD, Methods of Predictions like	
01	Experimental and theoretical, Working of Commercial CFD Software, Solution	04
	methodology-Preprocessing, Solver, Post processing.	
	Mathematical description of Physical Phenomenon: Governing Differential Equations,	
02	Meaning of Differential equation, The Continuity Equation, A Momentum equation, The	
	Energy Equation, The General Differential Equation, Boundary Conditions, Initial and	06
	Boundary Conditions, Initial and Boundary Value problems.	
	Grid Generation and Discretization Methods:	
	Structured and unstructured Grids: O-type, H-type, C-type of Structured Grid Generation,	0.0
	Mesh Adaptation.	08
03	The Nature of Numerical Methods: The Discritization Concept, The Structure of the	
	Discritization Equation.	
	Basic discretization techniques applied to model equations and systems of equations: finite	
	difference, finite volume and finite element methods.	
	Methods of Deriving the Discretization Equations, Taylor-Series Formulation, variational	
	Formulation, Method of Weighted Residuals, Control Volume Formulation	
04	Heat Conduction, Convection and Diffusion: Steady One-dimensional Conduction,	
04	relevation and Under relevation. Steady One dimensional and Two Dimensional Convection	
	Diffusion Unsteady One-dimensional Convection	
	Incompressible Fluid Flow: Governing Equations Stream Function-Vorticity Method	
05	Determination of Pressure for Viscous Flow The SIMPLE SIMPLE Algorithm	
05	Introduction to Turbulence Modeling Basic Theories of Turbulence. The Time-Averaged	
	Equations for Turbulent Flow	
	Finite Volume Methods: FVM solutions to steady one, two and three dimensional diffusion	problems
06	and unsteady one and two dimensional diffusion problems. FVM solutions to convection-dif	fusion
	problems - one and two dimensional, steady and unsteady: Advection schemes: Pressure velo	cif8
	coupling	5

Assessment:

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

References:

- 1. An introduction to computational fluid dynamics-The finite volume method, Versteeg.H.K., Malalasekera.W., Prentice Hall
- 2. Computational Fluid Mechanics and Heat Transfer, Anderson, D.A., Tannehill, I.I., and Pletcher, R.H., Hemishphere Publishing Corporation, New York, USA, 1984
- 3. Introduction to Computational Fluid Dynamics, Niyogi P. ,Laha M.K., Chakrabarty S.K., Pearson Education, India
- 4. Computational Fluid Flow and Heat Transfer, Muralidhar, K.,andSundararajan, T., Narosa Publishing House ,New Delhi
- 5. Computer Simulation of flow and heat transfer, Ghoshdasdidar, P. S., Tata McGraw-Hill Publishing Company Ltd
- 6. Finite Element Programming of the Navier Stock Equation, Taylor, C and Hughes J.B., Pineridge Press Ltd.U.K.
- 7. Computational Techniques for Fluid Dynamics: Fundamental and General Techniques, Fletcher, C.A.J., Springer-Verlag
- 8. Numerical Fluid Dynamics, Bose, T. K., Narosa Publishing House
- 9. T. J. Chung, Computational Fluid Dynamics, Cambridge University Press
- 10. Anderson, J.D. Computational Fluid Dynamics, McGraw Hill

Course Code	Course Name	Credits
ILO 7011	Product Life Cycle Management	03

- 1. To familiarize the students with the need, benefits and components of PLM
- 2. To acquaint students with Product Data Management & PLM strategies
- 3. To give insights into new product development program and guidelines for designing and developing a product
- 4. To familiarize the students with Virtual Product Development

- 1. Gain knowledge about phases of PLM, PLM strategies and methodology for PLM feasibility study and PDM implementation.
- 2. Illustrate various approaches and techniques for designing and developing products.
- 3. Apply product engineering guidelines / thumb rules in designing products for moulding, machining, sheet metal working etc.
- 4. Acquire knowledge in applying virtual product development tools for components, machining and manufacturing plant

Module	Detailed Contents	Hrs
	Introduction to Product Lifecycle Management (PLM):Product Lifecycle	10
	Management (PLM), Need for PLM, Product Lifecycle Phases, Opportunities of	
	Globalization, Pre-PLM Environment, PLM Paradigm, Importance & Benefits of PLM,	
01	Widespread Impact of PLM, Focus and Application, A PLM Project, Starting the PLM	
-	Initiative, PLM Applications	
	PLM Strategies: Industrial strategies, Strategy elements, its identification, selection and implementation. Developing PLM Vision and PLM Strategy. Change management for	
	PLM	
	Product Design: Product Design and Development Process, Engineering Design,	09
	Organization and Decomposition in Product Design, Typologies of Design Process	
	Models, Reference Model, Product Design in the Context of the Product Development	
	Process, Relation with the Development Process Planning Phase, Relation with the Post	
00	design Planning Phase, Methodological Evolution in Product Design, Concurrent	
02	Engineering, Characteristic Features of Concurrent Engineering, Concurrent Engineering	
	and Life Cycle Approach, New Product Development (NPD) and Strategies, Product	
	Configuration and Variant Management, The Design for X System, Objective Properties	
	and Design for X Tools, Choice of Design for X Tools and Their Use in the Design	
	Process	
	Product Data Management (PDM): Product and Product Data, PDM systems and	05
03	importance, Components of PDM, Reason for implementing a PDM system, financial	
	justification of PDM, barriers to PDM implementation	
	Virtual Product Development Tools: For components, machines, and manufacturing	05
04	plants, 3D CAD systems and realistic rendering techniques, Digital mock-up, Model	
	studies	
	Integration of Environmental Aspects in Product Design: Sustainable Development	05
05	Design for Environment, Need for Life Cycle Environmental Strategies, Useful Life	

	Extension Strategies, End-of-Life Strategies, Introduction of Environmental Strategies	
	into the Design Process, Life Cycle Environmental Strategies and Considerations for	
	Product Design	
	Life Cycle Assessment and Life Cycle Cost Analysis: Properties, and Framework of	05
	Life Cycle Assessment, Phases of LCA in ISO Standards, Fields of Application and	
06	Limitations of Life Cycle Assessment, Cost Analysis and the Life Cycle Approach,	
	General Framework for LCCA, Evolution of Models for Product Life Cycle Cost	
	Analysis	

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3. Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- 1. John Stark, "Product Lifecycle Management: Paradigm for 21st Century Product Realisation", Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, Antonino Risitano, "Product Design for the environment-A life cycle approach", Taylor & Francis 2006, ISBN: 0849327229
- 3. Saaksvuori Antti, Immonen Anselmie, "Product Life Cycle Management", Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, "Product Lifecycle Management: Driving the next generation of lean thinking", Tata McGraw Hill, 2006, ISBN: 0070636265

Course Code	Course Name	Credits
ILO 7012	Reliability Engineering	03

- 1. To familiarize the students with various aspects of probability theory
- 2. To acquaint the students with reliability and its concepts
- 3. To introduce the students to methods of estimating the system reliability of simple and complex systems
- 4. To understand the various aspects of Maintainability, Availability and FMEA procedure

Outcomes: Learner will be able to...

- 1. Understand and apply the concept of Probability to engineering problems
- 2. Apply various reliability concepts to calculate different reliability parameters
- 3. Estimate the system reliability of simple and complex systems
- 4. Carry out a Failure Mode Effect and Criticality Analysis

Module	Detailed Contents	Hrs
	Probability theory: Probability: Standard definitions and concepts; Conditional	
	Probability, Baye's Theorem.	
01	Probability Distributions: Central tendency and Dispersion; Binomial, Normal,	08
UI	Poisson, Weibull, Exponential, relations between them and their significance.	
	Measures of Dispersion: Mean, Median, Mode, Range, Mean Deviation, Standard	
	Deviation, Variance, Skewness and Kurtosis.	
	Reliability Concepts: Reliability definitions, Importance of Reliability, Quality	
	Assurance and Reliability, Bath Tub Curve.	
02	Failure Data Analysis: Hazard rate, failure density, Failure Rate, Mean Time To Failure	08
02	(MTTF), MTBF, Reliability Functions.	
	Reliability Hazard Models: Constant Failure Rate, Linearly increasing, Time Dependent	
	Failure Rate, Weibull Model. Distribution functions and reliability analysis.	
03	System Reliability: System Configurations: Series, parallel, mixed configuration, k out	05
	of n structure, Complex systems.	
	Reliability Improvement: Redundancy Techniques: Element redundancy, Unit	
04	redundancy, Standby redundancies. Markov analysis.	08
••	System Reliability Analysis – Enumeration method, Cut-set method, Success	
	Path method, Decomposition method.	
	Maintainability and Availability: System downtime, Design for Maintainability:	
	Maintenance requirements, Design methods: Fault Isolation and self-diagnostics, Parts	05
05	standardization and Interchangeability, Modularization and Accessibility, Repair Vs	0.5
	Replacement.	
	Availability – qualitative aspects.	
	Failure Mode, Effects and Criticality Analysis: Failure mode effects analysis,	
06	severity/criticality analysis, FMECA examples. Fault tree construction, basic symbols,	05
	development of functional reliability block diagram, Fault tree analysis and Event tree	
	Analysis	

Assessment:

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

University of Mumbai, B. E. (Mechanical Engineering), Rev 2016

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3. Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- 1. L.S. Srinath, "Reliability Engineering", Affiliated East-Wast Press (P) Ltd., 1985.
- 2. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw Hill.
- 3. B.S. Dhillion, C. Singh, "Engineering Reliability", John Wiley & Sons, 1980.
- 4. P.D.T. Conor, "Practical Reliability Engg.", John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, "Reliability in Engineering Design", John Wiley & Sons.
- 6. Murray R. Spiegel, "Probability and Statistics", Tata McGraw-Hill Publishing Co. Ltd.

Course Code	Course Name	Credits
ILO 7013	Management Information System	03

- 1. The course is blend of Management and Technical field.
- 2. Discuss the roles played by information technology in today's business and define various technology architectures on which information systems are built
- 3. Define and analyze typical functional information systems and identify how they meet the needs of the firm to deliver efficiency and competitive advantage
- 4. Identify the basic steps in systems development

Outcomes: Learner will be able to...

- 1. Explain how information systems Transform Business
- 2. Identify the impact information systems have on an organization
- 3. Describe IT infrastructure and its components and its current trends
- 4. Understand the principal tools and technologies for accessing information from databases to improve business performance and decision making
- 5. Identify the types of systems used for enterprise-wide knowledge management and how they provide value for businesses

Module	Detailed Contents	Hrs
01	Introduction To Information Systems (IS): Computer Based Information Systems, Impact of IT on organizations, Importance of IS to Society. Organizational Strategy, Competitive Advantages and IS	4
02	Data and Knowledge Management: Database Approach, Big Data, Data warehouse and Data Marts, Knowledge Management Business intelligence (BI): Managers and Decision Making, BI for Data analysis and Presenting Results	7
03	Ethical issues and Privacy: Information Security. Threat to IS, and Security Controls	7
04	Social Computing (SC): Web 2.0 and 3.0, SC in business-shopping, Marketing, Operational and Analytic CRM, E-business and E-commerce – B2B B2C. Mobile commerce.	7
05	Computer Networks Wired and Wireless technology, Pervasive computing, Cloud computing model.	6
06	Information System within Organization: Transaction Processing Systems, Functional Area Information System, ERP and ERP support of Business Process. Acquiring Information Systems and Applications: Various System development life cycle models.	8

Assessment:

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3. Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- 1. Kelly Rainer, Brad Prince, Management Information Systems, Wiley
- 2. K.C. Laudon and J.P. Laudon, Management Information Systems: Managing the Digital Firm, 10th Ed., Prentice Hall, 2007.
- 3. D. Boddy, A. Boonstra, Managing Information Systems: Strategy and Organization, Prentice Hall, 2008

Course Code	Course Name	Credits
ILO 7014	Design of Experiments	03

- 1. To understand the issues and principles of Design of Experiments (DOE)
- 2. To list the guidelines for designing experiments
- 3. To become familiar with methodologies that can be used in conjunction with experimental designs for robustness and optimization

Outcomes: Learner will be able to...

- 1. Plan data collection, to turn data into information and to make decisions that lead to appropriate action
- 2. Apply the methods taught to real life situations
- 3. Plan, analyze, and interpret the results of experiments

Module	Detailed Contents	Hrs
	Introduction	
01	1.1 Strategy of Experimentation	
	1.2 Typical Applications of Experimental Design	06
	1.3 Guidelines for Designing Experiments	
	1.4 Response Surface Methodology	
	Fitting Regression Models	
	2.1 Linear Regression Models	
	2.2 Estimation of the Parameters in Linear Regression Models	
02	2.3 Hypothesis Testing in Multiple Regression	08
02	2.4 Confidence Intervals in Multiple Regression	
	2.5 Prediction of new response observation	
	2.6 Regression model diagnostics	
	2.7 Testing for lack of fit	
	Two-Level Factorial Designs	
	3.1 The 2^2 Design	
	3.2 The 2 ³ Design	
03	3.3 The General2 ^k Design	07
05	3.4 A Single Replicate of the 2 ^k Design	
	3.5 The Addition of Center Points to the 2^k Design,	
	3.6 Blocking in the 2 ^k Factorial Design	
	3.7 Split-Plot Designs	
	Two-Level Fractional Factorial Designs	
	4.1 The One-Half Fraction of the 2 ^k Design	
	4.2 The One-Quarter Fraction of the 2 ^k Design	07
04	4.3 The General 2 ^{k-p} Fractional Factorial Design	07
	4.4 Resolution III Designs	
	4.5 Resolution IV and V Designs	
	4.6 Fractional Factorial Split-Plot Designs	
	Response Surface Methods and Designs	
	5.1 Introduction to Response Surface Methodology	07
05	5.2 The Method of Steepest Ascent	07
	5.3 Analysis of a Second-Order Response Surface	
	5.4 Experimental Designs for Fitting Response Surfaces	

University of Mumbai, B. E. (Mechanical Engineering), Rev 2016

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3. Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rd edition, John Wiley & Sons, New York, 2001
- D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001
- 3. George E P Box, J Stuart Hunter, William G Hunter, Statics for Experimenters: Design, Innovation and Discovery, 2nd Ed. Wiley
- W J Dimond, Peactical Experiment Designs for Engineers and Scintists, John Wiley and Sons Inc. ISBN: 0-471-39054-2
- Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T.Voss

Course Code	Course Name	Credits
ILO 7015	Operations Research	03

- 1. Formulate a real-world problem as a mathematical programming model.
- 2. Understand the mathematical tools that are needed to solve optimization problems.
- 3. Use mathematical software to solve the proposed models.

- 1. Understand the theoretical workings of the simplex method, the relationship between a linear program and its dual, including strong duality and complementary slackness.
- 2. Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change.
- 3. Solve specialized linear programming problems like the transportation and assignment problems, solve network models like the shortest path, minimum spanning tree, and maximum flow problems.
- 4. Understand the applications of integer programming and a queuing model and compute important performance measures

Module	Detailed Contents	Hrs
	Introduction to Operations Research: Introduction, , Structure of the Mathematical	
	Model, Limitations of Operations Research	
	Linear Programming: Introduction, Linear Programming Problem, Requirements of	
	LPP, Mathematical Formulation of LPP, Graphical method, Simplex Method Penalty	
	Cost Method or Big M-method, Two Phase Method, Revised simplex method, Duality,	
	Primal – Dual construction, Symmetric and Asymmetric Dual, Weak Duality Theorem,	
	Complimentary Slackness Theorem, Main Duality Theorem, Dual Simplex Method,	
	Sensitivity Analysis	
01	Transportation Problem: Formulation, solution, unbalanced Transportation problem.	14
01	Finding basic feasible solutions - Northwest corner rule, least cost method and Vogel's	14
	approximation method. Optimality test: the stepping stone method and MODI method.	
	Assignment Problem: Introduction, Mathematical Formulation of the Problem,	
	Hungarian Method Algorithm, Processing of n Jobs Through Two Machines and m	
	Machines, Graphical Method of Two Jobs m Machines Problem Routing Problem,	
	Travelling Salesman Problem	
	Integer Programming Problem: Introduction, Types of Integer Programming Problems,	
	Gomory's cutting plane Algorithm, Branch and Bound Technique. Introduction to	
	Decomposition algorithms.	
	Queuing models: queuing systems and structures, single server and multi-server models,	05
02	Poisson input, exponential service, constant rate service, finite and infinite population	05
	Simulation: Introduction, Methodology of Simulation, Basic Concepts, Simulation	
0.2	Procedure, Application of Simulation Monte-Carlo Method: Introduction, Monte-Carlo	05
03	Simulation, Applications of Simulation, Advantages of Simulation, Limitations of	05
	Simulation	
	Dynamic programming. Characteristics of dynamic programming. Dynamic	
04	programming approach for Priority Management employment smoothening, capital	05
	budgeting, Stage Coach/Shortest Path, cargo loading and Reliability problems.	

05	Game Theory . Competitive games, rectangular game, saddle point, minimax (maximin) method of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games without saddle point – mixed strategy for 2 X 2	05
	games.	
06	Inventory Models: Classical EOQ Models, EOQ Model with Price Breaks, EOQ with	05
	Shortage, Probabilistic EOQ Model,	05

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3. Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall, (7th Edition), 2002.
- 2. Ravindran, A, Phillips, D. T and Solberg, J. J. "Operations Research: Principles and Practice", John Willey and Sons, 2nd Edition, 2009
- 3. Hiller, F. S. and Liebermann, G. J. "Introduction to Operations Research", Tata McGraw Hill, 2002.
- 4. Operations Research, S. D. Sharma, KedarNath Ram Nath-Meerut
- 5. Operations Research, KantiSwarup, P. K. Gupta and Man Mohan, Sultan Chand & Sons

Course Code	Course Name	Credits
ILO 7016	Cyber Security and Laws	03

- 1. To understand and identify different types cybercrime and cyber law
- 2. To recognized Indian IT Act 2008 and its latest amendments
- 3. To learn various types of security standards compliances

Outcomes: Learner will be able to...

- 1. Understand the concept of cybercrime and its effect on outside world
- 2. Interpret and apply IT law in various legal issues
- 3. Distinguish different aspects of cyber law
- 4. Apply Information Security Standards compliance during software design and development

Module	Detailed Contents	Hrs
01	Introduction to Cybercrime: Cybercrime definition and origins of the world, Cybercrime and information security, Classifications of cybercrime, Cybercrime and the Indian ITA 2000, A global Perspective on cybercrimes.	4
02	Cyber offenses & Cybercrime: How criminal plan the attacks, Social Engg, Cyber stalking, Cyber café and Cybercrimes, Botnets, Attack vector, Cloud computing, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for Organizations, Organizational Measures for Handling Mobile, Devices-Related Security Issues, Organizational Security Policies and Measures in Mobile Computing Era, Laptops	9
03	Tools and Methods Used in Cyberline Phishing, Password Cracking, Key loggers and Spywares, Virus and Worms, Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Over Flow, Attacks on Wireless Networks, Phishing, Identity Theft (ID Theft)	6
04	The Concept of Cyberspace E-Commerce, The Contract Aspects in Cyber Law, The Security Aspect of Cyber Law ,The Intellectual Property Aspect in Cyber Law , The Evidence Aspect in Cyber Law, The Criminal Aspect in Cyber Law, Global Trends in Cyber Law, Legal Framework for Electronic Data Interchange Law Relating to Electronic Banking, The Need for an Indian Cyber Law	8
05	Indian IT Act. Cyber Crime and Criminal Justice: Penalties, Adjudication and Appeals Under the IT Act, 2000, IT Act. 2008 and its Amendments	6
06	Information Security Standard compliances SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI.	6

Assessment:

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3. Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- 1. Nina Godbole, Sunit Belapure, Cyber Security, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- 5. Nina Godbole, Information Systems Security, Wiley India, New Delhi
- 6. Kennetch J. Knapp, Cyber Security & Global Information Assurance Information Science Publishing.
- 7. William Stallings, Cryptography and Network Security, Pearson Publication
- 8. Websites for more information is available on : The Information Technology ACT, 2008- TIFR : https://www.tifrh.res.in
- 9. Website for more information , A Compliance Primer for IT professional : https://www.sans.org/reading-room/whitepapers/compliance/compliance-primer-professionals-33538

Course Code	Course Name	Credits
ILO 7017	Disaster Management and Mitigation Measures	03

- 1. To understand physics and various types of disaster occurring around the world
- 2. To identify extent and damaging capacity of a disaster
- 3. To study and understand the means of losses and methods to overcome /minimize it.
- 4. To understand role of individual and various organization during and after disaster
- 5. To understand application of GIS in the field of disaster management
- 6. To understand the emergency government response structures before, during and after disaster

- 1. Get to know natural as well as manmade disaster and their extent and possible effects on the economy.
- 2. Plan of national importance structures based upon the previous history.
- 3. Get acquainted with government policies, acts and various organizational structure associated with an emergency.
- 4. Get to know the simple do's and don'ts in such extreme events and act accordingly.

Module	Detailed Contents	Hrs
01	 Introduction 1.1 Definition of Disaster, hazard, global and Indian scenario, general perspective, importance of study in human life, Direct and indirect effects of disasters, long term effects of disasters. Introduction to global warming and climate change. 	03
02	 Natural Disaster and Manmade disasters: 2.1 Natural Disaster: Meaning and nature of natural disaster, Flood, Flash flood, drought, cloud burst, Earthquake, Landslides, Avalanches, Volcanic eruptions, Mudflow, Cyclone, Storm, Storm Surge, climate change, global warming, sea level rise, ozone depletion 2.2 Manmade Disasters: Chemical, Industrial, Nuclear and Fire Hazards. Role of growing population and subsequent industrialization, urbanization and changing lifestyle of human beings in frequent occurrences of manmade disasters. 	09
03	 Disaster Management, Policy and Administration 3.1 Disaster management: meaning, concept, importance, objective of disaster management policy, disaster risks in India, Paradigm shift in disaster management. 3.2 Policy and administration: Importance and principles of disaster management policies, command and co-ordination of in disaster management, rescue operations-how to start with and how to proceed in due course of time, study of flowchart showing the entire process. 	06
04	 Institutional Framework for Disaster Management in India: 4.1 Importance of public awareness, Preparation and execution of emergency management program. Scope and responsibilities of National Institute of Disaster Management (NIDM) and National disaster management authority (NDMA) in India. Methods and measures to avoid disasters, Management of casualties, set up of emergency facilities, importance of effective communication amongst different agencies in such situations. 4.2 Use of Internet and softwares for effective disaster management. Applications of GIS, Remote sensing and GPS in this regard. 	06
05	 Financing Relief Measures: 5.1 Ways to raise finance for relief expenditure, role of government agencies and NGO's in this process, Legal aspects related to finance raising as well as overall management of disasters. Various NGO's and the works they have carried out in the past on the occurrence of various disasters, Ways to approach these teams. 	09

	5.2 International relief aid agencies and their role in extreme events.	
06	 Preventive and Mitigation Measures: 6.1 Pre-disaster, during disaster and post-disaster measures in some events in general 6.2 Structural mapping: Risk mapping, assessment and analysis, sea walls and embankments, Bio shield, shelters, early warning and communication 6.3 Non Structural Mitigation: Community based disaster preparedness, risk transfer and risk financing, capacity development and training, awareness and education, contingency plans. 6.4 Do's and don'ts in case of disasters and effective implementation of relief aids. 	06

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3. Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

REFERENCES:

- 1. 'Disaster Management' by Harsh K.Gupta, Universities Press Publications.
- 2. 'Disaster Management: An Appraisal of Institutional Mechanisms in India' by O.S.Dagur, published by Centre for land warfare studies, New Delhi, 2011.
- 3. 'Introduction to International Disaster Management' by Damon Copolla, Butterworth Heinemann Elsevier Publications.
- 4. 'Disaster Management Handbook' by Jack Pinkowski, CRC Press Taylor and Francis group.
- 5. 'Disaster management & rehabilitation' by Rajdeep Dasgupta, Mittal Publications, New Delhi.
- 6. 'Natural Hazards and Disaster Management, Vulnerability and Mitigation R B Singh, Rawat Publications

7. Concepts and Techniques of GIS –C.P.Lo Albert, K.W. Yonng – Prentice Hall (India) Publications. (Learners are expected to refer reports published at national and International level and updated information available on authentic web sites)

Course Code	Course Name	Credits
ILO 7018	Energy Audit and Management	03

- 1. To understand the importance energy security for sustainable development and the fundamentals of energy conservation.
- 2. To introduce performance evaluation criteria of various electrical and thermal installations to facilitate the energy management
- 3. To relate the data collected during performance evaluation of systems for identification of energy saving opportunities.

- 1. To identify and describe present state of energy security and its importance.
- 2. To identify and describe the basic principles and methodologies adopted in energy audit of an utility.
- 3. To describe the energy performance evaluation of some common electrical installations and identify the energy saving opportunities.
- 4. To describe the energy performance evaluation of some common thermal installations and identify the energy saving opportunities
- 5. To analyze the data collected during performance evaluation and recommend energy saving measures

Module	Detailed Contents	Hrs
01	Energy Scenario: Present Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy Security, Energy Conservation and its Importance, Energy Conservation Act-2001 and its Features. Basics of Energy and its various forms, Material and Energy balance	04
02	Energy Audit Principles: Definition, Energy audit- need, Types of energy audit, Energy management (audit) approach-understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution. Elements of monitoring& targeting; Energy audit Instruments; Data and information-analysis. Financial analysis techniques: Simple payback period, NPV, Return on investment (ROI), Internal rate of return (IRR)	08
03	 Energy Management and Energy Conservation in Electrical System: Electricity billing, Electrical load management and maximum demand Control; Power factor improvement, Energy efficient equipments and appliances, star ratings. Energy efficiency measures in lighting system, Lighting control: Occupancy sensors, daylight integration, and use of intelligent controllers. Energy conservation opportunities in: water pumps, industrial drives, induction motors, motor retrofitting, soft starters, variable speed drives. 	10
04	Energy Management and Energy Conservation in Thermal Systems: Review of different thermal loads; Energy conservation opportunities in: Steam distribution system, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system. General fuel economy measures in Boilers and furnaces, Waste heat recovery, use of insulation- types and application. HVAC system: Coefficient of performance, Capacity, factors affecting Refrigeration and Air Conditioning system performance and savings opportunities.	10

05	Energy Performance Assessment:	1
	On site Performance evaluation techniques, Case studies based on: Motors and variable	04
	speed drive, pumps, HVAC system calculations; Lighting System: Installed Load	04
	Efficacy Ratio (ILER) method, Financial Analysis.	1
06	Energy conservation in Buildings:	1
	Energy Conservation Building Codes (ECBC): Green Building, LEED rating,	03
	Application of Non-Conventional and Renewable Energy Sources	l

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3. Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Management Principles, C.B.Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

Course Code	Course Name	Credits
ILO7019	Development Engineering	03

- 1. To understand the characteristics of rural Society and the Scope, Nature and Constraints of rural Development
- 2. To study Implications of 73rd CAA on Planning, Development and Governance of Rural Areas
- 3. An exploration of human values, which go into making a 'good' human being, a 'good' professional, a 'good' society and a 'good life' in the context of work life and the personal life of modern Indian professionals
- 4. To understand the Nature and Type of Human Values relevant to Planning Institutions

- 1. Apply knowledge for Rural Development.
- 2. Apply knowledge for Management Issues.
- 3. Apply knowledge for Initiatives and Strategies
- 4. Develop acumen for higher education and research.
- 5. Master the art of working in group of different nature.
- 6. Develop confidence to take up rural project activities independently

Contents	Hrs
Introduction to Rural Development Meaning, nature and scope of development; Nature of rural society	08
in India; Hierarchy of settlements; Social, economic and ecological constraints for rural development	
Roots of Rural Development in India Rural reconstruction and Sarvodaya programme before	
independence; Impact of voluntary effort and Sarvodaya Movement on rural development;	
Constitutional direction, directive principles; Panchayati Raj - beginning of planning and community	
development; National extension services.	
Post-Independence rural Development Balwant Rai Mehta Committee - three tier system of rural local	04
Government; Need and scope for people's participation and Panchayati Raj; Ashok Mehta Committee	
- linkage between Panchayati Raj, participation and rural development.	
Rural Development Initiatives in Five Year Plans Five Year Plans and Rural Development; Planning	06
process at National, State, Regional and District levels; Planning, development, implementing and	
monitoring organizations and agencies; Urban and rural interface - integrated approach and local	
plans; Development initiatives and their convergence; Special component plan and sub-plan for the	
weaker section; Micro-eco zones; Data base for local planning; Need for decentralized planning;	
Sustainable rural development.	
Post /3rd Amendment Scenario /3rd Constitution Amendment Act, including - XI schedule,	04
devolution of powers, functions and finance; Panchayati Raj institutions - organizational linkages;	
Recent changes in rural local planning; Gram Sabha - revitalized Panchayati Raj; Institutionalization;	
resource mapping, resource mobilization including social mobilization; information recinology and	
Tural plaining, Need for Turther amendments.	10
and technology Values in planning profession, research and advection	10
Types of Values Psychological values in tragrated personality: mantal health: Societal values the	
modern search for a good society; justice democracy, rule of law values in the Indian constitution;	
Aesthetic values — perception and enjoyment of beauty: Moral and ethical values: nature of moral	
iudgment: Spiritual values: different concents: secular spirituality: Relative and absolute values:	
Human values humanism and human values: human rights: human values as freedom creativity	
love and wisdom	
Ethics Canons of ethics: ethics of virtue: ethics of duty: ethics of responsibility: Work ethics:	04
Professional ethics: Ethics in planning profession, research and education	υŦ
	ContentsIntroduction to Rural Development Meaning, nature and scope of development; Nature of rural societyIntroduction to Rural Development Meaning, nature and scope of development; Nature of rural developmentRoots of Rural Development in India Rural reconstruction and Sarvodaya programme beforeindependence; Impact of voluntary effort and Sarvodaya Movement on rural development;Constitutional directive principles; Panchayati Raj - beginning of planning and communitydevelopment; National extension services.Post-Independence rural Development Balwant Rai Mehta Committee - three tier system of rural localGovernment; Need and scope for people's participation and Panchayati Raj; Ashok Mehta Committee- linkage between Panchayati Raj, participation and rural development.Rural Development Initiatives in Five Year Plans Five Year Plans and Rural Development; Planningprocess at National, State, Regional and District levels; Planning, development, implementing andmonitoring organizations and agencies; Urban and rural interface - integrated approach and localplans; Development initiatives and their convergence; Special component plan and sub-plan for theweaker section; Micro-eco zones; Data base for local planning; Need for decentralized planning;Sustainable rural development.Post 73rd Amendment Scenario 73rd Constitution Amendment Act, including - XI schedule,devloution of powers, functions and finance; Panchayati Raj institutions - organizational linkages;Recent

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3. Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

Reference

- 1. ITPI, Village Planning and Rural Development, ITPI, New Delhi
- 2. Thooyavan, K.R. Human Settlements: A 2005 MA Publication, Chennai
- 3. GoI, Constitution (73rd GoI, New Delhi Amendment) Act, GoI, New Delhi
- 4. Planning Commission, Five Year Plans, Planning Commission
- 5. Planning Commission, Manual of Integrated District Planning, 2006, Planning Commission New Delhi
- 6. Planning Guide to Beginners
- 7. Weaver, R.C., The Urban Complex, Doubleday.
- 8. Farmer, W.P. et al, Ethics in Planning, American Planning Association, Washington.
- 9. How, E., Normative Ethics in Planning, Journal of Planning Literature, Vol.5, No.2, pp. 123-150.
- 10. Watson, V., Conflicting Rationalities: -- Implications for Planning Theory and Ethics, Planning Theory and Practice, Vol. 4, No.4, pp.395 407
| Course Code | Course Name | Credits |
|---------------|--------------------|---------|
| MEL701 | Machine Design –II | 1 |

- 1. To familiarise applications of strength design principles for various machine elements
- 2. To make conversant with preparation of working drawings

Outcomes: Learner will be able to...

- 1. Design gears based on the given conditions
- 2. Design gearbox for a given application
- 3. Design cam & followers for a given condition
- 4. Design clutches for a given application
- 5. Design brakes for given condition
- 6. Select bearings for a given applications from the manufacturers catalogue

Term Work: (Comprises aand b)

- a)
 - 1. **Term work -** Shall consist of design and detailed assembly drawing of minimum two design problems form the mentioned list (computer aided drawing on **A3 size sheets**):
 - 1. Design of Gears and gear box
 - 2. Design of cam and followers
 - 3. Design of clutches
 - 4. Design of brakes
 - 2. **Course Project:** Students in a group of two to four will be able to design and prepare working drawings of any system having minimum 5 to 6 components by applying the knowledge gained during the course.
- **b)** Assignment : Each assignment containing at least 2- numerical based on following topics. These design exercises should be in the form of design calculations with sketches and/ or drawings.
 - 1. Rolling contact bearings
 - 2. Sliding contact bearing
 - 3. Design of belt, chain and flywheel

The distribution of marks for term work shall be as follows:

Exercises & Drawing sheets:	15 Marks
Course Project:	05 Marks
Attendance:	05 Marks

End Semester Practical/Oral examination:

- 1. Each student will be given a small task of design, based on syllabus, which will be assessed by pair of examiners during the oral examination.
- 2. Distribution of marks for practical-oral examination shall be as follows:

Design Task:	15 marks
Oral:	10 marks

- 3. Evaluation of practical/oral examination to be done based on the performance of design task.
- 4. Students work along with evaluation report to be preserved till the next examination

Course Code	Course Name	Credits
MEL702	CAD/CAM/CAE	01

- 1. To introduce new and exciting field of Intelligent CAD/CAM/CAE with particular focus on engineering product design and manufacturing.
- 2. To develop a holistic view of initial competency in engineering design by modern computational methods.
- 3. To develop New API for CAD

Outcomes: Learner will be able to...

- 1. Identify proper computer graphics techniques for geometric modelling.
- 2. Transform, manipulate objects as well as store and manage data.
- 3. Create CAM Toolpath and prepare NC- G code
- 4. Apply rapid prototyping and tooling concepts in any real life applications.
- 5. Identify the tools for Analysis of a complex engineering component.

List of Exercises

- 1. Programming for transformations,
- 2. API on Creating As built joints, Slider Joint Motion
- 3. Get the physical Properties API
- 4. Get the circle and arc data from the edge
- Sketch spline through points creation : API 5.
- 6. Solid modeling using any 3D modeling software
- Part programming and part fabrication on CNC trainer (Turning / Milling) 7.
- 8. Geometrical optimization of any mechanical component using computer aided engineering concepts. (Shape optimization)
- 9. Development of physical 3D mechanical structure using any one of the rapid prototyping processes.

Term Work

Term work shall consist of

- a. Any four exercises from 1 to 6 of above list
- b. Part programming and part fabrication on CNC trainer
- c. A course project in a group of not more than four students based on 8 and 9 of above list

The distribution of marks for term work shall be as follows:

•	Exercises	: 15 Marks
•	Course Project	: 05 Marks
•	Attendance	: 05 Marks

Assessment:

End Semester Practical/Oral Examination:

- 1. Each student will be given a small task of design based on syllabus, which will be assessed by pair of examiners during the oral examination.
- 2. Distribution of marks for practical-oral examination shall be as follows:

Design Task: 15 marks Oral:

- 10 marks
- 3. Evaluation of practical/oral examination to be done based on the performance of design task
- 4. Students work along with evaluation report to be preserved till the next examination

Course Code	Course Name	Credits
MEL703	Production Planning and Control	01

- 1. To provide an exposure related to Production Planning & Control (PPC)
- 2. To give exposure to production scheduling and sequencing

Outcomes: Learner will be able to...

- 1. Prepare a process sheet
- 2. Prepare a Gantt Chart
- 3. Forecast the demand of the product and prepare an aggregate plan.
- 4. Perform ABC analysis of a given problem
- 5. Develop the skills of Inventory Management and cost effectiveness.
- 6. Create a logical approach to Line Balancing for various production systems.

Term Work

The Term work shall comprise of the following:

At least six laboratory exercises/assignments comprising questions/problems

Sr No	List of Laboratory Exercises (Any Six)
1	Preparation of a Process sheet of a simple turned/milled component
2	Numerical example on Johnson's Algorithm
3	An example on network crashing
4	Preparation of a Gantt Chart
5	A real life example on ABC analysis
6	An example on MRP for planned released orders
7	An example on line balancing
8	Preparation of organization charts with functional relationship for any SME.

Project Based Learning may be incorporated by judiciously reducing number of laboratory exercises

The distribution of marks for term work shall be as follows:

- Lab work/assignments/exercise : 20 marks
- Attendance : **05** marks

Practical/Oral examination

- 1. Each student will be given a small task based on laboratory excercises, which will be assessed by pair of examiners during the oral examination.
- 2. Distribution of marks for practical-oral examination shall be as follows:

Excercise:	15 marks
Oral:	10 marks

- 3. Evaluation of practical/oral examination to be done based on the performance of design task
- 4. Students work along with evaluation report to be preserved till the next examination

Course Code	Course/Subject Name	Credits
MEC801	Design of Mechanical Systems	4

- 1. To familiarise with the concept of system and methodology of system design
- 2. To study system design of various systems such as snatch block, belt conveyors, engine system, pumps and machine tool gearbox

Outcomes: Learner will be able to...

- 1. Apply the concept of system design.
- 2. Design material handling systems such as hoisting mechanism of EOT crane,
- 3. Design belt conveyor systems
- 4. Design engine components such as cylinder, piston, connecting rod and crankshaft
- 5. Design pumps for the given applications
- 6. Prepare layout of machine tool gear box and select number of teeth on each gear

Module	Details	Hrs.
01	Methodology & Morphology of design, Optimum design, system concepts in design.	04
02	Design of Hoisting mechanism: Design of Snatch Block Assembly including Rope Selection, Sheave, Hook, Bearing for hook, cross piece, Axle for sheave and shackle plate, Design of rope drum, selection motor with transmission system.	10
03	Design of belt Conveyors - Power requirement, selection of belt, design of tension take up unit, idler pulley	06
04	Engine Design (Petrol and Diesel): Design of cylinder, Piston with pin and rings, connecting rod & crank shaft with bearings	10
05	 Design of Pump: 5.1 Design of main components of gear pump. Motor selection Gear design Shaft design and bearing selection Casing and bolt design Suction and delivery pipe 5.2 Design of main components of Centrifugal Pump: Motor selection Suction and Delivery pipe Design of Impeller, Impeller shaft Design of Volute Casing 	10
06	Design of Gear Box: Design of gear boxes for machine tool applications(Maximum three stages and twelve speeds), Requirements of gear box, determination of variable speed range, graphical representation of speeds, structure diagram, ray diagram, selection of optimum ray diagram, estimation of numbers of teeth on gears, deviation diagram, layout of gear box	08

Assessment:

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

Use of standard design data books like PSG Data Book, Machine Design Data Book- design of engine parts by Khandare S.S and Kale A.V. are permitted at the examination and shall be supplied by the college.

References:

- 1. Machine Design Exercises by S.N.Trikha, Khanna Publications, Delhi
- 2. Mechanical Engineering Design byShigley J E and Mischke C R, McGraw Hill
- 3. Mechanical design analysis byM FSpotts, Prentice Hall Inc
- 4. Design of Machine Elements, Bhandari VB, TMH
- 5. Machine Design by Black PH and O Eugene Adams, McGraw Hill
- 6. Design Data by P.S.G. College of Technology, Coimbatore.
- 7. I S: 2825 Code for unfired pressure vessels
- 8. Mechanical Design Synthesis with Optimisation Applications by Johnson R C, Von Nostrand-Reynold Pub
- 9. Engineering Design by Dieter G E, McGraw Hill Inc
- 10. Design of machine tools by S K Basu and D K Pal, Oxford and IBH Pub. Co.
- 11. Machine tool design by NKMehta, TMH
- 12. Mechanical System Design by SP Patil, JAICO students Ed., JAICO Publishing House
- 13. Material Handling Equipment by Rudenko, M.I.R. publishers, Moscow
- 14. Machine Design-An Integrated Approach by Robert L. Norton, Pearson Education
- 15. Material Handling Equipments by N. Rudenko, Peace Publication
- 16. Material Handling Equipments by Alexandrov, Mir Publication
- 17. Machine Desgin by Reshetov, Mir Publication
- 18. Machine Design by R.C.Patel, Pandya, Sikh, Vol -I & II, C. Jamnadas & Co
- 19. Design of Machine Elements by V. M. Faires
- 20. Pumps: Theory, Design and Applications by G K Sahu, New Age International
- 21. Gear Design Handbook by Gitin Maitra
- 22. Design Data Book- Design of engine parts by Khandare S.S & Kale A.V

Course Code	Course/Subject Name	Credits
MEC802	Industrial Engineering and Management	04

- 1. To familiarise with concept of integration of various resources and the significance of optimizing them in manufacturing and allied Industries
- 2. To acquaint with various productivity enhancement techniques

Outcomes: Learner will be able to...

- 1. Illustrate the need for optimization of resources and its significance
- 2. Develop ability in integrating knowledge of design along with other aspects of value addition in the conceptualization and manufacturing stage of various products.
- 3. Demonstrate the concept of value analysis and its relevance.
- 4. Manage and implement different concepts involved in method study and understanding of work content in different situations.
- 5. Describe different aspects of work system design and facilities design pertinent to manufacturing industries.
- 6. Illustrate concepts of Agile manufacturing, Lean manufacturing and Flexible manufacturing

Modules	Detailed contents	Hrs.	
01	Introduction to Industrial Engineering History and contribution, Industrial engineering approach, techniques of industrial engineering, objectives of industrial engineering, system approach to industrial engineering, definition and concept of productivity, productivity measurements, factors influencing productivity and productivity improvement techniques.		
	Value Engineering and Value Analysis: Distinction between value engineering & value analysis and their Significance. Steps in value engineering & analysis and Check lists.	05	
03	Work study: Method study, micro-motion study and principles of motion economy, Work measurement: time study, work sampling, standard data, PMTS; MOST	10	
04	Work system design: Introduction to ergonomics and its scope in relation to work. Outline of discipline of anatomy, physiology and psychology, with respect to ergonomics building blocks such as anthropometry and biomechanics Job evaluation, merit rating, incentive schemes, wage administration and business process reengineering	08	
05	Facility Design: Facility location factors and evaluation of alternate locations; types of plant layout and their evaluation; computer aided layout design techniques; assembly line balancing; materials handling systems Concepts of Group Technology and cellular manufacturing	09	
06	Agile manufacturing:Introduction, Developing agile manufacturing, Integration of Product/Process Development, Application of IT/IS concepts, Agile supply chain management, Design of skill and knowledge and Computer control of Agile manufacturing. Flexible manufacturing, Lean Manufacturing, Value Stream Mapping	10	

Assessment:

Internal Assessment for 20 marks:

Consisting **Two Compulsory Class Tests**

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3. Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

References

- 1. Introduction to Work study, ILO, Geneva, and Oxford & IBH Pub Co. Pvt. Ltd.
- 2. Ergonomics at Work, Murrell
- 3. Plant Layout and Material Handling, James M. Apple, John Wiley & Sons
- 4. Facility Layout and Location An Analytical Approach, Richard L. Francis& John A. White, Prentice Hall
- 5. Production Planning and Control, Samuel Elion
- 6. Production and Operations Management, Joseph G. Monks
- 7. Quality planning and analysis, J M Juran, FM Gryana, TMH
- 8. Total Quality Management, D. H. Bester Field et al. prentice hall
- 9. TQM in new product manufacturing, HG Menon; TMH
- 10. Industrial Engineering and Management by Dr Ravi Shankar

Course Code	Course Name	Credits
MEC803	Power Engineering	4

- 1. To study boilers, boiler mountings and accessories
- 2. To study utilization of thermal and hydraulic energy
- 3. To study gas turbine and its applications

Outcomes: Learner will be able to...

- 1. Compute heat interactions in combustion of reactive mixtures
- 2. Differentiate boilers, boiler mountings and accessories
- 3. Calculate boiler efficiency and assess boiler performance
- 4. Demonstrare working cycles ofgas turbines
- 5. Draw velocity triangles of impulse/reaction turbines and calculate performance parameters/efficiency
- 6. Demonstrate basic working of pumps

Module	Detailed Contents	Hrs.
	Combustion of Reactive Mixtures	
01	Combustion reactions, Stoichiometric A/F ratio, Actual A/F ratio, Heat of combustion,	04
	Enthalpy of formation, First law of reactive system, Adiabatic flame temperature.	
	Steam Generators	
	Fire tube and Water tube boiler, Low pressure and high pressure boilers, once through boiler,	
	examples, and important features of HP boilers, Mountings and accessories, Equivalent	
02	evaporation of boilers, Boiler performance, Boiler efficiency	12
	Steam Turbine- Basic of steam turbine, Classification, compounding of turbine, Impulse	
	turbine – velocity diagram, Condition for max efficiency	
	Reaction turbine - velocity diagram, degree of reaction, Parson's turbine, Condition for	
	Applications of gas turbine Actual Brayton cycle open and closed cycle gas turbine methods	
03	to improve efficiency and specific output open cycle with intercooling reheat and	05
	regeneration Effect of operating variable on thermal efficiency and work ratio	
	Jet Propulsion Engines	
0.4	Classification of jet propulsion engines, Thrust, Thrust power, Propulsive efficiency and	05
04	thermal efficiency, Afterburner, Introduction to Turbojet, Turbofan, Ram jet, Turboprop and	05
	Rocket engine	
	Impact of Jets: Impact of jet on flat and curved plates	
	Water Turbines: Types of hydro turbines - impulse and reaction, definition of various	
	turbine parameters like gross head, discharge, work done, input power, output power,	
	efficiencies etc., Eulers' equation applied to a turbine, turbine velocities and velocity triangles,	
05	expression for work done.	12
	Impulse Turbine: Components of Pelton turbine, definition of design parameters like speed	
	ratio, jet ratio, and estimation of various parameters like head, discharge, and efficiency etc.,	
	Departion Turbings Types of reaction turbings inword and outward flow radial mixed and	
	axial: elements of the turbine, estimation of various parameters	
	Pumps	
	Classification of pumps - positive displacement and non - positive displacement	
06 I 8 6	Positive Displacement pumps: Types and applications, general features of rotary pumps,	10
	general feature of reciprocating pumps, definition of head, discharge, work done and	10
	efficiency, types of reciprocating pumps, indicator diagram, use of air vessel.	
	Centrifugal Pumps	

Types - radial flow, mixed flow and axial flow, Priming of pumps, components of the pump,	
Euler's equation and velocity triangles, correction factors for the head, design constant e.g.,	
head constant, flow constant etc., self-priming pumps, series and parallel operation of pumps,	
system curve for branch network, determination of operating point, Cavitation in pumps,	
Determination of available and required NPSH	

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

Reference Books:

- 1. Thermal Engineering, R K. Rajput, Laxmi Publication
- 2. Thermal Engineering, Kothandraman, Domkundwar, Khajuria, Arora, Dhanpatrai & Sons
- 3. Steam and gas turbine, R Yadav.
- 4. Fluid Mechancis and Machinery, C P S Ojha, Chandramouli and R Berndtsson, Oxford University Press
- 5. Fluid Mechanics and Hydraulic Machinery, Modi and Seth, Standard Book House
- 6. Hydraulic Machinery, Jagdish Lal
- 7. Hydraulic Machines, R K Rajput, S.Chand Publication

Course Code	Course/Subject Name	Credits
MEDLO8041	Power Plant Engineering	4

- 1. Study basic working principles of different power plants
- 2. Study power plant economics

Outcomes: Learner will be able to...

- 1. Comprehend various equipment/systems utilized in power plants
- 2. Demonstrate site selection methodology, construction and operation of Hydro Electric Power Plants
- 3. Discuss working, site selection, advantages, disadvantages of steam power plants
- 4. Discuss operation of Combined Cycle Power Plants
- 5. Discuss types of reactors, waste disposal issues in nuclear power plants
- 6. Illustrate power plant economics

Module	Detailed Contents	Hrs.
01	Introduction: Energy resources and their availability, types of power plants, selection of the plants, review of basic thermodynamic cycles used in power plants	06
02	Hydro Electric Power Plants : Rainfall and run-off measurements and plotting of various curves for estimating stream flow and size of reservoir, power plants design, construction and operation of different components of hydro-electric power plants, site selection, comparison with other types of power plants	10
03	Steam Power Plants: Flow sheet and working of modern-thermal power plants, super critical pressure steam stations, site selection, coal storage, preparation, coal handling systems, feeding and burning of pulverized fuel, ash handling systems, dust collection-mechanical dust collector and electrostatic precipitator	08
04	Combined Cycles: Constant pressure gas turbine power plants, Arrangements of combined plants (steam & gas turbine power plants), re-powering systems with gas production from coal, using PFBC systems, with organic fluids, parameters affecting thermodynamic efficien cy of combined cycles, Problems	08
05	Nuclear Power Plants: Principles of nuclear energy, basic nuclear reactions, nuclear reactors- PWR, BWR, CANDU, Sodium graphite, fast breeder, homogeneous; gas cooled, Advantages and limitations, nuclear power station, waste disposal.	08
06	Power Plant Economics: Load curve, different terms and definitions, cost of electrical energy, tariffs methods of electrical energy, performance & operating characteristics o f power plants- incremental rate theory, input-output curves, efficiency, heat rate, economic load sharing, Problems.	08

Assessment:

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3. Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

References

- 1. Power Plant Engineering, A K Raja, Amit Praksh Shrivastava, Manish Dwivedi, New Age International Publishers
- 2. Power Plant Familiarization, Manual of Central Training Resources Unit of NTPC India, 1991
- 3. Power Plant Engineering, P.K. Nag, 2nd Edition, TMH, New Delhi
- 4. A Text Book of Power Plant Engineering, R.K. Rajput, Laxmi Publications
- 5. Hydro-Electric and Pumped Storage Plants, M G Jog, New Age International Publishers
- 6. A Course in Power Plant Engineering, Arora, Domkundwar, DhanpatRai & Co
- 7. Power Plant Engineering, P.C. Sharma, S.K. Kataria& Sons
- 8. Power Plant Engineering, G.R. Nagpal, Khanna Publishers
- 9. Power station Engineering and Economy by Bernhardt G.A. Skrotzki and William A. Vopat, TMH
- 10. Power Plant Engineering, Manoj Kumar Gupta, PHI Learning
- 11. Nuclear Power Plant Engineering, James Rust, Haralson Publishing Company
- 12. Nuclear Power Plants, Edited by Soon Heung Chang, InTech Publishers

Course Code	Course/Subject Name	Credits
MEDLO8042	Rapid Prototyping	04

- 1. To familiarise with importance of Rapid Prototyping in Product Development.
- 2. To acquaint with the Synergic Integration Technologies

Outcomes: Learner will be able to...

- 1. Select the feasible RP process
- 2. Selct the feasible RP material
- 3. Gauge and Hybridize the ever-evolving Protoyping Technologies
- 4. Contribute towards the Product Development at the respective domain in the industry
- 5. Apply RP to build working prototypes
- 6. Demonstrate basics of virtual reality

Module	Detailed Contents	Hrs.
01	Introduction: Product Development Cycle and the product Life Cycle. Problems in Product Development and the use of Synergic Integration Technologies. Relationship between Product Development Cost and the Selling Price. Where does RP stand. Classification of RP systems, advantages and limitations of RP, Applications and scope of RP, supported file formats and introduction to Solid Modelling.	10
02	Laminated Object Manufacturing (LOM), principle of operation, possible approaches, steps, advantages and limitations. Stadard Machine Specifications. Fused Deposition Modelling (FDM), principle of operation, process steps, advantages and limitations. Stadard Machine Specifications. Stereolithography Apparatus (SLA): Principle, process steps, advantages and limitations, Stadard Machine Specifications. Selective Laser Sintering (SLS): Principle, process steps, advantages and limitations, Stadard Machine Specifications.	12
03	 Solid Ground Curing (SGC): Principle, process steps, advantages and limitations, PhotoMasking comparative with SLA and LOM ObJet: Principle, process steps, advantages and limitations, applications, Stadard Machine Specifications. 3D Printing: Principle, process steps, advantages and limitations, classification of printer family, Stadard Machine Specifications, DIY procedures. 	12
04	Rapid Tooling: Need for metallic tooling, approaches, RP Processes for Tooling, Silicon Rubber Molding, Epoxy Tooling, Spray Metal Tooling, Cast Kirksite Tooling, 3D KelTool, QuickCast.	05
05	Materials for Rapid Prototyping Systems: Nature of material, types of material; polymers, metals, ceramics and composites, liquid based materials; photo polymer development, solid based materials; powder based materials.	05
06	Reverse Engineering: Introduction to Digitizing Methods; contact type and non-contact type, brief introduction to the types of medical imaging. Virtual reality: Definition, features of VR, Technologies used in VR, Introduction to Augmented reality.	04

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

References:

- 1. Rapid Prototyping, Principles and Applications byRafiq I. Noorani, Wiley & Sons
- 2. Rapid Prototyping: Principles and Applications byChua C.K, Leong K.F and Lim C.S, 2nd Edition, World Scientific
- 3. Rapid Manufacturing An Industrialrevolution for the digital age by N.Hopkinson, R.J. M. Hauge, P M, Dickens, Wiley
- 4. Advanced Manufacturing Technology for Medical applications: Reverse Engineering, Software conversion and Rapid Prototyping byIan Gibson, Wiley
- 5. Rapid Prototyping and Manufacturing: Fundamentals of Stereolithography byPaul F.Jacobs, McGraw Hill
- 6. Rapid Manufacturing byPham D T and Dimov S S, Springer Verlog

Course Code	Course Name	Credits
MEDLO8043	Renewable Energy Sources	4

- 1. To study working principles of various renewable energy sources and their utilities.
- 2. To study economics of harnessing energy from renewable energy sources

Outcomes: Learner will be able to...

- 1. Demonstrate need of different renewable energy sources
- 2. Discuss importance of renewable energy sources
- 3. Discuss various renewable energy sourses in Indian context
- 4. Calculate and analyse utilization of solar and wind energy
- 5. Illustrate design of biogas plant
- 6. Demonstrate basics of hydrogen energy

Module	Detailed Contents	Hrs.
	Introduction to Energy Sources: Renewable and non-renewable energy sources, Need for	
01	Renewable Energy Sources, Energy Consumption as a measure of Nation's development;	
	Strategy for meeting the future energy requirements, Global and National scenarios, Prospects	07
	of renewable energy sources, Present status and current installations, Introduction to Hybrid	
	Energy Systems.	
	Solar Energy: Merits and demerits, Solar radiation - beam and diffuse radiation, solar	
	constant, earth sun angles, attenuation and measurement of solar radiation, local solar time,	10
02	derived solar angles, sunset and day length, Methods of Solar Radiation estimation.	12
	Solar Energy collection devices and Classification: Flat plate collectors, concentrating	
	collectors, Solar air heaters-types, solar driers, storage of solar energy-thermal storage, solar	
	pond, solar water heaters, solar distillation, solar still, solar cooker, solar heating & cooling	
	of buildings, Solar Photovoltaic systems & applications.	
	wind Energy: Principle of wind energy conversion; Basic components of wind energy	
03	design considerations of horizontal and vertical axis wind machines; analysis of A crodynamic	10
	forces acting on wind mill blades and estimation of power output; wind data and site selection	10
	considerations	
	Energy from Biomass: Biomass conversion technologies Biogas generation plants	
04	classification, advantages and disadvantages, constructional details, site selection, digester	
•••	design consideration, filling a digester for starting, maintaining biogas production, Fuel	06
	properties of bio gas, utilization of biogas.	
	Geothermal Energy: Estimation and nature of geothermal energy, geothermal sources and	
	resources like hydrothermal, geo-pressured hot dry rock, magma. Advantages, disadvantages	
	and application of geothermal energy, prospects of geothermal energy in India.	
05	Energy from the ocean: Ocean Thermal Electric Conversion (OTEC) systems like open	
	cycle, closed cycle, Hybrid cycle, prospects of OTEC in India. Energy from tides, basic	08
	principle of tidal power, single basin and double basin tidal power plants, advantages,	
	limitation and scope of tidal energy. Wave energy and power from wave, wave energy	
	conversion devices, advantages and disadvantages of wave energy	
06	Hydrogen Energy: Methods of Hydrogen production, Hydrogen Storage, Fuel Cells and	05
	Types of Fuel Cells.	
04	 classification, advantages and disadvantages, constructional details, site selection, digester design consideration, filling a digester for starting, maintaining biogas production, Fuel properties of bio gas, utilization of biogas. Geothermal Energy: Estimation and nature of geothermal energy, geothermal sources and resources like hydrothermal, geo-pressured hot dry rock, magma. Advantages, disadvantages and application of geothermal energy, prospects of geothermal energy in India. Energy from the ocean: Ocean Thermal Electric Conversion (OTEC) systems like open cycle, closed cycle, Hybrid cycle, prospects of OTEC in India. Energy from tides, basic principle of tidal power, single basin and double basin tidal power plants, advantages, limitation and scope of tidal energy. Wave energy and power from wave, wave energy conversion devices, advantages and disadvantages of wave energy Hydrogen Energy: Methods of Hydrogen production, Hydrogen Storage, Fuel Cells and Types of Fuel Cells. 	06 08 05

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1 Question paper will comprise of total six questions, each carrying 20 marks
- 2 Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3 **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4 Only Four questions need to be solved

Reference Books:

- 1 Non-conventional energy sources by G.D. Rai, Khanna Publishers
- 2 Renewable Energy:Power for a Sustainable Future, Edited by Godfrey Boyle, 3rd Edition, Oxford University Press
- 3 Solar Energy: Principles of Thermal Collection and Storage by SP Sukhatme and J K Nayak, TMH
- 4 Solar Energy: Fundamentals and Applications by H.P. Garg& Jai Prakash, Tata McGraw Hill.
- 5 Wind Power Technology, Joshua Earnest, PHI Learning, 2014
- 6 Renewable Energy Sources, J W Twidell& Anthony D. Weir. ELBS Pub.
- 7 Energy Conversion Systems, R D Begamudre, New Age International (P) Ltd., Publishers, New Delhi ,2000.
- 8 Solar Photovoltaics: Fundamentals, Technologies and Applications, C S Solanki, 2ndEdition, PHI Learning
- 9 Biomass Regenerable Energy, D. D. Hall and R. P. Grover, John Wiley, New York
- 10 Wind and Solar Power Systems, Mukund R Patel, CRC Press
- 11 Wind Energy Explained: Theory, Design and Application, J F Manwell, J.C.McGowan, A.L.Rogers, John Wiley and Sons
- 12 Magneto Hydrodynamics by Kuliovsky and Lyubimov, Addison

Course Code	Course Name	Credits
MEDLO8044	Energy Management in Utility Systems	4

- 1. To familiarise principles of energy management and concept of energy management in utility systems
- 2. To study energy economics and auditing
- 3. To study electrical energy management, cogeneration and waste heat recovery.

Outcomes: Learner will be able to...

- 1. Demonstrate general aspects of energy management
- 2. Summarize and explain need for energy management, economics and auditing
- 3. Illustrate basics of energy economics and financial analysis techniques
- 4. Describe importance of thermal and electrical utilitie's maintenance
- 5. Assess potential and summarise benefits of waste heat recovery and cogeneration
- 6. Illustrate waste heat recovery and cogeneration methods

Module	Detailed Contents	Hrs.
	General Aspects of Energy Management: Introduction to utility systems (Types)	
01	Indian industry, Principles of Energy management, Energy policy, Energy action planning, Energy security and reliability, Energy and environment, Need of Renewable and energy efficiency, Energy Conservation Act	08
02	Energy Auditing : Need of Energy Audit, Types of energy audit, Components of energy audit, Energy audit methodology, Instruments, equipment used in energy audit, Analysis and recommendations of energy audit - examples for different applications, Energy audit reporting, Energy audit software. Material & Energy Balance	08
03	Energy Economics: Costing of Utilities - Determination of cost of steam, natural gas, compressed air and electricity. Financial Analysis Techniques - Simple payback, Time value of money, Net Present Value (NPV), Return on Investment (ROI), Internal Rate of Return (IRR), Risk and Sensitivity analysis	09
04	Energy Efficiency in Thermal Utilities: Energy performance assessment and efficiency improvement of Boilers, Furnaces, Heat exchangers, Fans and blowers, pumps, Compressors and HVAC systems. Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system	08
05	 Electrical Energy Management and Lighting: Distribution and transformer losses. Electrical motors - types, efficiency and selection. Speed control, Energy efficient motors. Electricity Act 2003. Lighting - Lamp types and their features, recommended illumination levels, lighting system energy efficiency. 	07
06	Cogeneration and Waste Heat Recovery , Cogeneration- Need, applications, advantages, classification, the cogeneration design process. Waste heat recovery- Classification and application, Potential for waste-heat recovery in Industry, Commercial WHR devices, saving potential. CDM projects and carbon credit calculations	08

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

References:

- 1. Energy engineering and management, AmlanChakrabarti, PHI Learning, New Delhi 2012
- 2. Handbook of Energy Audit, Albert Thumann P.E. CEM, William J. Younger CEM, 7thEdition,The Fairmont Press Inc
- 3. Energy management Handbook, Wayne C. Turner, 5thEdition, The Fairmont Press Inc., Georgia.
- 4. Handbook on Energy Audit and Environment management, Abbi Y. A., Jain Shashank, TERI, New Delhi
- 5. Energy Performance assessment for equipment and Utility Systems Vol. 1 to 4, Bureau of Energy Efficiency, Govt. of India
- 6. General Aspects of Energy Management and Energy Audit, Bureau of Energy Efficiency, Govt of India
- 7. Boiler Operators Guide,4thEdition, Anthony L Kohan, McGraw Hill
- 8. Energy Hand book, Robert L. Loftness, 2nd Edition, Von Nostrand Reinhold Company
- 9. Sustainable Energy Management, MirjanaGolusin, SinisaDodic, Stevan Popov, Academic Press
- 10. Energy Management, Trivedi P R, Jolka K R, Commonwelth Publications, New Delhi
- 11. www.enrgymanagertraining.com
- 12. www.bee-india.nic.in

Course Code	Course Name	Credits
ILO 8021	Project Management	03

- 1. To familiarize the students with the use of a structured methodology/approach for each and every unique project undertaken, including utilizing project management concepts, tools and techniques.
- 2. To appraise the students with the project management life cycle and make them knowledgeable about the various phases from project initiation through closure.

Outcomes: Learner will be able to...

- 1. Apply selection criteria and select an appropriate project from different options.
- 2. Write work break down structure for a project and develop a schedule based on it.
- 3. Identify opportunities and threats to the project and decide an approach to deal with them strategically.
- 4. Use Earned value technique and determine & predict status of the project.
- 5. Capture lessons learned during project phases and document them for future reference

Module	Detailed Contents	Hrs
01	Project Management Foundation: Definition of a project, Project Vs Operations, Necessity of project management, Triple constraints, Project life cycles (typical & atypical) Project phases and stage gate process. Role of project manager, Negotiations and resolving conflicts, Project management in various organization structures, PM knowledge areas as per Project Management Institute (PMI)	5
02	Initiating Projects: How to get a project started, Selecting project strategically, Project selection models (Numeric /Scoring Models and Non-numeric models), Project portfolio process, Project sponsor and creating charter; Project proposal. Effective project team, Stages of team development & growth (forming, storming, norming &performing), team dynamics.	6
03	Project Planning and Scheduling: Work Breakdown structure (WBS) and linear responsibility chart, Interface Co-ordination and concurrent engineering, Project cost estimation and budgeting, Top down and bottoms up budgeting, Networking and Scheduling techniques. PERT, CPM, GANTT chart, Introduction to Project Management Information System (PMIS).	8
04	Planning Projects: Crashing project time, Resource loading and levelling, Goldratt's critical chain, Project Stakeholders and Communication plan Risk Management in projects: Risk management planning, Risk identification and risk register, Qualitative and quantitative risk assessment, Probability and impact matrix. Risk response strategies for positive and negative risks	6
05	 5.1 Executing Projects: Planning monitoring and controlling cycle, Information needs and reporting, engaging with all stakeholders of the projects, Team management, communication and project meetings 5.2 Monitoring and Controlling Projects: Earned Value Management techniques for measuring value of work completed; Using milestones for measurement; change requests and scope creep, Project audit 5.3 Project Contracting Project procurement management, contracting and outsourcing, 	8
06	 6.1 Project Leadership and Ethics: Introduction to project leadership, ethics in projects, Multicultural and virtual projects 6.2 Closing the Project: 	6

Customer acceptance; Reasons of project termination, Various types of project	
terminations (Extinction, Addition, Integration, Starvation), Process of project	
termination, completing a final report; doing a lessons learned analysis; acknowledging	
successes and failures; Project management templates and other resources; Managing	
without authority; Areas of further study.	

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3. Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved

REFERENCES:

- 1. Project Management: A managerial approach, Jack Meredith & Samuel Mantel, 7th Edition, Wiley India
- 2. A Guide to the Project Management Body of Knowledge (PMBOK[®] Guide), 5th Ed, Project Management Institute PA, USA
- 3. Project Management, Gido Clements, Cengage Learning
- 4. Project Management, Gopalan, Wiley India
- 5. Project Management, Dennis Lock, 9th Edition, Gower Publishing England

Course Code	Course Name	Credits
ILO 8022	Finance Management	03

- 1. Overview of Indian financial system, instruments and market
- 2. Basic concepts of value of money, returns and risks, corporate finance, working capital and its management
- 3. Knowledge about sources of finance, capital structure, dividend policy

Outcomes: Learner will be able to...

- 1. Understand Indian finance system and corporate finance
- 2. Take investment, finance as well as dividend decisions

Module	Detailed Contents	Hrs
	Overview of Indian Financial System: Characteristics, Components and Functions of	
	Financial System.	
	Financial Instruments: Meaning, Characteristics and Classification of Basic Financial	
	Instruments — Equity Shares, Preference Shares, Bonds-Debentures, Certificates of	0.5
01	Deposit, and Treasury Bills.	06
	Financial Markets: Meaning, Characteristics and Classification of Financial Markets —	
	Capital Market, Money Market and Foreign Currency Market	
	Financial Institutions: Meaning, Characteristics and Classification of Financial	
	Institutions — Commercial Banks, Investment-Merchant Banks and Stock Exchanges	
	Concepts of Returns and Risks: Measurement of Historical Returns and Expected	
	Returns of a Single Security and a Two-security Portfolio; Measurement of Historical	
02	Risk and Expected Risk of a Single Security and a Two-security Portfolio.	06
02	Time Value of Money: Future Value of a Lump Sum, Ordinary Annuity, and Annuity	
	Due; Present Value of a Lump Sum, Ordinary Annuity, and Annuity Due; Continuous	
	Compounding and Continuous Discounting.	
	Overview of Corporate Finance: Objectives of Corporate Finance; Functions of	
	Corporate Finance—Investment Decision, Financing Decision, and Dividend Decision.	
03	Financial Ratio Analysis: Overview of Financial Statements—Balance Sheet, Profit and	09
0.5	Loss Account, and Cash Flow Statement; Purpose of Financial Ratio Analysis; Liquidity	
	Ratios; Efficiency or Activity Ratios; Profitability Ratios; Capital Structure Ratios; Stock	
	Market Ratios; Limitations of Ratio Analysis.	
	Capital Budgeting: Meaning and Importance of Capital Budgeting; Inputs for Capital	
	Budgeting Decisions; Investment Appraisal Criterion-Accounting Rate of Return,	
	Payback Period, Discounted Payback Period, Net Present Value(NPV), Profitability	
04	Index, Internal Rate of Return (IRR), and Modified Internal Rate of Return (MIRR)	10
04	Working Capital Management: Concepts of Meaning Working Capital; Importance of	
	Working Capital Management; Factors Affecting an Entity's Working Capital Needs;	
	Estimation of Working Capital Requirements; Management of Inventories; Management	
	of Receivables; and Management of Cash and Marketable Securities.	
	Sources of Finance: Long Term Sources-Equity, Debt, and Hybrids; Mezzanine	05
05	Finance; Sources of Short Term Finance—Trade Credit, Bank Finance, Commercial	05
	Paper; Project Finance.	

	Capital Structure: Factors Affecting an Entity's Capital Structure; Overview of Capital	
	Structure Theories and Approaches— Net Income Approach, Net Operating Income	
	Approach; Traditional Approach, and Modigliani-Miller Approach. Relation between	
	Capital Structure and Corporate Value; Concept of Optimal Capital Structure	
	Dividend Policy: Meaning and Importance of Dividend Policy; Factors Affecting an	
06	Entity's Dividend Decision; Overview of Dividend Policy Theories and Approaches—	03
	Gordon's Approach, Walter's Approach, and Modigliani-Miller Approach	

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

REFERENCES:

- 1. Fundamentals of Financial Management, 13th Edition (2015) by Eugene F. Brigham and Joel F. Houston; Publisher: Cengage Publications, New Delhi.
- 2. Analysis for Financial Management, 10th Edition (2013) by Robert C. Higgins; Publishers: McGraw Hill Education, New Delhi.
- 3. Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education, New Delhi.
- 4. Financial Management, 11th Edition (2015) by I. M. Pandey; Publisher: S. Chand (G/L) & Company Limited, New Delhi.

Course Code	Course Name	Credits
ILO8023	Entrepreneurship Development and Management	03

- 1. To acquaint with entrepreneurship and management of business
- 2. Understand Indian environment for entrepreneurship
- 3. Idea of EDP, MSME

Outcomes: Learner will be able to...

- 1. Understand the concept of business plan and ownerships
- 2. Interpret key regulations and legal aspects of entrepreneurship in India
- 3. Understand government policies for entrepreneurs

Module	Detailed Contents	Hrs
	Overview Of Entrepreneurship: Definitions, Roles and Functions/Values of	
	Entrepreneurship, History of Entrepreneurship Development, Role of Entrepreneurship	
01	in the National Economy, Functions of an Entrepreneur, Entrepreneurship and Forms of	04
•=	Business Ownership	
	Role of Money and Capital Markets in Entrepreneurial Development: Contribution of	
	Government Agencies in Sourcing information for Entrepreneurship	
	Business Plans And Importance Of Capital To Entrepreneurship: Preliminary and	
	Marketing Plans, Management and Personnel, Start-up Costs and Financing as well as	
00	Projected Financial Statements, Legal Section, Insurance, Suppliers and Risks,	09
02	Assumptions and Conclusion, Capital and its Importance to the Entrepreneur	
	Entrepreneursmip And Business Development: Starting a New Business, Buying an Existing Pusiness, New Product Development, Pusiness, Crowth and the Entrepreneur	
	Law and its Palayance to Business Operations	
	Women's Entrepreneurship Development, Social entrepreneurship role and need EDP	05
03	cell role of sustainability and sustainable development for SMFs, case studies, exercises	05
	Indian Environment for Entrepreneurship: key regulations and legal aspects	
	MSMED Act 2006 and its implications, schemes and policies of the Ministry of MSME.	
	role and responsibilities of various government organisations, departments, banks etc.	08
04	Role of State governments in terms of infrastructure developments and support etc.	00
	Public private partnerships, National Skill development Mission, Credit Guarantee Fund,	
	PMEGP, discussions, group exercises etc	
	Effective Management of Business: Issues and problems faced by micro and small	
05	enterprises and effective management of M and S enterprises (risk management, credit	08
05	availability, technology innovation, supply chain management, linkage with large	
	industries), exercises, e-Marketing	
	Achieving Success In The Small Business: Stages of the small business life cycle, four	
06	types of firm-level growth strategies, Options - harvesting or closing small business	05
	Critical Success factors of small business	

Assessment:

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3. Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

REFERENCES:

- 1. Poornima Charantimath, Entrepreneurship development- Small Business Enterprise, Pearson
- 2. Education Robert D Hisrich, Michael P Peters, Dean A Shapherd, Entrepreneurship, latest edition, The McGrawHill Company
- 3. Dr TN Chhabra, Entrepreneurship Development, Sun India Publications, New Delhi
- 4. Dr CN Prasad, Small and Medium Enterprises in Global Perspective, New century Publications, New Delhi
- 5. Vasant Desai, Entrepreneurial development and management, Himalaya Publishing House
- 6. Maddhurima Lall, Shikah Sahai, Entrepreneurship, Excel Books
- 7. Rashmi Bansal, STAY hungry STAY foolish, CIIE, IIM Ahmedabad
- 8. Law and Practice relating to Micro, Small and Medium enterprises, Taxmann Publication Ltd.
- 9. Kurakto, Entrepreneurship- Principles and Practices, Thomson Publication
- 10. Laghu Udyog Samachar
- 11. www.msme.gov.in
- 12. www.dcmesme.gov.in
- 13. www.msmetraining.gov.in

Course Code	Course Name	Credits
ILO8024	Human Resource Management	03

- 1. To introduce the students with basic concepts, techniques and practices of the human resource management
- 2. To provide opportunity of learning Human resource management (HRM) processes, related with the functions, and challenges in the emerging perspective of today's organizations
- 3. To familiarize the students about the latest developments, trends & different aspects of HRM
- 4. To acquaint the student with the importance of inter-personal & inter-group behavioural skills in an organizational setting required for future stable engineers, leaders and managers

Outcomes: Learner will be able to...

- 1. Understand the concepts, aspects, techniques and practices of the human resource management.
- 2. Understand the Human resource management (HRM) processes, functions, changes and challenges in today's emerging organizational perspective.
- 3. Gain knowledge about the latest developments and trends in HRM.
- 4. Apply the knowledge of behavioural skills learnt and integrate it with in inter personal and intergroup environment emerging as future stable engineers and managers.

Module	Detailed Contents	Hrs
01	 Introduction to HR Human Resource Management- Concept, Scope and Importance, Interdisciplinary Approach Relationship with other Sciences, Competencies of HR Manager, HRM functions Human resource development (HRD): changing role of HRM – Human resource Planning, Technological change, Restructuring and rightsizing, Empowerment, TQM, Managing ethical issues 	5
02	 Organizational Behaviour (OB) Introduction to OB Origin, Nature and Scope of Organizational Behaviour, Relevance to Organizational Effectiveness and Contemporary issues Personality: Meaning and Determinants of Personality, Personality development, Personality Types, Assessment of Personality Traits for Increasing Self Awareness Perception: Attitude and Value, Effect of perception on Individual Decision-making, Attitude and Behaviour Motivation: Theories of Motivation and their Applications for Behavioural Change (Maslow, Herzberg, McGregor); Group Behaviour and Group Dynamics: Work groups formal and informal groups and stages of group development, Team Effectiveness: High performing teams, Team Roles, cross functional and self-directed team. Case study 	7
03	 Organizational Structure &Design Structure, size, technology, Environment of organization; Organizational Roles & conflicts: Concept of roles; role dynamics; role conflicts and stress. Leadership: Concepts and skills of leadership, Leadership and managerial roles, Leadership styles and contemporary issues in leadership. Power and Politics: Sources and uses of power; Politics at workplace, Tactics and strategies. 	6
04	Human resource Planning	5

	 Recruitment and Selection process, Job-enrichment, Empowerment - Job-Satisfaction, employee morale Performance Appraisal Systems: Traditional & modern methods, Performance Counselling, Career Planning 	
	Training & Development: Identification of Training Needs, Training Methods	
05	 Emerging Trends in HR Organizational development; Business Process Re-engineering (BPR), BPR as a tool for organizational development, managing processes & transformation in HR. Organizational Change, Culture, Environment Cross Cultural Leadership and Decision Making: Cross Cultural Communication and diversity at work, Causes of diversity, managing diversity with special reference to handicapped, women and ageing people, intra company cultural difference in employee motivation 	6
06	 HR & MIS: Need, purpose, objective and role of information system in HR, Applications in HRD in various industries (e.g. manufacturing R&D, Public Transport, Hospitals, Hotels and service industries Strategic HRM: Role of Strategic HRM in the modern business world, Concept of Strategy, Strategic Management Process, Approaches to Strategic Decision Making; Strategic Intent – Corporate Mission, Vision, Objectives and Goals Labor Laws & Industrial Relations: Evolution of IR, IR issues in organizations, Overview of Labor Laws in India; Industrial Disputes Act, Trade Unions Act, Shops and Establishments Act 	10

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3. Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

REFERENCES:

- 1. Stephen Robbins, Organizational Behavior, 16th Ed, 2013
- 2. V S P Rao, Human Resource Management, 3rd Ed, 2010, Excel publishing
- 3. Aswathapa, Human resource management: Text & cases, 6th edition, 2011
- 4. C. B. Mamoria and S V Gankar, Dynamics of Industrial Relations in India, 15th Ed, 2015, Himalaya Publishing, 15thedition, 2015
- P. Subba Rao, Essentials of Human Resource management and Industrial relations, 5th Ed, 2013, Himalaya Publishing
- 6. Laurie Mullins, Management & Organizational Behavior, Latest Ed, 2016, Pearson Publications

Course Code	Course Name	Credits
ILO8025	Professional Ethics and Corporate Social Responsibility (CSR)	03

- 1. To understand professional ethics in business
- 2. To recognized corporate social responsibility

Outcomes: Learner will be able to...

- 1. Understand rights and duties of business
- 2. Distinguish different aspects of corporate social responsibility
- 3. Demonstrate professional ethics
- 4. Understand legal aspects of corporate social responsibility

Module	Detailed Contents	Hrs
01	Professional Ethics and Business: The Nature of Business Ethics; Ethical Issues in	
	Business; Moral Responsibility and Blame; Utilitarianism: Weighing Social Costs and	04
	Benefits; Rights and Duties of Business	
	Professional Ethics in the Marketplace: Perfect Competition; Monopoly Competition;	
00	Oligopolistic Competition; Oligopolies and Public Policy	08
02	Professional Ethics and the Environment: Dimensions of Pollution and Resource	
	Depletion; Ethics of Pollution Control; Ethics of Conserving Depletable Resources	
	Professional Ethics of Consumer Protection: Markets and Consumer Protection;	
	Contract View of Business Firm's Duties to Consumers; Due Care Theory; Advertising	
03	Ethics; Consumer Privacy	06
	Professional Ethics of Job Discrimination: Nature of Job Discrimination; Extent of	
	Discrimination; Reservation of Jobs.	
	Introduction to Corporate Social Responsibility: Potential Business Benefits-Triple	
04	bottom line, Human resources, Risk management, Supplier relations; Criticisms and	05
04	concerns—Nature of business; Motives; Misdirection.	
	Trajectory of Corporate Social Responsibility in India	
	Corporate Social Responsibility: Articulation of Gandhian Trusteeship	00
05	Corporate Social Responsibility and Small and Medium Enterprises (SMEs) in India,	08
	Corporate Social Responsibility and Public-Private Partnership (PPP) in India	
	Corporate Social Responsibility in Globalizing India: Corporate Social Responsibility	0.0
06	Voluntary Guidelines, 2009 issued by the Ministry of Corporate Affairs, Government of	08
	India, Legal Aspects of Corporate Social Responsibility—Companies Act, 2013.	

Assessment:

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- 3. **Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

REFERENCES:

- 1. Business Ethics: Texts and Cases from the Indian Perspective (2013) by Ananda Das Gupta; Publisher: Springer.
- 2. Corporate Social Responsibility: Readings and Cases in a Global Context (2007) by Andrew Crane, Dirk Matten, Laura Spence; Publisher: Routledge.
- 3. Business Ethics: Concepts and Cases, 7th Edition (2011) by Manuel G. Velasquez; Publisher: Pearson, New Delhi.
- 4. Corporate Social Responsibility in India (2015) by Bidyut Chakrabarty, Routledge, New Delhi.

Course Code	Course Name	Credits
ILO8026	Research Methodology	03

- 1. To understand Research and Research Process
- 2. To acquaint students with identifying problems for research and develop research strategies
- 3. To familiarize students with the techniques of data collection, analysis of data and interpretation

Outcomes: Learner will be able to...

- 1. Prepare a preliminary research design for projects in their subject matter areas
- 2. Accurately collect, analyze and report data
- 3. Present complex data or situations clearly
- 4. Review and analyze research findings

Module	Detailed Contents	Hrs
	Introduction and Basic Research Concepts	
	1.1 Research – Definition; Concept of Construct, Postulate, Proposition, Thesis,	
	Hypothesis, Law, Principle.Research methods vs Methodology	
01	1.2 Need of Research in Business and Social Sciences	09
	1.3 Objectives of Research	
	1.4 Issues and Problems in Research	
	1.5 Characteristics of Research:Systematic, Valid, Verifiable, Empirical and Critical	
	Types of Research	
	2.1. Basic Research	
	2.2. Applied Research	
02	2.3. Descriptive Research	07
	2.4. Analytical Research	
	2.5 . Empirical Research	
	2.6 Qualitative and Quantitative Approaches	
	Research Design and Sample Design	
03	3.1 Research Design – Meaning, Types and Significance	07
	3.2 Sample Design – Meaning and Significance Essentials of a good sampling Stages in	
	Sample Design Sampling methods/techniques Sampling Errors	
	Research Methodology	
	4.1 Meaning of Research Methodology	
	4.2. Stages in Scientific Research Process:	
	a. Identification and Selection of Research Problem	08
	b. Formulation of Research Problem	
	c. Review of Literature	
04	d. Formulation of Hypothesis	
	e. Formulation of research Design	
	f. Sample Design	
	g. Data Collection	
	h. Data Analysis	
	i. Hypothesis testing and Interpretation of Data	
	j. Preparation of Research Report	
	Formulating Research Problem	
05	5.1 Considerations: Relevance, Interest, Data Availability, Choice of data, Analysis of	04
	data, Generalization and Interpretation of analysis	
06	Outcome of Research	04
00	6.1 Preparation of the report on conclusion reached	· -

6.2 Validity Testing & Ethical Issues	
6.3 Suggestions and Recommendation	

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3. Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

REFERENCES:

- 1. Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS Publishers Distributors.
- 2. Kothari, C.R., 1985, Research Methodology-Methods and Techniques, New Delhi, Wiley Eastern Limited.
- 3. Kumar, Ranjit, 2005, Research Methodology-A Step-by-Step Guide for Beginners, (2nded), Singapore, Pearson Education

Course Code	Course Name	Credits
ILO8027	IPR and Patenting	03

- 1. To understand intellectual property rights protection system
- 2. To promote the knowledge of Intellectual Property Laws of India as well as International treaty procedures
- 3. To get acquaintance with Patent search and patent filing procedure and applications

Outcomes: Learner will be able to...

- 1. understand Intellectual Property assets
- 2. assist individuals and organizations in capacity building
- 3. work for development, promotion, protection, compliance, and enforcement of Intellectual Property and Patenting

Module	Detailed Contents	Hr
	Introduction to Intellectual Property Rights (IPR): Meaning of IPR, Different	
	category of IPR instruments - Patents, Trademarks, Copyrights, Industrial Designs, Plant	
01	variety protection, Geographical indications, Transfer of technology etc.	05
	Importance of IPR in Modern Global Economic Environment: Theories of IPR,	
	Philosophical aspects of IPR laws, Need for IPR, IPR as an instrument of development	
	Enforcement of Intellectual Property Rights: Introduction, Magnitude of problem,	
	Factors that create and sustain counterfeiting/piracy, International agreements,	
03	International organizations (e.g. WIPO, WTO) active in IPR enforcement	07
02	Indian Scenario of IPR:Introduction, History of IPR in India, Overview of IP laws in	07
	India, Indian IPR, Administrative Machinery, Major international treaties signed by India,	
	Procedure for submitting patent and Enforcement of IPR at national level etc.	
02	Emerging Issues in IPR: Challenges for IP in digital economy, e-commerce, human	05
05	genome, biodiversity and traditional knowledge etc.	05
	Basics of Patents: Definition of Patents, Conditions of patentability, Patentable and non-	
	patentable inventions, Types of patent applications (e.g. Patent of addition etc), Process	
04	Patent and Product Patent, Precautions while patenting, Patent specification Patent	07
	claims, Disclosures and non-disclosures, Patent rights and infringement, Method of	
	getting a patent	
	Patent Rules: Indian patent act, European scenario, US scenario, Australia scenario,	
05	Japan scenario, Chinese scenario, Multilateral treaties where India is a member (TRIPS	08
	agreement, Paris convention etc.)	
	Procedure for Filing a Patent (National and International): Legislation and Salient	
06	Features, Patent Search, Drafting and Filing Patent Applications, Processing of patent,	
	Patent Litigation, Patent Publication, Time frame and cost, Patent Licensing, Patent	07
	Infringement	
	Patent databases: Important websites, Searching international databases	

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3. Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

REFERENCE BOOKS:

- 1. Rajkumar S. Adukia, 2007, A Handbook on Laws Relating to Intellectual Property Rights in India, The Institute of Chartered Accountants of India
- 2. Keayla B K, Patent system and related issues at a glance, Published by National Working Group on Patent Laws
- 3. T Sengupta, 2011, Intellectual Property Law in India, Kluwer Law International
- 4. Tzen Wong and Graham Dutfield, 2010, Intellectual Property and Human Development: Current Trends and Future Scenario, Cambridge University Press
- Cornish, William Rodolph & Llewelyn, David. 2010, Intellectual Property: Patents, Copyrights, Trade Marks and Allied Right, 7th Edition, Sweet & Maxwell
- 6. Lous Harns, 2012, The enforcement of Intellactual Property Rights: A Case Book, 3rd Edition, WIPO
- 7. Prabhuddha Ganguli, 2012, Intellectual Property Rights, 1st Edition, TMH
- 8. R Radha Krishnan & S Balasubramanian, 2012, Intellectual Property Rights, 1st Edition, Excel Books
- 9. M Ashok Kumar and mohd Iqbal Ali, 2-11, Intellectual Property Rights, 2nd Edition, Serial Publications
- 10. Kompal Bansal and Praishit Bansal, 2012, Fundamentals of IPR for Engineers, 1st Edition, BS Publications
- 11. Entrepreneurship Development and IPR Unit, BITS Pilani, 2007, A Manual on Intellectual Property Rights,
- 12. Mathew Y Maa, 2009, Fundamentals of Patenting and Licensing for Scientists and Engineers, World Scientific Publishing Company
- 13. N S Rathore, S M Mathur, Priti Mathur, Anshul Rathi, IPR: Drafting,Interpretation of Patent Specifications and Claims, New India Publishing Agency
- 14. Vivien Irish, 2005, Intellectual Property Rights for Engineers, IET
- 15. Howard B Rockman, 2004, Intellectual Property Law for Engineers and scientists, Wiley-IEEE Press

Course Code	Course Name	Credits
ILO 8028	Digital Business Management	03

- 1. To familiarize with digital business concept
- 2. To acquaint with E-commerce
- 3. To give insights into E-business and its strategies

Outcomes: The learner will be able to

- 1. Identify drivers of digital business
- 2. Illustrate various approaches and techniques for E-business and management
- 3. Prepare E-business plan

Module	Detailed content	Hours
1	Introduction to Digital Business- Introduction, Background and current status, E-market places, structures, mechanisms, economics and impacts Difference between physical economy and digital economy, Drivers of digital business- Big Data & Analytics, Mobile, Cloud Computing, Social media, BYOD, and Internet of Things(digitally intelligent machines/services) Opportunities and Challenges in Digital Business,	09
2	Overview of E-Commerce E-Commerce- Meaning, Retailing in e-commerce-products and services, consumer behavior, market research and advertisement B2B-E-commerce-selling and buying in private e-markets, public B2B exchanges and support services, e-supply chains, Collaborative Commerce, Intra business EC and Corporate portals Other E-C models and applications, innovative EC System-From E-government and learning to C2C, mobile commerce and pervasive computing EC Strategy and Implementation-EC strategy and global EC, Economics and Justification of EC, Using Affiliate marketing to promote your e-commerce business, Launching a successful online business and EC project, Legal, Ethics and Societal impacts of EC	06
3	Digital Business Support services : ERP as e –business backbone, knowledge Tope Apps, Information and referral system Application Development: Building Digital business Applications and Infrastructure	06
4	Managing E-Business-Managing Knowledge, Management skills for e-business, Managing Risks in e –business Security Threats to e-business -Security Overview, Electronic Commerce Threats, Encryption, Cryptography, Public Key and Private Key Cryptography, Digital Signatures, Digital Certificates, Security Protocols over Public Networks: HTTP, SSL, Firewall as Security Control, Public Key Infrastructure (PKI) for Security, Prominent Cryptographic Applications	06
5	E-Business Strategy-E-business Strategic formulation- Analysis of Company's Internal and external environment, Selection of strategy, E-business strategy into Action, challenges and E-Transition (Process of Digital Transformation)	04
6	Materializing e-business: From Idea to Realization-Business plan preparation Case Studies and presentations	08

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3. Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only **Four questions need to be solved**.

References:

- 1. A textbook on E-commerce, Er Arunrajan Mishra, Dr W K Sarwade, Neha Publishers & Distributors, 2011
- 2. E-commerce from vision to fulfilment, Elias M. Awad, PHI-Restricted, 2002
- 3. Digital Business and E-Commerce Management, 6th Ed, Dave Chaffey, Pearson, August 2014
- 4. Introduction to E-business-Management and Strategy, Colin Combe, ELSVIER, 2006
- 5. Digital Business Concepts and Strategy, Eloise Coupey, 2nd Edition, Pearson
- 6. Trend and Challenges in Digital Business Innovation, VinocenzoMorabito, Springer
- 7. Digital Business Discourse Erika Darics, April 2015, Palgrave Macmillan
- 8. E-Governance-Challenges and Opportunities in : Proceedings in 2nd International Conference theory and practice of Electronic Governance
- 9. Perspectives the Digital Enterprise –A framework for Transformation, TCS consulting journal Vol.5
- 10. Measuring Digital Economy-A new perspective- DoI:10.1787/9789264221796-enOECD Publishing

Course Code	Course Name	Credits
ILO8029	Environmental Management	03

- 1. Understand and identify environmental issues relevant to India and global concerns
- 2. Learn concepts of ecology
- 3. Familiarise environment related legislations

Outcomes: Learner will be able to...

- 1. Understand the concept of environmental management
- 2. Understand ecosystem and interdependence, food chain etc.
- 3. Understand and interpret environment related legislations

Module	Detailed Contents	Hrs
	Introduction and Definition of Environment: Significance of Environment Management	10
01	for contemporary managers, Career opportunities, Environmental issues relevant to	10
	India, Sustainable Development, the Energy scenario	
	Global Environmental concerns : Global Warming, Acid Rain, Ozone Depletion,	0.6
02	Hazardous Wastes, Endangered life-species, Loss of Biodiversity, Industrial/Man-made	06
	disasters, Atomic/Biomedical hazards, etc.	
03	Concepts of Ecology: Ecosystems and interdependence between living organisms,	05
03	habitats, limiting factors, carrying capacity, food chain, etc.	
	Scope of Environment Management, Role and functions of Government as a planning	10
04	and regulating agency	10
	Environment Quality Management and Corporate Environmental Responsibility	
05	Total Quality Environmental Management, ISO-14000, EMS certification.	05
06	General overview of major legislations like Environment Protection Act, Air (P & CP)	03
VO	Act, Water (P & CP) Act, Wildlife Protection Act, Forest Act, Factories Act, etc.	

Assessment:

Internal Assessment for 20 marks:

Consisting Two Compulsory Class Tests

First test based on approximately 40% of contents and second test based on remaining contents (approximately 40% but excluding contents covered in Test I)

End Semester Examination:

Weightage of each module in end semester examination will be proportional to number of respective lecture hours mentioned in the curriculum.

- 1. Question paper will comprise of total six questions, each carrying 20 marks
- 2. Question 1 will be compulsory and should cover maximum contents of the curriculum
- **3. Remaining questions will be mixed in nature** (for example if Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four questions need to be solved.

REFERENCES:

- 1. Environmental Management: Principles and Practice, C J Barrow, Routledge Publishers London, 1999
- 2. A Handbook of Environmental Management Edited by Jon C. Lovett and David G. Ockwell, Edward Elgar Publishing
- 3. Environmental Management, T V Ramachandra and Vijay Kulkarni, TERI Press
- 4. Indian Standard Environmental Management Systems Requirements With Guidance For Use, Bureau Of Indian Standards, February 2005
- 5. Environmental Management: An Indian Perspective, S N Chary and Vinod Vyasulu, Maclillan India, 2000
- Introduction to Environmental Management, Mary K Theodore and Louise Theodore, CRC Press Environment and Ecology, Majid Hussain, 3rd Ed. Access Publishing.2015

Course Code	Course Name	Credits
MEL801	Design of Mechanical Systems	1

- 1. To familiarise with the concept of system and methodology of system design
- 2. To study system design of various systems such as snatch block, belt conveyors, engine system, pumps and machine tool gearbox
- 3. To familiarise with the standard codes of professional practices in designing the various systems

Outcomes: Learner will be able to...

- 1. Apply the concept of system design.
- 2. Design of hoisting mechanism of EOT crane,
- 3. Design belt conveyor systems
- 4. Design pumps for the given applications
- 5. Design engine components such as cylinder, piston, connecting rod and crankshaft
- 6. Design of machine tool gearbox

Term Work: Comprises a& b

- a) Term work Shall consist of
 - 1. Design and detailed assembly drawing (computer aided drawing on A3 size sheets) of minimum two design problems, from the following:
 - i) Design of hoisting mechanisms
 - ii) Design of belt conveyors
 - iii) Design of pumps
 - 2. Course Project: Students in a group of two to four should be able to apply and integrate the knowledge gained during the course. Design and preparation of working drawings of any system having minimum 5 to 6 components is expected.
- b) Assignment: Exercises on following topics in the form of design calculations with sketches and / or drawings.
 - 1. Engine design
 - 2. Design of gearbox

The distribution of marks for term work shall be as follows:

Exercises and Drawing sheets : 10 marks. : 05 marks Assignments • Course Project : 05 marks. Attendance : 05 Marks. •

Assessment:

End Semester Practical/Oral examination:

- 1. Each student will be given a small task of design based on syllabus, which will be assessed by pair of examiners during the oral examination.
- 2. Distribution of marks for practical-oral examination shall be as follows:
 - Design Task: 15 marks Oral:
 - 10 marks
- 3. Evaluation of practical/oral examination to be done based on the performance of design task
- 4. Students work along with evaluation report to be preserved till the next examination
| Subject Code | Subject Name | Credits |
|----------------|-------------------|---------|
| MEL 802 | Power Engineering | 01 |

Objectives

- 1. To familiarise with boilers, boiler mountings and accessories using models/cut sections
- 2. To familiarise with hydraulic energy conversion devices

Outcomes: Learner will be able to...

- 1. Differentiate boilers
- 2. Differentiate boiler mountings and accessories
- 3. Conduct a trial on impilse turbine and analyse its performance
- 4. Conduct a trail on reaction turbine and analyse its performance
- 5. Conduct a trial on Centrifugal pump and analyse its perfromance
- 6. Conduct a trial on Reciprocating pump and analyse its perfromance

List of Experiments

- 1. Demonstration of Boilers
- 2. Demonstration of Boiler mountings and accessories
- 3. Trial on Impulse turbine
- 5. Trial on Reaction turbine
- 6. Trial on centrifugal pump (Single stage/Multistage)
- 7. Trail on receprocating pump
- 8. Visit to Thermal Power Plant/Hydroelectric Power Plant/Gas Turbine Power Plant

Assessment:

Term Work

Term work shall consist of all the experiments from the list, 3 assignments containing numerical based on maximum contents of the syllabus and a visit report

The distribution of marks for term work shall be as follows:

Laboratory work (Experiments): 10 marks

Assignments: **05 marks** Visit report: **05 Marks** Attendance: **05 marks**

End Semester Practical/Oral Examination:

- 1. Students in a group (4 to 6) have to perform trial either on Impulse turbine, Reaction turbine, Centrifugal Pump or Reciprocating Pump and the same will be assessed by pair of examiners during the oral examination.
- 2. Distribution of marks for practical-oral examination shall be as follows:

Trial:		15 marks
Oral:		10 marks

- 3. Evaluation of practical/oral examination to be done based on the performance
- 4. Students work along with evaluation report to be preserved till the next examination

Course Code	Course Name	Credits
MEP701/ MEP801	Project (I and II)	03 + 06

Objectives:

- 1. To acquaint with the process of undertaking literature survey/industrial visit and identifying the problem
- 2. To familiarize the process of problem solving in a group
- 3. To acquaint with the process of applying basic engineering fundamental in the domain of practical applications
- 4. To inculcate the process of research

Outcomes: Learner will be able to...

- 1. Do literature survey/industrial visit and identify the problem
- 2. Apply basic engineering fundamental in the domain of practical applications
- 3. Cultivate the habit of working in a team
- 4. Attempt a problem solution in a right approach
- 5. Correlate the theoretical and experimental/simulations results and draw the proper inferences
- 6. Prepare report as per the standard guidelines.

Guidelines for Project

Students should do literature survey/visit industry/analyse current trends and identify the problem for Project and finalize in consultation with Guide/Supervisor

Students should use multiple literatures and understand the problem.

Students should attempt solution to the problem by experimental/simulation methods.

The solution to be validated with proper justification and report to be compiled in standard format.

Guidelines for Assessment of Project I

Project I should be assessed based on following points

- 1. Quality of problem selected
- 2. Clarity of Problem definition and Feasibility of problem solution
- 3. Relevance to the specialization
- 4. Clarity of objective and scope
- 5. Breadth and depth of literature survey

Project I should be assessed through a presentation by the student project group to a panel of Internal examiners appointed by the Head of the Department/Institute of respective Programme.

Guidelines for Assessment of Project II

Project II should be assessed based on following points

- 1. Quality of problem selected
- 2. Clarity of Problem definition and Feasibility of problem solution
- 3. Relevance to the specialization / Industrial trends
- 4. Clarity of objective and scope
- 5. Quality of work attempted
- 6. Validation of results
- 7. Quality of Written and Oral Presentation

Project Report has to be prepared strictly as per University of Mumbai report writing guidelines. Project II should be assessed through a presentation by the student project group to a panel of Internal and External Examiner approved by the University of Mumbai

Students should be motivated to publish a paper in Conferences/students competitions based on the work

Aniversity of Mumbai

No. UG/ 49 of 2021

CIRCULAR:-

Attention of the Principals of the Affiliated Colleges, Directors of the recognized Institutions in Science & Technology Faculty is invited to the syllabus directly uploaded by the Academic Authority Unit which was accepted by the Academic Council at its meeting held on 11th May, 2017 vide item No.4.180 relating to the revised syllabus as per the (CBCGS) for Bachelor of Engineering (Information Technology) Second Year w.e.f. AY 2017-18, Third Year w.e.f. AY 2018-19 and Final Year w.e.f. AY 2019-20 (Rev – 2016) from Academic Year 2016-17.

They are hereby informed that the recommendations made by the Ad-hoc Board of Studies in Information Technology at its meeting held on 24th April, 2020 and subsequently made by the Board of Deans at its meeting held on 26th June, 2020 vide item No. 14(10) have been accepted by the Academic Council at its meeting held on 23rd July, 2020 vide item No. 4.126 and that in accordance therewith, the Scheme (Sem. III to VIII) and revised syllabus (Rev-2019 'C' Scheme) for the B.E. in Information Technology (Sem.III & IV) has been brought into force with effect from the academic year 2020-21. (The same is available on the University's website www.mu.ac.in).

MUMBAI - 400 032 21St January, 2021 To

(Dr. B.N.Gaikwad) I/c REGISTRAR

The Principals of the affiliated Colleges, and Directors of the recognized Institutions in Science & Technology Faculty. (Circular No. UG/334 of 2017-18 dated 9th January, 2018.) A.C/4.126/23/07/2020

No. UG/49 - A of 2021 MUMBAI-400 032 Copy forwarded with Compliments for information to:-

- 1) The Dean, Faculty of Science & Technology,
- 2) The Chairman, Ad-hoc Board of Studies in Information Technology,
- 3) The Director, Board of Examinations and Evaluation,
- 4) The Director, Board of Students Development,
- 5) The Co-ordinator, University Computerization Centre,

21st January, 2021

Copy to :-

- 1. The Deputy Registrar, Academic Authorities Meetings and Services (AAMS),
- 2. The Deputy Registrar, College Affiliations & Development Department (CAD),
- 3. The Deputy Registrar, (Admissions, Enrolment, Eligibility and Migration Department (AEM),
- 4. The Deputy Registrar, Research Administration & Promotion Cell (RAPC),
- 5. The Deputy Registrar, Executive Authorities Section (EA),
- 6. The Deputy Registrar, PRO, Fort, (Publication Section),
- 7. The Deputy Registrar, (Special Cell),
- 8. The Deputy Registrar, Fort/ Vidyanagari Administration Department (FAD) (VAD), Record Section,
- 9. The Director, Institute of Distance and Open Learning (IDOL Admin), Vidyanagari,

They are requested to treat this as action taken report on the concerned resolution adopted by the Academic Council referred to in the above circular and that on separate Action Taken Report will be sent in this connection.

- 1. P.A to Hon'ble Vice-Chancellor,
- 2. P.A Pro-Vice-Chancellor,
- 3. P.A to Registrar,
- 4. All Deans of all Faculties,
- 5. P.A to Finance & Account Officers, (F.& A.O),
- 6. P.A to Director, Board of Examinations and Evaluation,
- 7. P.A to Director, Innovation, Incubation and Linkages,
- 8. P.A to Director, Board of Lifelong Learning and Extension (BLLE),
- 9. The Director, Dept. of Information and Communication Technology (DICT) (CCF & UCC), Vidyanagari,
- 10. The Director of Board of Student Development,
- 11. The Director, Department of Students Walfare (DSD),
- 12. All Deputy Registrar, Examination House,
- 13. The Deputy Registrars, Finance & Accounts Section,
- 14. The Assistant Registrar, Administrative sub-Campus Thane,
- 15. The Assistant Registrar, School of Engg. & Applied Sciences, Kalyan,
- 16. The Assistant Registrar, Ratnagiri sub-centre, Ratnagiri,
- 17. The Assistant Registrar, Constituent Colleges Unit,
- 18. BUCTU,
- 19. The Receptionist,
- 20. The Telephone Operator,
- 21. The Secretary MUASA

for information.

AC: 23/7/2020 Item No4126

UNIVERSITY OF MUMBAI

Syllabus for Approval

Sr. No.	Heading	Particulars
t.	Title of the Course	Second Year B.E. Information Technology Engineering
2	Eligibility for Admission	After Passing First Year Engineering as per the Ordinance 0.6242
3	Passing Marks	40%
4	Ordinances / Regulations (if any)	Ordinance 0.6242
5	No. of Years / Semesters	8 semesters
6	Lovel	P.G. / U.G./-Diploma+Certificate (Strike out which is not applicable)
7	Pattern	Vearly / Semester (Strike out which is not applicable)
8	Status	New / Revised (Strike out which is not applicable)
9	To be implemented from Academic Year	With effect from Academic Year: 2020-2021

Date :23/7/2020

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mambai

Attaguindes Dr. Anuracha Majumdas De Anuratha Majumdas Dean Faculty of Science and Technology University of Mumbai

AC: <u>23/7/2020</u>

Item No. : <u>126</u>

UNIVERSITY OF MUMBAI

Bachelor of Engineering

in

Information Technology Engineering

Second Year with Effect from AY 2020-21

Third Year with Effect from AY 2021-22

Final Year with Effect from AY 2022-23

<u>(REV- 2019 'C' Scheme) from Academic Year 2019 – 20</u>

Under

FACULTY OF SCIENCE & TECHNOLOGY

(As per AICTE guidelines with effect from the academic year 2019-2020)

AC: <u>23/7/2020</u> Item No. <u>126</u>

UNIVERSITY OF MUMBAI

Syllabus for Approval

Sr. No.	Heading	Particulars
1	Title of the Course	Second Year B.E. Information Technology Engineering
2	Eligibility for Admission	After Passing First Year Engineering as per the Ordinance 0.6242
3	Passing Marks	40%
4	Ordinances / Regulations (if any)	Ordinance 0.6242
5	No. of Years / Semesters	8 semesters
6	Level	P.G. / U.G./ Diploma / Certificate (Strike out which is not applicable)
7	Pattern	Yearly / Semester (Strike out which is not applicable)
8	Status	New / Revised (Strike out which is not applicable)
9	To be implemented from Academic Year	With effect from Academic Year: 2020-2021

Date: 23/7/2020

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mumbai Dr Anuradha Muzumdar Dean Faculty of Science and Technology University of Mumbai

Preamble

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Science and Technology (in particular Engineering) of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. Choice based Credit and grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 13 weeks and remaining 2 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

There was a concern that the earlier revised curriculum more focused on providing information and knowledge across various domains of the said program, which led to heavily loading of students in terms of direct contact hours. In this regard, faculty of science and technology resolved that to minimize the burden of contact hours, total credits of entire program will be of 170, wherein focus is not only on providing knowledge but also on building skills, attitude and self learning. Therefore in the present curriculum skill based laboratories and mini projects are made mandatory across all disciplines of engineering in second and third year of programs, which will definitely facilitate self learning of students. The overall credits and approach of curriculum proposed in the present revision is in line with AICTE model curriculum.

The present curriculum will be implemented for Second Year of Engineering from the academic year 2020-21. Subsequently this will be carried forward for Third Year and Final Year Engineering in the academic years 2021-22, 2022-23, respectively.

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mumbai Dr. Anuradha Muzumdar Dean Faculty of Science and Technology University of Mumbai

Incorporation and Implementation of Online Contents from <u>NPTEL/ Swayam Platform</u>

The curriculum revision is mainly focused on knowledge component, skill based activities and project based activities. Self learning opportunities are provided to learners. In the revision process this time in particular Revised syllabus of 'C ' scheme wherever possible additional resource links of platforms such as NPTEL, Swayam are appropriately provided. In an earlier revision of curriculum in the year 2012 and 2016 in Revised scheme 'A' and 'B' respectively, efforts were made to use online contents more appropriately as additional learning materials to enhance learning of students.

In the current revision based on the recommendation of AICTE model curriculum overall credits are reduced to 171, to provide opportunity of self learning to learner. Learners are now getting sufficient time for self learning either through online courses or additional projects for enhancing their knowledge and skill sets.

The Principals/ HoD's/ Faculties of all the institute are required to motivate and encourage learners to use additional online resources available on platforms such as NPTEL/ Swayam. Learners can be advised to take up online courses, on successful completion they are required to submit certification for the same. This will definitely help learners to facilitate their enhanced learning based on their interest.

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mumbai Dr Anuradha Muzumdar Dean Faculty of Science and Technology University of Mumbai

Preface By BoS

It is our honor and a privilege to present the Rev-2019 'C' scheme syllabus of Bachelor of Engineering in Information Technology (effective from year 2019-20) with inclusion of cutting edge technology. Information Technology is comparatively a young branch among other engineering disciplines in the University of Mumbai. It is evident from the placement statistics of various colleges affiliated to the University of Mumbai that IT branch has taken the lead in the placement.

The branch also provides multi-faceted scope like better placement and promotion of entrepreneurship culture among students, and increased Industry Institute Interactions. Industries views are considered as stakeholders will design of the syllabus of Information Technology. As per Industries views only 16 % graduates are directly employable. One of the reasons is a syllabus which is not in line with the latest technologies. Our team of faculties has tried to include all the latest technologies in the syllabus. Also first time we are giving skill-based labs and Mini-project to students from third semester onwards which will help students to work on latest IT technologies. Also the first time we are giving the choice of elective from fifth semester such that students will be master in one of the IT domain. The syllabus is peer reviewed by experts from reputed industries and as per their suggestions it covers future trends in IT technology and research opportunities available due to these trends.

We would like to thank senior faculties of IT department of all colleges affiliated to University of Mumbai for significant contribution in framing the syllabus. Also on behalf of all faculties we thank all the industry experts for their valuable feedback and suggestions. We sincerely hope that the revised syllabus will help all graduate engineers to face the future challenges in the field of information and technology

Program Specific Outcome for graduate Program in Information Technology

- 1. Apply Core Information Technology knowledge to develop stable and secure IT system.
- 2. Design, IT infrastructures for an enterprise using concepts of best practices in information Technology and security domain.
- 3. Ability to work in multidisciplinary projects and make it IT enabled.
- 4. Ability to adapt latest trends and technologies like Analytics, Blockchain, Cloud, Data science.

Board of Studies in Information Technology Engineering - Team

- Dr. Deven Shah (Chairman)
- Dr. Lata Ragha (Member)
- Dr. Vaishali D. Khairnar (Member)
- Dr. Sharvari Govilkar (Member)
- Dr. Sunil B. Wankhade (Member)
- Dr. Anil Kale (Member)
- Dr. Vaibhav Narwade (Member)
- Dr. GV Choudhary (Member)
- Ad-hoc Board Information Technology
- University of Mumbai

Program Structure for Second Year Engineering Semester III & IV UNIVERSITY OF MUMBAI (With Effect from 2020-2021)

Semester	III
----------	-----

Course	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned					
Coue		Theory 3		act.	Tut.	Theory	Pract.	Tut.	Total	
ITC301	Engineering Mathematics-III	3 -			1	3		1	4	
ITC302	Data Structure and Analysis	3				3			3	
ITC303	Database Management System	3				3			3	
ITC304	Principle of Communication	3				3			3	
ITC305	Paradigms and Computer Programming Fundamentals	3				3			3	
ITL301	Data Structure Lab			2			1		1	
ITL302	SQL Lab			2			1		1	
ITL303	Computer programming Paradigms Lab			2			1		1	
ITL304	Java Lab (SBL)			4			2		2	
ITM301	Mini Project – 1 A Front end /backend Application using JAVA			4 ^{\$}			2		2	
	Total	15	-	14	1	15	07	1	23	
					Ex	xamination Scheme				
				The	ory	Term Work	Pract/ oral	Total		
Course Code	Course Name	Internal Assessment Sem. Exam				Exam. Duration (in Hrs)	l			
		Test 1	Test2	Avg	•					
ITC301	Engineering Mathematics-III	20	20	20	80	3	25		125	
ITC302	Data Structure and Analysis	20	20	20	80	3			100	
ITC303	Database Management System	20	20	20	80	3			100	
ITC304	Principle of Communication	20	20	20	80	3			100	
ITC305	Paradigms and Computer Programming Fundamentals	20	20	20	80	3			100	
ITL301	Data Structure Lab						25	25	50	
ITL302	SQL Lab						25	25	50	
ITL303	Computer programming Paradigms Lab						25	25	50	
ITL304	Java Lab (SBL)						25	25	50	
ITM301	Mini Project – 1 A Front end /backend Application using JAVA						25	25	50	
	Total			100	400		150	125	775	

\$ indicates work load of Learner (Not Faculty), for Mini Project.

Program Structure for Second Year Engineering Semester III & IV UNIVERSITY OF MUMBAI (With Effect from 2020-2021)

		S	emester	rIV							
Course Code	Course Name		Feaching (Contact)	Scheme Hours)	:	С	redits As	signed			
Coue		Theo	ry Prac	rt. 7	ſut.	Theory	Pract.	Tut.	Total		
ITC401	Engineering Mathematics-IV	3			1	3		1	4		
ITC402	Computer Network and Network Design	3				3			3		
ITC403	Operating System	3				3			3		
ITC404	Automata Theory	3				3			3		
ITC405	Computer Organization and Architecture	3				3			3		
ITL401	Network Lab		2				1		1		
ITL402	Unix Lab		2				1		1		
ITL403	Microprocessor Lab		2				1		1		
ITL404	Python Lab (SBL)		4				2		2		
ITM401	Mini Project – 1 B Python based automation projects		4\$				2		2		
	Total	15	14		1	15	7	1	23		
					Exami	nation Sche	me	1			
		Theory Term Pract/ Work oral Total									
Course Code	Course Name	Internal Assessment Ser Exa			End Sem. Exam.	Exam. Duration (in Hrs)					
		Test 1	Test 2	Avg.							
ITC401	Engineering Mathematics-IV	20	20	20	80	3	25		125		
ITC402	Computer Network and Network Design	20	20	20	80	3			100		
ITC403	Operating System	20	20	20	80	3			100		
ITC404	Automata Theory	20	20	20	80	3			100		
ITC405	Computer Organization and Architecture	20	20	20	80	3			100		
ITL401	Network Lab						25	25	50		
ITL402	Unix Lab						25	25	50		
ITL403	Microprocessor Lab						25	25	50		
ITL404	Python Lab (SBL)						25	25	50		
ITM401	Mini Project – 1 B Python based automation projects						25	25	50		
	Total			100	400		150	75	775		

\$ indicates work load of Learner (Not Faculty), for Mini Project.

Program Structure for Third Year Engineering Semester V & VI UNIVERSITY OF MUMBAI (With Effect from 2021-2022)

		Sen	nester	V					
Course Code	Course Name		Teachin Scheme (Contae Hours)	e e ct			Credits A	ssigned	
		Th	eory	Pra	ct.	Theory	Prac	et.	Total
ITC501	Internet Programming		3			3			3
ITC502	Computer Network Security	3	3		3				3
ITC503	Entrepreneurship and E- business	3				3			3
ITC504	Software Engineering	3				3			3
ITDO501X	Department Optional Course – 1	3				3			3
ITL501	IP Lab	-		2			1		1
ITL502	Security Lab	-	-	2			1		1
ITL503	DevOPs Lab	-		2			1		1
ITL504	Advance DevOPs Lab	-		2			1		1
ITL505	Business Communication and Ethics	-		2*+	-2		2		2
ITM501	Mini Project – 2 A Web Based Business Model	-	-	4\$			2		2
	Total	15		16	5	15	08		23
				Ex	aminati	on Scheme			
		Theor					Term Work	Prac /oral	Total
Course Code	Course Name	Inter	Internal Assessment Sen Example			Exam. Duration (in Hrs)			
		Test1	Test2	Avg					
ITC501	Internet Programming	20	20	20	80	3			100
ITC502	Computer Network Security	20	20	20	80	3			100
ITC503	Entrepreneurship and E- business	20	20	20	80	3			100
ITC504	Software Engineering	20	20	20	80	3			100
ITDO501X	Department Optional Course – 1	20	20	20	80	3			100
ITL501	IP Lab						25	25	50
ITL502	Security Lab						25	25	50
ITL503	DevOPs Lab						25	25	50
ITL504	Advance DevOPs Lab						25	25	50
ITL505	Business Communication and Ethics						50		50

ITM501	Mini Project – 2 A Web Based Business Model	 			 25	25	50
	Total	 	100	400	 175	125	800

 \ast Theory class to be conducted for full class

\$ indicates work load of Learner (Not Faculty), for Mini Project

ITDO501X	Department Optional Course – 1
ITDO5011	Microcontroller Embedded Programming
ITDO5012	Advance Data Management Technologies
ITDO5013	Computer Graphics & Multimedia System
ITDO5014	Advanced Data structure and Analysis

Program Structure for Third Year Engineering Semester V & VI UNIVERSITY OF MUMBAI (With Effect from 2021-2022)

		Se	mester	·VI					
Course	Course Name	ŗ	Feaching (Contact	s Scheme Hours)			Credits As	ssigned	
Code		The	eory	Pra Tu	ct. it.	Theory	Pract.		Total
ITC601	Data Mining & Business Intelligence	3				3			3
ITC602	Web X.0	3				3			3
ITC603	Wireless Technology	3				3			3
ITC604	AI and DS – 1		3			3			3
ITDO601 X	Department Optional Course – 2	3	3			3			3
ITL601	BI Lab	-	-	2			1		1
ITL602	Web Lab	-	-	2			1		1
ITL603	Sensor Lab	-	-	2			1		1
ITL604	MAD & PWA Lab	-	-	2			1		1
ITL605	DS using Python Skill based Lab	-	-	2			1		1
ITM601	Mini Project – 2 B Based on ML	-	-	4 ^s	4 ^{\$}		2		2
	Total	1	5	14	1	15	15 07		22
				Examination Scheme					
							Tarres	D	
				Theory			Work	Prac /oral	Total
Course Code	Course Name	Interi	nal Asses	Theory sment	End Sem Exam	Exam. Duration (in Hrs)	Work	Prac /oral	Total
Course Code	Course Name	Intern Test1	nal Asses Test2	Theory sment Avg	End Sem Exam	Exam. Duration (in Hrs)	Work	Prac /oral	Total
Course Code ITC601	Course Name Data Mining & Business Intelligence	Intern Test1 20	nal Asses Test2 20	Theory sment Avg 20	End Sem Exam 80	Exam. Duration (in Hrs)		Prac /oral	Total 100
Course Code ITC601 ITC602	Course Name Data Mining & Business Intelligence Web X.0	Intern Test1 20 20	nal Asses Test2 20 20	Theory sment Avg 20 20	End Sem Exam 80 80	Exam. Duration (in Hrs) 3 3		Prac /oral 	Total 100 100
Course Code ITC601 ITC602 ITC603	Course Name Data Mining & Business Intelligence Web X.0 Wireless Technology	Intern Test1 20 20 20	Test2 20 20 20	Theory sment Avg 20 20 20	End Sem Exam 80 80 80	Exam. Duration (in Hrs) 3 3 3 3		Prac /oral 	Total 100 100 100
Course Code ITC601 ITC602 ITC603 ITC604	Course Name Data Mining & Business Intelligence Web X.0 Wireless Technology AI and DS – 1	Intern Test1 20 20 20 20 20 20	Test2 20 20 20 20 20	Avg 20 20 20 20 20 20 20	End Sem Exam 80 80 80 80	Exam. Duration (in Hrs) 3 3 3 3 3	 	Prac /oral	Total 100 100 100 100 100
Course Code ITC601 ITC602 ITC603 ITC604 ITC604 ITDO601 X	Course Name Data Mining & Business Intelligence Web X.0 Wireless Technology AI and DS – 1 Department Optional Course – 2	Intern Test1 20 20 20 20 20 20 20 20 20 20 20 20 20 20	Test2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20	Avg 20 20 20 20 20 20 20 20 20 20 20	End Sem Exam 80 80 80 80 80 80 80	Exam. Duration (in Hrs) 3 3 3 3 3 3 3 3 3 3	 	Prac /oral	Total 100 100 100 100 100 100 100
Course Code ITC601 ITC602 ITC603 ITC604 ITC604 ITDO601 X ITL601	Course Name Data Mining & Business Intelligence Web X.0 Wireless Technology AI and DS – 1 Department Optional Course – 2 BI Lab	Intern Test1 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20	Test2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20	Avg 20 20 20 20 20 20 20 20 20 20 20	End Sem Exam 80 80 80 80 80 80 80	Exam. Duration (in Hrs) 3 3 3 3 3 3 3 3 3 3 	 25	Prac /oral	Total 100 100 100 100 100 50
Course Code ITC601 ITC602 ITC603 ITC604 ITDO601 X ITL601 ITL602	Course Name Data Mining & Business Intelligence Web X.0 Wireless Technology AI and DS – 1 Department Optional Course – 2 BI Lab Web Lab	Intern Test1 20	Test2 20 </td <td>Theory sment Avg 20</td> <td>End Sem Exam 80 80 80 80 80 80 80 </td> <td>Exam. Duration (in Hrs) 3 3 3 3 3 3 3 </td> <td>Term Work 25 25 25</td> <td>Prac /oral 25 25</td> <td>Total 100 100 100 100 100 50 50</td>	Theory sment Avg 20	End Sem Exam 80 80 80 80 80 80 80 	Exam. Duration (in Hrs) 3 3 3 3 3 3 3 	Term Work 25 25 25	Prac /oral 25 25	Total 100 100 100 100 100 50 50
Course Code ITC601 ITC602 ITC603 ITC604 ITDO601 X ITL601 ITL603	Course Name Data Mining & Business Intelligence Web X.0 Wireless Technology AI and DS – 1 Department Optional Course – 2 BI Lab Web Lab Sensor Lab	Intern Test1 20	Test2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20	Theory sment Avg 20	End Sem Exam 80 80 80 80 80 80 80 	Exam. Duration (in Hrs) 3 3 3 3 3 3 3 	Term Work 25 25 25 25 25 25	Prac /oral 25 25 25 25 25 25 25 25	Total 100 100 100 100 100 50 50 50
Course Code ITC601 ITC602 ITC603 ITC604 ITL601 ITL603 ITL604	Course Name Data Mining & Business Intelligence Web X.0 Wireless Technology AI and DS – 1 Department Optional Course – 2 BI Lab Web Lab Sensor Lab MAD & PWA Lab	Intern Test1 20 20 20 20 20 20 20 	Test2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20	Avg 20 <td>End Sem Exam 80 80 80 80 80 80 80 </td> <td>Exam. Duration (in Hrs) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3</td> <td>Term Work 25 25 25 25 25 25 25 25 25</td> <td>Prac /oral 25 25 25 25 25 25 25 25 25 25 25 25</td> <td>Total 100 100 100 100 100 50 50 50 50 50 50</td>	End Sem Exam 80 80 80 80 80 80 80 	Exam. Duration (in Hrs) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Term Work 25 25 25 25 25 25 25 25 25	Prac /oral 25 25 25 25 25 25 25 25 25 25 25 25	Total 100 100 100 100 100 50 50 50 50 50 50

ITM601	Mini Project – 2 B Based on ML	 			 25	25	50
Total		 	100	400	 150	150	800

\$ indicates work load of Learner (Not Faculty), for Mini Project

ITDO601X	Department Optional Course – 2
ITDO6011	Software Architecture
ITDO6012	Image Processing
ITDO6013	Green IT
ITDO6014	Ethical Hacking and Forensic

Program Structure for Fourth Year Engineering Semester VII & VIII UNIVERSITY OFMUMBAI (With Effect from2022-2023)

Semester VII

Course	Course Name	Teac (Co	ching Scl ntact Ho	heme ours)	Credits Assigned					
Code	Course Manie	Theory		Pract. Tut.	Theory		Pra	ct.	Total	
ITC701	AI and DS –II	3				3			3	
ITC702	Internet of Everything		3			3			3	
ITDO701 X	Department Optional Course – 3		3			3			3	
ITDO702 X	Department Optional Course –4	3	3			3			3	
ITIO701X	Institute Optional Course – 1	3	3			3			3	
ITL701	Data Science Lab	-	-	2			1		1	
ITL702	IOE Lab	-	-	2			1		1	
ITL703	Secure Application Development	-	-	2			1		1	
ITL704	Recent Open Source Project Lab	-	-	2					1	
ITP701	Major Project I	-	-	6#			3		3	
	Total	1	5	14	15		7		22	
		Examination Scheme								
		Theo			,		Term Work	Prac/o ral	Total	
Course Code	Course Name	Intern	nal Asses	sment	t Sem Duration Exam (in Hrs)					
		Test1	Test2	Avg						
ITC701	AI and DS –II	20	20	20	80	3	-		100	
ITC702	Internet of Everything	20	20	20	80	3			100	
ITDO701 X	Department Optional Course –3	20	20	20	80	3			100	
ITDO702 X	Department Optional Course –4	20	20	20	80	3			100	
ITIO701X	Institute Optional Course – 1	20	20	20	80	3			100	
ITL701	Data Science Lab						25	25	50	
ITL702	IOE Lab						25	25	50	
ITL703	Secure Application Development						25	25	50	
ITL704	Recent Open Source Project Lab						25	25	50	
ITP701	Major Project I						25	25	50	
	Total			100	400		125	125	750	

indicates work load of Learner (Not Faculty), for Major Project

ITDO701X	Department Optional Course –3
ITDO7011	Storage Area Network
ITDO7012	High Performance computing
ITDO7013	Infrastructure Security
ITDO7014	Software Testing and QA

ITDO702X	Department Optional Course –4
ITDO7021	MANET
ITDO7022	AR – VR
ITDO7023	Quantum Computing
ITDO7024	Information Retrieval System

 ITIO701X
 Institute Optional Course – 1 (Common for all branches will be notified)

Program Structure for Fourth Year Engineering Semester VII & VIII UNIVERSITY OFMUMBAI (With Effect from2022-2023)

Semester VIII

Course	Course Name	Teaching Scheme (Contact Hours)					Credits Assigned			
Code	Code		Theory		act. ut.	Theory	Pr	Pract.		
ITC801	Blockchain and DLT	,	3	-	-	3				
ITDO801 X	Department Optional Course – 5		3	-	-	3			3	
ITDO802 X	Department Optional Course – 6		3	-	-	3			3	
ITIO801X	Institute Optional Course – 2	3		-					3	
ITL801	Blockchain Lab	-		2	2			1	1	
ITL802	Cloud computing	-		1	2			1	1	
ITP801	Major Project II	-		11	2#			6		
	Total	1	2	16 12 8		8	20			
		Examination Scheme								
		Theory					Term Work	Prac /oral	Total	
Course Code	Course Name	Intern	al Assess	ment	End Sem Exam	Exam. Duratio n (in Hrs)				
		Test1	Test2	Avg						
ITC801	Blockchain and DLT	20	20	20	80	3			100	
ITDO801 X	Department Optional Course – 5	20	20	20	80	3			100	
ITDO802 X	Department Optional Course – 6	20	20	20	80	3			100	
ITIO801X	Institute Optional Course – 2	20	20	20	80	3			100	
ITL801	Blockchain Lab						25	25	50	
ITL802	Cloud computing						25	25	50	
ITP801	Major Project II						100	50	150	
	Total			80	320		150	100	650	

indicates work load of Learner (Not Faculty), for Major Project

Students group and load of faculty per week.

Mini Project 1 and 2 :

Students can form groups with minimum 2 (Two) and not more than 4 (Four) Faculty Load : 1 hour per week per four groups

Major Project 1 and 2 : Students can form groups with minimum 2 (Two) and not more than 4 (Four) <u>Faculty Load :</u> In Semester VII – ½ hour per week per project group In Semester VIII – 1 hour per week per project group

ITDO801X	Department Optional Course – 5
ITDO8011	Big Data Analytics
ITDO8012	Reinforcement learning
ITDO8013	Simulation and Modeling
ITDO8014	Knowledge management

ITDO802X	Department Optional Course –6
ITDO8021	User Interface Design
ITDO8022	Robotics
ITDO8023	ERP
ITDO8024	Cloud computing and Services

ITIO801X	Institute Optional Course – 2	(Common for all branches will be notified)
----------	-------------------------------	--

AC: <u>23/7/2020</u>

Item No. : <u>126</u>

UNIVERSITY OF MUMBAI

Bachelor of Engineering

in

Information Technology Engineering

Second Year with Effect from AY 2020-21 Third Year with Effect from AY 2021-22 Final Year with Effect from AY 2022-23

(REV- 2019 'C' Scheme) from Academic Year 2019 – 20

Under

FACULTY OF SCIENCE & TECHNOLOGY

(As per AICTE guidelines with effect from the academic year 2019-2020)

AC: <u>23/7/2020</u> Item No. <u>126</u>

UNIVERSITY OF MUMBAI

Syllabus for Approval

Sr. No.	Heading	Particulars
1	Title of the Course	Second Year B.E. Information Technology Engineering
2	Eligibility for Admission	After Passing First Year Engineering as per the Ordinance 0.6242
3	Passing Marks	40%
4	Ordinances / Regulations (if any)	Ordinance 0.6242
5	No. of Years / Semesters	8 semesters
6	Level	P.G. / U.G./ Diploma / Certificate (Strike out which is not applicable)
7	Pattern	Yearly / Semester (Strike out which is not applicable)
8	Status	New / Revised (Strike out which is not applicable)
9	To be implemented from Academic Year	With effect from Academic Year: 2020-2021

Date :23/7/2020

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mumbai Dr Anuradha Muzumdar Dean Faculty of Science and Technology University of Mumbai

Preamble

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Science and Technology (in particular Engineering) of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. Choice based Credit and grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 13 weeks and remaining 2 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

There was a concern that the earlier revised curriculum more focused on providing information and knowledge across various domains of the said program, which led to heavily loading of students in terms of direct contact hours. In this regard, faculty of science and technology resolved that to minimize the burden of contact hours, total credits of entire program will be of 170, wherein focus is not only on providing knowledge but also on building skills, attitude and self learning. Therefore in the present curriculum skill based laboratories and mini projects are made mandatory across all disciplines of engineering in second and third year of programs, which will definitely facilitate self learning of students. The overall credits and approach of curriculum proposed in the present revision is in line with AICTE model curriculum.

The present curriculum will be implemented for Second Year of Engineering from the academic year 2020-21. Subsequently this will be carried forward for Third Year and Final Year Engineering in the academic years 2021-22, 2022-23, respectively.

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mumbai Dr. Anuradha Muzumdar Dean Faculty of Science and Technology University of Mumbai

Incorporation and Implementation of Online Contents from <u>NPTEL/ Swayam Platform</u>

The curriculum revision is mainly focused on knowledge component, skill based activities and project based activities. Self learning opportunities are provided to learners. In the revision process this time in particular Revised syllabus of 'C ' scheme wherever possible additional resource links of platforms such as NPTEL, Swayam are appropriately provided. In an earlier revision of curriculum in the year 2012 and 2016 in Revised scheme 'A' and 'B' respectively, efforts were made to use online contents more appropriately as additional learning materials to enhance learning of students.

In the current revision based on the recommendation of AICTE model curriculum overall credits are reduced to 171, to provide opportunity of self learning to learner. Learners are now getting sufficient time for self learning either through online courses or additional projects for enhancing their knowledge and skill sets.

The Principals/ HoD's/ Faculties of all the institute are required to motivate and encourage learners to use additional online resources available on platforms such as NPTEL/ Swayam. Learners can be advised to take up online courses, on successful completion they are required to submit certification for the same. This will definitely help learners to facilitate their enhanced learning based on their interest.

Dr. S. K. Ukarande Associate Dean Faculty of Science and Technology University of Mumbai Dr Anuradha Muzumdar Dean Faculty of Science and Technology University of Mumbai

Preface By BoS

It is our honor and a privilege to present the Rev-2019 'C' scheme syllabus of Bachelor of Engineering in Information Technology (effective from year 2019-20) with inclusion of cutting edge technology. Information Technology is comparatively a young branch among other engineering disciplines in the University of Mumbai. It is evident from the placement statistics of various colleges affiliated to the University of Mumbai that IT branch has taken the lead in the placement.

The branch also provides multi-faceted scope like better placement and promotion of entrepreneurship culture among students, and increased Industry Institute Interactions. Industries views are considered as stakeholders will design of the syllabus of Information Technology. As per Industries views only 16 % graduates are directly employable. One of the reasons is a syllabus which is not in line with the latest technologies. Our team of faculties has tried to include all the latest technologies in the syllabus. Also first time we are giving skill-based labs and Mini-project to students from third semester onwards which will help students to work on latest IT technologies. Also the first time we are giving the choice of elective from fifth semester such that students will be master in one of the IT domain. The syllabus is peer reviewed by experts from reputed industries and as per their suggestions it covers future trends in IT technology and research opportunities available due to these trends.

We would like to thank senior faculties of IT department of all colleges affiliated to University of Mumbai for significant contribution in framing the syllabus. Also on behalf of all faculties we thank all the industry experts for their valuable feedback and suggestions. We sincerely hope that the revised syllabus will help all graduate engineers to face the future challenges in the field of information and technology

Program Specific Outcome for graduate Program in Information Technology

- 1. Apply Core Information Technology knowledge to develop stable and secure IT system.
- 2. Design, IT infrastructures for an enterprise using concepts of best practices in information Technology and security domain.
- 3. Ability to work in multidisciplinary projects and make it IT enabled.
- 4. Ability to adapt latest trends and technologies like Analytics, Blockchain, Cloud, Data science.

Board of Studies in Information Technology Engineering - Team

Dr. Deven Shah (Chairman) Dr. Lata Ragha (Member) Dr. Vaishali D. Khairnar (Member) Dr. Sharvari Govilkar (Member) Dr. Sunil B. Wankhade (Member) Dr. Anil Kale (Member) Dr. Vaibhav Narwade (Member) Dr. GV Choudhary (Member) Ad-hoc Board Information Technology

University of Mumbai

Program Structure for Second Year Engineering Semester III & IV UNIVERSITY OF MUMBAI (With Effect from 2020-2021)

Semester III

Course	Course Name	Teaching Scheme (Contact Hours)				Credits Assigned					
Couc		Theo	ry Pi	ract.	Tut.	Theory	Pract.	Tut.	Total		
ITC301	Engineering Mathematics-III	3			1	3		1	4		
ITC302	Data Structure and Analysis	3				3			3		
ITC303	Database Management System	3				3			3		
ITC304	Principle of Communication	3				3			3		
ITC305	Paradigms and Computer Programming Fundamentals	3				3			3		
ITL301	Data Structure Lab			2			1		1		
ITL302	SQL Lab			2			1		1		
ITL303	Computer programming Paradigms Lab			2			1		1		
ITL304	Java Lab (SBL)			4			2		2		
ITM301	Mini Project – 1 A for Front end /backend Application using JAVA	4 ^{\$}			2		2				
Total		15		14	1	15	07	1	23		
		Examination Scheme									
	Course Name			The	ory		Term Work	Pract/ oral	Total		
Course Code		Internal Assessment Exam				Exam. Duration (in Hrs)					
		Test 1	Test2	Avg	•						
ITC301	Engineering Mathematics-III	20	20	20	80	3	25		125		
ITC302	Data Structure and Analysis	20	20	20	80	3			100		
ITC303	Database Management System	20	20	20	80	3			100		
ITC304	Principle of Communication	20	20	20	80	3			100		
ITC305	Paradigms and Computer Programming Fundamentals	20	20	20	80	3			100		
ITL301	Data Structure Lab						25	25	50		
ITL302	SQL Lab						25	25	50		
ITL303	Computer programming Paradigms Lab						25	25	50		
ITL304	Java Lab (SBL)						25	25	50		
ITM301	Mini Project – 1 A for Front end /backend Application using JAVA						25	25	50		
	Total			100	400		150	125	775		

\$ indicates work load of Learner (Not Faculty), for Mini-Project. Students can form groups with minimum 2 (Two) and not more than 4 (Four) <u>Faculty Load</u>: 1 hour per week per four groups.

Program Structure for Second Year Engineering Semester III & IV UNIVERSITY OF MUMBAI (With Effect from 2020-2021)

Semester IV

Course	Course Name	Teaching Scheme (Contact Hours)				Credits Assigned					
Code		Theo	ry Prac	ct. '	Tut.	Theory	Pract.	Tut.	Total		
ITC401	Engineering Mathematics-IV	3			1	3		1	4		
ITC402	Computer Network and Network Design	3				3			3		
ITC403	Operating System	3				3			3		
ITC404	Automata Theory	3				3			3		
ITC405	Computer Organization and Architecture	3				3			3		
ITL401	Network Lab	1	2				1		1		
ITL402	Unix Lab		2				1		1		
ITL403	Microprocessor Lab		2				1		1		
ITL404	Python Lab (SBL)		4				2		2		
ITM401	Mini Project – 1 B for Python based automation projects		4\$	4\$			2		2		
Total		15	14		1	15	7	1	23		
		Examination Scheme									
		Theory Term Pract/ Work oral							Total		
Course Code	Course Name	Inter	nal Asses	sment	End Sem Exar	l Exar . Durat n. (in H	n. ion rs)				
		Test 1	Test 2	Avg.				ct. Tut. Total 1 4 - 1 3 3 3 3 3 1 1 1 1 2 2 2 2 2 2 2 1 2 2 2 2 1 2 100 100 100 100 100 100 25 25 50 25 25 50 25 25 50 25<			
ITC401	Engineering Mathematics-IV	20	20	20	80	3	25		125		
ITC402	Computer Network and Network Design	20	20	20	80	3			100		
ITC403	Operating System	20	20	20	80	3			100		
ITC404	Automata Theory	20	20	20	80	3			100		
ITC405	Computer Organization and Architecture	20	20	20	80	3			100		
ITL401	Network Lab						25	25	50		
ITL402	Unix Lab						25	25	50		
ITL403	Microprocessor Lab						25	25	50		
ITL404	Python Lab (SBL)						25	<mark>25</mark>	<mark>50</mark>		
ITM401	Mini Project – 1 B for Python based automation projects						25	25	50		
Total			100	400		150	75	775			

\$ indicates work load of Learner (Not Faculty), for Mini Project. Students can form groups with minimum 2 (Two) and not more than 4 (Four) <u>Faculty Load</u>: 1 hour per week per four groups

Course	Course Name	Teacl (Con	hing Scho tact Hou	eme urs)	Credits Assigned			
Code		Theory	Pract.	Tut.	Theory	TW/Pract	Tut.	Total
ITC301	Engineering Mathematics-III	03	-	01	03	-	01	04

		Examination Scheme								
			Theory							
	Course Name	Internal Assessment								
Course Code		Test1	Test2	Avg of Test 1 & 2	End Sem Exam	Term Work	Pract	Oral	Total	
ITC301	Engineering Mathematics-III	20	20	20	80	25	-	-	125	

Pre-requisite: Engineering Mathematics-I, Engineering Mathematics-II

Course Objectives:

Sr. No.	Course Objectives						
The course aims:							
1	To familiarize with the Laplace Transform, Inverse Laplace Transform of various						
	functions, and its applications.						
2	To acquaint with the concept of Fourier series, its complex form and enhance the						
	problem solving skills.						
3	To familiarize the concept of complex variables, C-R equations with applications.						
4	The fundamental knowledge of Trees, Graphs etc.						
5	To study the basic techniques of statistics like correlation, regression and curve fitting						
	for data analysis, Machine learning and AI.						
6	To understand some advanced topics of probability, random variables with their						
	distributions and expectations.						

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On succ	cessful completion, of course, learner/student will be able to:	
1	Apply the concept of Laplace transform to solve the real integrals in engineering problems.	L1, L2
2	Apply the concept of inverse Laplace transform of various functions in engineering problems.	L1, L2

3	Expand the periodic function by using Fourier series for real life problems and complex engineering problems.	L1, L2, L3
4	Find orthogonal trajectories and analytic function by using basic concepts of complex variable theory	L1, L2, L3
5	Apply the concept of Correlation and Regression to the engineering problems in data science, machine learning and AI.	L2, L3
6	Illustrate understanding of the concepts of probability and expectation for getting the spread of the data and distribution of probabilities.	L1, L2

Module	Detailed Contents	Hours	CO Mapping
01	 Module: Laplace Transform 1.1 Definition of Laplace transform, Condition of Existence of Laplace transform, 1.2 Laplace Transform (L) of Standard Functions like e^{at}, sin(at), cos(at), sinh(at), cosh(at) and tⁿ, n ≥ 0. 1.3 Properties of Laplace Transform: Linearity, First Shifting Theorem, Second Shifting Theorem, change of scale Property, multiplication by t, Division by t, Laplace Transform of derivatives and integrals (Properties without proof). 1.4 Evaluation of real integrals by using Laplace Transformation. Self-learning Topics: Heaviside's Unit Step function, Laplace Transform. of Periodic functions. Dirac Delta Function. 	7	COI
02	 Module: Inverse Laplace Transform 2.1 Inverse Laplace Transform, Linearity property, use of standard formulae to find inverse Laplace Transform, finding Inverse Laplace transform using derivatives, 2.2 Partial fractions method to find inverse Laplace transform. 2.3 Inverse Laplace transform using Convolution theorem (without proof) Self-learning Topics: Applications to solve initial and boundary value problems involving ordinary differential equations 	6	CO1, CO2
03	 Module: Fourier Series: 3.1 Dirichlet's conditions, Definition of Fourier series and Parseval's Identity(without proof) 3.2 Fourier series of periodic function with period 2π and 2l, 3.3 Fourier series of even and odd functions 3.4 Half range Sine and Cosine Series. Self-learning Topics: Complex form of Fourier Series, orthogonal and orthonormal set of functions, Fourier Transform.	7	CO3

	Module: Complex Variables:		CO4
04	4.1 Function $f(z)$ of complex variable, limit, continuity and differentiability of $f(z)$, Analytic function, necessary and sufficient conditions for $f(z)$ to be analytic (without proof),		
	4.2 Cauchy-Riemann equations in cartesian coordinates (without proof)	7	
	4.3 Milne-Thomson method to determine analytic function $f(z)$ when real part (u) or Imaginary part (v) or its combination (u+v or u-v) is given.	7	
	4.4 Harmonic function, Harmonic conjugate and orthogonal trajectories		
	Self-learning Topics: Conformal mapping, linear, bilinear mapping, cross ratio, fixed points and standard transformations		
	Module: Statistical Techniques		CO5
	5.1 Karl Pearson's Coefficient of correlation (r)		
	5.2 Spearman's Rank correlation coefficient (R) (with repeated and non-repeated ranks)		
05	5.3 Lines of regression	6	
	5.4 Fitting of first and second degree curves.		
	Self-learning Topics: Covariance, fitting of exponential curve.		
	Module: Probability		CO6
	6.1 Definition and basics of probability, conditional probability,		
	6.2 Total Probability Theorem and Baye's theorem		
06	6.3 Discrete and continuous random variable with probability distribution and probability density function.	6	
	6.4 Expectation of random variables with mean, variance and standard deviation, moment generating function up to four moments.		
	Self-learning Topics: Skewness and Kurtosis of distribution (data)		

References:

- 1. Higher Engineering Mathematics, Dr. B. S. Grewal, Khanna Publication
- 2. Advanced Engineering Mathematics, Erwin Kreyszig, Wiley Eastern Limited.
- 3. Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Narosa publication,
- 4. Complex Variables and Applications, Brown and Churchill, McGraw-Hill education.
- 5. Probability, Statistics and Random Processes, T. Veerarajan, McGraw-Hill education.
- 6. Theory and Problems of Fourier Analysis with applications to BVP, Murray Spiegel, Schaum's Outline Series.

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in

Term Work:

General Instructions:

- 1. Students must be encouraged to write at least 6 class tutorials on entire syllabus.
- 2. A group of 4-6 students should be assigned a self-learning topic. Students should prepare a presentation/problem solving of 10-15 minutes. This should be considered as mini project in Engineering Mathematics. This project should be graded for 10 marks depending on the performance of the students.

The distribution of Term Work marks will be as follows -

1.	Attendance (Theory and Tutorial)	05 marks
2.	Class Tutorials on entire syllabus	10 marks
3.	Mini project	10 marks

Assessment:

Internal Assessment Test:

Assessment consists of two class tests of 20 marks each. The first class test (Internal Assessment I) is to be conducted when approx. 40% syllabus is completed and second class test (Internal Assessment II) when additional 35% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein 4 sub-questions of 5 marks each will be asked.
- 4. Remaining questions will be randomly selected from all the modules.
- 5. Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Course Code	Course	Teaching Scheme (Contact Hours)			Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
						/Oral		
ITC302	Data	03			03			03
	Structure							
	and							
	Analysis							

Course	Course	Examination Scheme								
Code	Code Name		Theory Marks							
		Internal assessment			End	Term Work	Proof (Oral	Total		
		Test1	Test 2	Avg.	Sem. Exam		Thet. /Oral	Total		
ITC302	Data Structure and Analysis	20	20	20	80			100		

Course Objectives:

Sr. No.	Course Objectives				
The course aims:					
1	The fundamental knowledge of data structures.				
2	The programming knowledge which can be applied to sophisticated data structures.				
3	The fundamental knowledge of stacks queue, linked list etc.				
4	The fundamental knowledge of Trees, Graphs etc.				
5	The fundamental knowledge of different sorting, searching, hashing and recursion				
	techniques				
6	The real time applications for stacks, queue, linked list, trees, graphs etc.				

Course Outcomes:

Sr.	Course Outcomes	Cognitive levels
No.		of attainment as
		per Bloom's
		Taxonomy
On succ	cessful completion, of course, learner/student will be able to:	
1	Classify and Apply the concepts of stacks, queues and linked list in real life	L1, L2, L3
	problem solving.	
2	Classify, apply and analyze the concepts trees in real life problem solving.	L2, L3,L4
3	Illustrate and justify the concepts of graphs in real life problem solving.	L3, L5
4	List and examine the concepts of sorting, searching techniques in real life	L2, L3, L4
	problem solving.	
5	Use and identify the concepts of recursion, hashing in real life problem	L3, L4
	solving.	
6	Examine and justify different methods of stacks, queues, linked list, trees	L3, L4, L5
	and graphs to various applications.	

DETAILED SYLLABUS:

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Defining, Declaring and Initialization of structure variables.	02	
		Accessing members of a structure, Array of structures, Nested structures, Pointers to structures. Passing structure, structure members, structure arrays and pointer to structure as function parameters. Self-referential structures.		
Ι	Introduction to Stacks, Queues and Linked Lists	 Introduction to Data Structures: Linear and Non Linear Data Structures, Static and Dynamic Data Structures. Concept of Stack and Queue. Array Implementation of Stack and Queue, Circular Queue, Double Ended Queue, Priority Queue. Concept of Linked Lists. Singly linked lists, doubly linked lists and circular linked lists. Insertion, deletion, update and copying operations with Singly linked lists, doubly linked lists. 	08	CO1
		Reversing a singly linked list. Self-learning Topics: Linked List Implementation of Stack, Linked List implementation of Queue, Circular Queue, Double Ended Queue, Priority Queue.		
II	Trees	Introduction to Trees: Terminology, Types of Binary trees.	07	CO1,
		Non recursive Preorder, in-order and post-order traversal. Creation of binary trees from the traversal of binary trees.		CO 2
		Binary search tree: Traversal, searching, insertion and deletion in binary search tree.		
		Threaded Binary Tree: Finding in-order successor and predecessor of a node in threaded tree. Insertion and deletion in threaded binary tree.		
		AVL Tree: Searching and traversing in AVL trees. Tree Rotations: Right Rotation, Left Rotation. Insertion and Deletion in an AVL Tree.		
		B-tree: Searching, Insertion, Deletion from leaf node and non- leaf node.		
		Self hearing Terrier I. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		
III	Graphs	Introduction to Graphs: Undirected Graph, Directed Graph, graph terminology, Connectivity in Undirected and Directed Graphs. Spanning tree. Representation of graph: adjacency matrix, adjacency list,	05	CO1, CO3
		Representation of graph: adjacency matrix, adjacency list, Transitive closure of a directed graph and path matrix.		

		Traversals: Breadth First Search, Depth First Search.		
		Self-learning Topics: Implementation of BFS. DFS		
IV	Recursion and Storage Management	Recursion: Writing a recursive function, Flow of control in recursive functions, Winding and unwinding phase, Recursive data structures, Implementation of recursion. Tail recursion. Indirect and Direct Recursion.	06	CO5
		Fit and Worst Fit methods. Fragmentation, Freeing Memory, Boundary Tag Method. Buddy Systems: Binary Buddy System, Fibonacci Buddy System. Compaction, Garbage Collection.		
	~	Self-learning Topics: Implementation of recursion function.		
V	Searching	Searching: Sequential Search, Binary Search. Hashing: Hash	05	CO 4,
	and Sorting	Functions: Truncation, Mid-square Method, Folding Method,		005
		Division Method. Collision Resolution: Open Addressing:		05
		Chaining Pucket Hashing Analysis of all searching		
		Chaining Bucket Hasning. Analysis of all searching		
		techniques		
		Sorting: Incortion cort Selection cort Margo cort Quick cort		
		soluting. Insertion solt, Selection solt, Merge solt, Quick solt		
		and Radix soft. Analysis of an softing techniques		
		Self-learning Topics: Implementation of different sorting techniques and searching.		
VI	Applications of Data	Applications of Linked Lists: Addition of 2 Polynomials and Multiplication of 2 polynomials.	06	CO6
	Structures			
		Applications of Stacks: Reversal of a String, Checking		
		Function calls, Dolish Notation: Introduction to infiguration		
		and postfix expressions and their evaluation and conversions		
		and positive expressions and their evaluation and conversions.		
		Application of Queues: Scheduling, Round Robin Scheduling		
		Applications of Trees: Huffman Tree and Heap Sort.		
		Applications of Graphs: Dijkstra's Algorithm, Minimum Spanning Tree: Prim's Algorithm, Kruskal's Algorithm.		
		Self-learning Topics: Implementation of applications for Stack, Queues, Linked List, Trees and Graph.		

Text Books:

- 1. S. K Srivastava, Deepali Srivastava; Data Structures through C in Depth; BPB Publications; 2011.
- 2. Yedidya Langsam, Moshej Augenstein, Aaron M. Tenenbaum; Data Structure Using C & C++; Prentice Hall of India; 1996.
- 3. Reema Thareja; Data Structures using C; Oxford.

References:

- 1. Ellis Horowitz, Sartaj Sahni; Fundamentals of Data Structures; Galgotia Publications; 2010.
- 2. Jean Paul Tremblay, Paul G. Sorenson; An introduction to data structures with applications; Tata McGrawHill; 1984.
- 3. Rajesh K. Shukla; Data Structures using C and C++; Wiley India; 2009.

Online References:

Sr. No.	Website Name
2.	https://www.nptel.ac.in
3.	https://opendatastructures.org/
3.	https://www.coursera.org/

Assessment:

Internal Assessment (IA) for 20 marks:

- IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test
- > Question paper format
 - Question Paper will comprise of a total of **six questions each carrying 20 marksQ.1** will be **compulsory** and should **cover maximum contents of the syllabus**
 - **Remaining questions** will be **mixed in nature** (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
 - A total of **four questions** need to be answered

Course Code	Course	Teaching Scheme (Contact Hours)			Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
ITC303	Database Management System	03			03			03

Course	Course	Examination Scheme							
Code	Name	Theory Marks							
			Internal assessment			Torm Work	Proof Oral	Total	
		Test1	Test 2	Avg.	Sem. Exam		T fact. / Ofai	Total	
ITC303	Database Management System	20	20	20	80			100	

Course Objectives:

Sr. No.	Course Objectives				
The course aims:					
1	To learn the basics and understand the need of database management system.				
2	To construct conceptual data model for real world applications				
3	To Build Relational Model from ER/EER.				
4	To introduce the concept of SQL to store and retrieve data efficiently.				
5	To demonstrate notions of normalization for database design.				
6	To understand the concepts of transaction processing- concurrency control & recovery				
	procedures.				

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy		
On suc	cessful completion, of course, learner/student will be able to:			
1	Identify the need of Database Management System.	L1, L2		
2	Design conceptual model for real life applications.	L6		
3	Create Relational Model for real life applications	L6		
4	Formulate query using SQL commands.	L3		
5	Apply the concept of normalization to relational database design.	L3		
6	Demonstrate the concept of transaction, concurrency and recovery.	L2		
Sr. No	Module	Detailed Content	Hours	CO Manning
-----------	--	--	-------	---------------
0	Prerequisite	Comment Basic knowledge of operating systems and file systems, Any programming	02	
I	Database System Concepts and Architecture	Introduction, Characteristics of Databases, File system v/s Database system, Data abstraction and Data Independence, DBMS system architecture, Database Administrator (DBA), Role of DBA Self-learning Topics: Identify the types of Databases	05	CO1
Π	The Entity- Relationship Model	Conceptual Modeling of a database, The Entity- Relationship (ER) Model, Entity Type, Entity Sets, Attributes and Keys, Relationship Types, Relationship Sets, Weak entity Types Generalization, Specialization and Aggregation, Extended Entity-Relationship (EER) Model. Self-learning Topics: Design an ER model for any real time case study.	05	CO2
III	Relational Model & Relational Algebra	Introduction to Relational Model, Relational Model Constraints and Relational Database Schemas, Concept of Keys: Primary Kay, Secondary key, Foreign Key, Mapping the ER and EER Model to the Relational Model, Introduction to Relational Algebra, Relational Algebra expressions for Unary Relational Operations, • Set Theory operations, • Binary Relational operation Relational Algebra Queries Self-learning Topics: Map the ER model designed in module II to relational schema	05	CO3
IV	Structured Query Language (SQL) & Indexing	Overview of SQL, Data Definition Commands, Set operations, aggregate function, null values, Data Manipulation commands, Data Control commands, Complex Retrieval Queries using Group By, Recursive Queries, nested Queries ; Integrity constraints in SQL. Database Programming with JDBC, Security and authorization: Grant & Revoke in SQL Functions and Procedures in SQL and cursors. Indexing:Basic Concepts, Ordered Indices, Index Definition in SQL Self-learning Topics: Physical design of database for the relational model designed in module III and fire various queries.	08	CO4

V	Relational Database Design	Design guidelines for relational Schema, Functional Dependencies, Database tables and normalization, The need for normalization, The normalization process, Improving the design, Definition of Normal Forms- 1NF, 2NF, 3NF & The Boyce-Codd Normal Form (BCNF). Self-learning Topics: Consider any real time application and normalization upto 3NF/BCNF	07	CO5
VI	Transactions	Transaction:	07	CO6
	Management and	Transaction concept, State Diagram, ACID		
	Concurrency and	Properties, Transaction Control Commands,		
	Recovery	Concurrent Executions, Serializability – Conflict and View, Concurrency Control:		
		Lock-based-protocols, Deadlock handling		
		Timestamp-based protocols,		
		Recovery System:		
		Recovery Concepts, Log based recovery.		
		Self-learning Topics: Study the various deadlock		
		situation which may occur for a database designed		
		in module V.		

Text Books:

1. Korth, Slberchatz, Sudarshan, Database System Concepts, 6th Edition, McGraw Hill

- 2. Elmasri and Navathe, Fundamentals of Database Systems, 6th Edition, Pearson education
- 3. Raghu Ramkrishnan and Johannes Gehrke, Database Management Systems, TMH

References:

- 1. Peter Rob and Carlos Coronel, Database Systems Design, Implementation and Management^{II}, Thomson Learning, 9th Edition.
- 2. SQL & PL / SQL for Oracle 11g Black Book, Dreamtech Press
- 3. G. K. Gupta : "Database Management Systems", McGraw Hill

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in
2.	https://www.oreilly.com
3.	https://www.coursera.org/

Assessment:

Internal Assessment (IA) for 20 marks:

- IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test
- > Question paper format
 - Question Paper will comprise of a total of **six questions each carrying 20 marks Q.1** will be **compulsory** and should **cover maximum contents of the syllabus**
 - **Remaining questions** will be **mixed in nature** (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
 - A total of **four questions** need to be answered

Course Code	Course Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
ITC304	Principle of Communication	03			03			03

Course Code	Course Name	Examination Scheme						
			Theorem	ry Marks				
		Internal assessment End Term Work			Pract /Oral	Total		
		Test1	Test 2	Avg.	Sem. Exam		Plact. /Ofai	Total
ITC304	Principle of Communication	20	20	20	80			100

Course Objectives:

Sr. No.	Course Objectives						
The course aims:							
1	Study the basic of Analog and Digital Communication Systems.						
2	Describe the concept of Noise and Fourier Transform for analyzing communication systems.						
3	Acquire the knowledge of different modulation techniques such as AM, FM and study the						
	block diagram of transmitter and receiver.						
4	Study the Sampling theorem and Pulse Analog and digital modulation techniques						
5	Learn the concept of multiplexing and digital band pass modulation techniques						
6	Gain the core idea of electromagnetic radiation and propagation of waves.						

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On succ	cessful completion, of course, learner/student will be able to:	
1	Describe analog and digital communication systems	L1,L2
2	Differentiate types of noise, analyses the Fourier transform of time and	L1, L2, L3, L4
	frequency domain.	
3	Design transmitter and receiver of AM, DSB, SSB and FM.	L1,L2,L3,L4
4	Describe Sampling theorem and pulse modulation systems.	L1,L2,L3
5	Explain multiplexing and digital band pass modulation techniques.	L1, L2
6	Describe electromagnetic radiation and propagation of waves.	L1,L2

Prerequisite: Basic of electrical engineering

Sr.	Module	Detailed Content	Hours	СО
No.				Mapping
0	Prerequisite	Terminologies in communication systems, analog and	02	
Ŭ	Trerequisite	digital electronics	02	
Ι	Introduction	Basics of analog communication and digital	03	CO1
		communication systems (Block diagram),		
		Electromagnetic Spectrum and application, Types of		
		Communication channels.		
		Self-learning Topics: Applications areas of analog		
		and digital communication.		
II	Noise and Fourier	Basics of signal representation and analyses,	06	CO2
	Representation of	Introduction to Fourier Transform, its properties		
	Signal and	(time and frequency shifting, Fourier transform of		
	System	unit step, delta and gate function. Types of Noise,		
		Noise parameters – Signal to noise ratio, Noise factor,		
		tomperature		
		Self-learning Tonics: Practice Numerical on above		
		topic		
Ш	Amplitude and	Need for modulation	12	CO1.
	Angle modulation	Amplitude Modulation Techniques: DSBFC		CO2.
	Techniques.	AM,DSBSC-AM, SSB SC AM- block diagram		CO3
	-	spectrum, waveforms, bandwidth,		
		Power calculations.		
		Generation of AM using Diode, generation of DSB		
		using Balanced modulator, Generation of SSB using		
		Phase Shift Method.		
		AM Transmitter (Block Diagram)		
		AM Receivers – Block diagram of TRF receivers and		
		Super heterodyne receiver and its characteristics-		
		Sensitivity, Selectivity, Fidelity, Image frequency and		
		its rejection		
		And double spouling		
		FM . Dringiple of FM waveforms spectrum		
		handwidth Pre- emphasis and de-emphasis in FM		
		FM generation: Direct method –Varactor diode		
		Modulator, Indirect method (Armstrong method)		
		block diagram and waveforms.		
		FM demodulator: Foster Seeley discriminator, Ratio		
		detector.		
		Self-learning Topics: Use of AM and FM in Modern		
		Communication Technology. Challenges faced by		
		radio business.		
IV	Pulse Analog	Sampling theorem for low pass and band pass signals	08	CO1,
	Modulation and	with proof,		CO2,
	Digital	Anti- aliasing filter, PAM, PWM and PPM generation		CO4
	wodulation	and		
		Descrictation process. Dulse code modulation. Delta		
		modulation		
		Adaptive delta modulation		
		Introduction to Line Codes and ISI.		

		Self-learning Topics: Implementation of Pulse code		
V	Multiplexing and	Principle of Time Division Multiplexing, Frequency	04	CO1,
	Digital Band Pass	Division Multiplexing, Orthogonal Frequency		CO2,
	Modulation	Division Multiplexing and its applications .ASK,		CO5
	Techniques	FSK, PSK QPSK Generation and detection.		
		Self-learning Topics: Implement TDM, FDM,		
		OFDM.		
VI	Radiation and	Electromagnetic radiation, fundamentals, types of	04	CO6
	Propagation of	propagation, ground wave, sky wave, space wave		
	Waves	tropospheric scatter propagation		
		Self-learning Topics: List the real time examples for		
		different types of propagation waves.		

Text Books:

[1]. George Kennedy, Bernard Davis, SRM Prasanna, Electronic Communication Systems, Tata McGraw Hill, 5th Ed

[2]. Simon Haykin, Michael Moher, Introduction to Analog & Digital Communications, Wiley India Pvt. Ltd., 2nd Ed.

[3].Wireless Communication and Networking, Vijay Garg

References:

[1]. Wayne Tomasi, Electronic Communications Systems, Pearson Publication, 5th Ed.

[2]. B P Lathi, Zhi Ding, Modern Digital and Analog Communication Systems, Oxford University

[3]. Herbert Taub, Donald L Schilling, Goutam Saha, Principles of Communication Systems, Tata McGraw Hill, 3rdEd.

[4]. K Sam Shanmugam, Digital and Analog Communication Systems, Wiley India Pvt. Ltd, 1st Ed.

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in
2.	https://www.classcentral.com
3.	http://www.vlab.co.in/

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of **six questions each carrying 20 marks Q.1** will be **compulsory** and should **cover maximum contents of the syllabus**
- **Remaining questions** will be **mixed in nature** (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered

Course Code	Course	Teaching Scheme (Contact Hours)			Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
ITC305	Paradigms and Computer Programming Fundamentals	03			03			03

Course	Course	Examination Scheme						
Code	Name	Theory Marks						
			Internal assessment			Term Work	Dract (Oral	Total
		Test1	Test 2	Avg.	Sem. Exam		T fact. / Ofai	Total
ITC305	Paradigms and Computer Programming Fundamentals	20	20	20	80			100

Course Objectives:

Sr. No.	Course Objectives
The cours	e aims:
1	To introduce various programming paradigms and the basic constructs that underline any
	programming language.
2	To understand data abstraction and object orientation
3	To introduce the basic concepts of declarative programming paradigms through functional and
	logic programming.
4	To design solutions using declarative programming paradigms through functional and logic
	programming.
5	To introduce the concepts of concurrent program execution.
6	To understand use of scripting language for different problem domains

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On succ	cessful completion, of course, learner/student will be able to:	
1	Understand and Compare different programming paradigms.	L1, L2
2	Understand the Object Oriented Constructs and use them in program design.	L1, L2
3	Understand the concepts of declarative programming paradigms through	L1, L2
	functional and logic programming.	
4	Design and Develop programs based on declarative programming paradigm	L5, L6
	using functional and/or logic programming.	
5	Understand the role of concurrency in parallel and distributed programming.	L1, L2
6	Understand different application domains for use of scripting languages.	L1. L2

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Compilation and interpretation Focus on overview of compilation steps	02	CO1
Ι	Introduction to Programming Paradigms and Core Language Design Issues	Introduction to different programming paradigms. Names, Scopes, and Bindings, Scope Rules, Storage Management. Type Systems, Type Checking, Equality Testing and Assignment. Subroutine and Control Abstraction: Stack Layout, Calling sequence, parameter passing Generic subroutines and modules. Exception handling, Coroutines and Events.	10	CO1
II	Imperative	Self-Learning Topic: Implementation of basic concepts using programming language. Grouping of data and Operations- Encapsulation.	05	CO2
	Paradigm: Data Abstraction in Object Orientation	Overloading, Polymorphism, Inheritance, Initialization and Finalization, Dynamic Binding. Self-Learning Topic: Implementation of OOP		
III	Declarative Programming Paradigm: Functional Programming	IntroductiontoLambdaCalculus,FunctionalProgramming Concepts, Evaluation order, Higher order functions, I/O-Streams and Monads.Self-Learning Topic:Implementation of programs using functional programming Language Haskel can refer to hacker rank website for problem statements	07	CO3, CO4
IV	Declarative Programming Paradigm: Logic Programming	Logic Programming with PROLOG - Resolution and Unification, Lists, Arithmetic execution order, imperative control flow, database manipulation, PROLOG facilities and deficiencies. Self-Learning Topic: Identification of different application domains for use of Prolog and Logic programming	06	CO3, CO4
V	Alternative Paradigms: Concurrency	Concurrent Programming Fundamentals, Implementing synchronisation, Message Passing - Background and Motivation, Multithreaded programs, Communication and Synchronization, Language and Libraries, Thread creation Syntax. Self-Learning Topic: Study Implementation of concurrency concepts for real time application.	04	CO5
VI	Alternative Paradigms: Scripting Languages	Common characteristics, Different Problem domains for using scripting,Use of scripting in Web development–server and clients side scripting, Innovative features of scripting languages - Names and Scopes, string and pattern manipulation, data types, object orientation.	05	CO6

Self-Learning Topic: Review small client server	
application code in any scripting language to realise applicability of features learned in Module.	

Text Books:

- 1. Scott M L, Programming Language Pragmatics, 3rd Edn., Morgan Kaufmann Publishers, 2009
- 2. Graham Hutton, Programming in Haskell, 2nd Edition, Cambridge University Press, 2016
- 3. Programming Languages: Concepts and Constructs; 2nd Edition, Ravi Sethi, Pearson Education Asia, 1996.

References:

- 1. Harold Abelson and Gerald Jay Sussman with Julie Sussman foreword by Alan J. Perlis, Structure and Interpretation of Computer Programs (2nd Edition) (February 2, 2016)
- Programming Languages: Design and Implementation (4th Edition), by Terrence W. Pratt, Marvin V. Zelkowitz, Pearson, 2000
- 3. Rajkumar Buyya, Object-oriented Programming with Java: Essentials and Applications, Tata McGraw Hill Education Private Limited
- 4. Max Bramer, Logic Programming with Prolog, Springer ISBN-13: 978-1852-33938-8

Online References:

Sr No	Website Name	Link
<u>1</u>	Principles of programming Languages (Videos)	https://nptel.ac.in/courses/106/102/106102067/
2	Edx course Paradigms of Computer Programming – Fundamentals	https://www.classcentral.com/course/edx- paradigms-of-computer-programming- fundamentals-2298
3	Udemy Couses	https://www.udemy.com

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

► Question paper format

- Question Paper will comprise of a total of six questions each carrying 20 marks Q.1 will be compulsory and should cover maximum contents of the syllabus.
- Remaining questions will be mixed in nature (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of four questions need to be answered

Lab Code	Lab Name	Teaching (Contact	Feaching Scheme Contact Hours)		Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITL301	Data Structure Lab		02			01		01

Lab Code	Lab Name	Examination Scheme						
			Theorem	ry Marks				
		Inte	rnal asse	ssment	End	Term Work	Pract. /Oral	Total
		Test1	Test 2	Avg.	Sem. Exam			
ITL301	Data Structure Lab					25	25	50

Lab Objectives:

Sr. No.	Lab Objectives
The Lab e	experiments aims:
1	To use data structures as the introductory foundation for computer automation to engineering
	problems.
2	To use the basic principles of programming as applied to complex data structures.
3	To learn the principles of stack, queue, linked lists and its various operations.
4	To learn fundamentals of binary search tree, implementation and use of advanced tree like
	AVL, B trees and graphs.
5	To learn about searching, hashing and sorting.
6	To learn the applications of linked lists, stacks, queues, trees and graphs.

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as
		per Bloom's Taxonomy
On succ	cessful completion, of course, learner/student will be able to:	·
1	Understand and use the basic concepts and principles of various linked lists, stacks and queues.	L1, L2, L3
2	Understand the concepts and apply the methods in basic trees.	L1, L2
3	Use and identify the methods in advanced trees.	L3, L4
4	Understand the concepts and apply the methods in graphs.	L2, L3
5	Understand the concepts and apply the techniques of searching, hashing and sorting	L2, L3
6	Illustrate and examine the methods of linked lists, stacks, queues, trees and graphs to various real time problems	L3, L4

Prerequisite: C Programming

Hardware & Software Requirements:

Hardware Requirement:	Software requirement:
PC i3 processor and above	Turbo/Borland C complier

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	Introduction of C programming language.	02	
Ι	Stacks, Queues and Linked Lists	 Array Implementation of Stack and Queue. Insertion, deletion operations with Singly linked lists Insertion, deletion operations Doubly linked lists Insertion, deletion operations Circular linked lists. Reversing a singly linked list. * Linked List implementation of Stack and Queue 	04	LO 1
II	Trees Advanced Trees	 * Implementation of operations (insertion, deletion, counting of nodes, counting of leaf nodes etc.) in a binary search tree. Implementation of insertion, deletion and traversal for fully in-threaded binary search tree. * Implementation of AVL tree. 	04	LO 2 LO 3
		• Implementation of operations in a B tree.		
IV	Graphs	 Implementation of adjacency matrix creation. Implementation of addition and deletion of edges in a directed graph using adjacency matrix. Implementation of insertion and deletion of vertices and edges in a directed graph using adjacency list. 	04	LO 4
V	Searching and Sorting	 Implementation of Heap Sort Implementation of Binary Search. Implementation of Selection sort, Bubble sort, Insertion sort, Quick sort 	04	LO 5

VI	Applications of Data Structures	• * Implementation of infix to postfix conversion and evaluation of postfix expression	04	LO 6
		• * Implementation of Josephus Problem using circular linked list		
		• * Implementation of traversal of a directed graph through BFS and DFS.		
		• Implementation of finding shortest distances using Dijkstra's algorithm		
		• *Implementation of hashing functions with different collision resolution techniques		

Text Books:

- 1. S. K Srivastava, Deepali Srivastava; Data Structures through C in Depth; BPB Publications; 2011.
- 2. Yedidya Langsam, Moshej Augenstein, Aaron M. Tenenbaum; Data Structure Using C & C++; Prentice Hall of India; 1996.
- 3. Reema Thareja; Data Structures using C; Oxford.

References:

- 1. Ellis Horowitz, Sartaj Sahni; Fundamentals of Data Structures; Galgotia Publications; 2010.
- 2. Jean Paul Tremblay, Paul G. Sorenson; An introduction to data structures with applications; Tata McGrawHill; 1984.
- 3. Rajesh K. Shukla; Data Structures using C and C++; Wiley India; 2009.

Term Work: Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Practical& Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Lab Code	Lab Name	Teaching Scheme (Contact Hours)			Credits	Assigned		
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITL302	SQL Lab		02			01		01

Lab Code	Lab Name	Examination Scheme						
			Theor	ry Marks	s			
		Inte	rnal asse	ssment	End	Torm Work	Proof (Orol	Total
		Test1	Test 2	Δνα	Sem.		Flact. /Ofal	Total
		10311	Test 2	Avg.	Exam			
ITL302	SQL Lab							
						25	25	50

Lab Objectives:

Sr. No.	Lab Objectives
The Lab e	experiments aims:
1	To identify and define problem statements for real life applications
2	To construct conceptual data model for real life applications
3	To Build Relational Model from ER/EER and demonstrate usage of relational algebra.
4	To Apply SQL to store and retrieve data efficiently
5	To implement database connectivity using JDBC
6	To understand the concepts of transaction processing- concurrency control & recovery
	procedures.

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On succ	cessful completion, of course, learner/student will be able to:	
1	Define problem statement and Construct the conceptual model for real life application.	L1, L3, L4, L6
2	Create and populate a RDBMS using SQL.	L3, L4
3	Formulate and write SQL queries for efficient information retrieval	L3, L4
4	Apply view, triggers and procedures to demonstrate specific event handling.	L1, L3, L4
5	Demonstrate database connectivity using JDBC.	L3
6	Demonstrate the concept of concurrent transactions.	L3, L4

Prerequisite: C Programming

Hardware & Software Requirements:

Hardware Requirement:	Software requirement:
PC i3 processor and above	Any SQL Compiler, Java Programming Language

DETAILED SYLLABUS:

Sr.	Detailed Content		LO Mapping
No.		Hours	
1.	Identify real world problem and develop the problem statement. Design an		LO1
	Entity-Relationship (ER) / Extended Entity-Relationship (EER) Model.	02	
2.	Mapping ER/EER to Relational schema model.	02	LO1
3.	Create a database using DDL and apply integrity constraints.	02	LO2, LO3
4.	Perform data manipulations operations on populated database.	02	LO3
5.	Perform Authorization using Grant and Revoke.	02	LO2, LO3
6.	Implement Basic and complex SQL queries.	02	LO3, LO4
7.	Implementation of Views and Triggers.		LO4
		02	
8.	Demonstrate database connectivity using JDBC.		LO5
		02	
9.	Execute TCL commands.	02	LO4
10.	Implement functions and procedures in SQL	02	LO3, LO4
11.	Implementation of Cursor.	02	LO3, LO4
12.	Implementation and demonstration of Transaction and Concurrency control		LO6
	techniques using locks.	02	

Text Books:

- 1. Korth, Slberchatz, Sudarshan, Database System Concepts, 6th Edition, McGraw Hill
- 2. Elmasri and Navathe, Fundamentals of Database Systems, 6th Edition, Pearson education
- 3. Raghu Ramkrishnan and Johannes Gehrke, Database Management Systems, TMH

References:

- 1. Peter Rob and Carlos Coronel, Database Systems Design, Implementation and Management^{||}, Thomson Learning, 9th Edition.
- 2. SQL & PL / SQL for Oracle 11g Black Book, Dreamtech Press
- 3. G. K. Gupta : "Database Management Systems", McGraw Hill

Term Work:

Term Work shall consist of at least 10 Practical's based on the above list, but not limited to. Also, Term work Journal must include at least 2 assignments:

The first assignment may be based on: Relational Algebra and Second may be based on Transactions

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Lab Code	Lab Name	Teaching (Contact		Credits	Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITL303	Computer programming Paradigms Lab		02			01		01

Lab Code	Lab Name	Examination Scheme							
		Theory Marks							
		Inte	rnal asse	ssment	End	Term Work	Pract /Oral	Total	
		Test1	Test 2	Avσ	Sem.		Thet. / Ofai	Total	
		10501	1050 2	11,2.	Exam				
ITL303	Computer programming Paradigms Lab					25	25	50	

Lab Objectives:

Sr. No.	Lab Objectives
The Lab e	experiments aims:
1	Understand data abstraction and object orientation
2	Design and implement declarative programs in functional and logic programming languages
3	Introduce the concepts of concurrent program execution
4	Understand run time program management
5	Understand how to implement a programming solution using different programming paradigms.
6	Learn to compare implementation in different programming paradigms.

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On succ	cessful completion, of course, learner/student will be able to:	
1	Implement Object Oriented concepts in C++.	L1, L2, L3
2	Design and Develop solution based on declarative programming paradigm using functional and logic programming.	L6
3	Understand the multi threaded programs in Java and C++	L1, L2
4	Understand the need and use of exception handling and garbage collection in C++ and JAVA	L2, L3
5	Implement a solution to the same problem using multiple paradigms.	L6
6	Compare the implementations in multiple paradigms at coding and	L4

execution level.	execution level.	

Prerequisite: Students must have learned C Programming (FEC205 and FEL204)

Hardware & Software Requirements:

Hardware Requirement:	Software requirement:
PC i3 processor and above	C++ compiler, Java Languge support, SWI Prolog, GHC Compiler.

Sr.	Module	Detailed Content	Hours	LO
INO.				Mapping
0	Prerequisite	Demonstrate Compilation and interpretation stages to students for C, C++, JAVA along with how to debug the code.	02	
Ι	Imperative Paradigm: Data Abstraction in Object Orientation	At least two Programming Implementations Preferably in C++ to demonstrate concepts like - Encapsulation, Inheritance, Initialization and Finalization, Dynamic Binding.	05	LO1
Π	Declarative Programming Paradigm: Functional Programming	 Tutorial Introduction to Haskell programming environment Tutorial exercise on operators, types etc. in Haskell At least 5 Haskell Programs to demonstrate Functional Programming Concepts. Sample Programs but not limited to: Implement safetail function that behaves in the same way as tail, except that safetail maps the empty list to the empty list, whereas tail gives an error in this case. Define safetail using: (a) a conditional expression; (b) guarded equations; (c) pattern matching. Hint: the library function null :: [a]-> Bool can be used to test if a list is empty. Simple List Comprehension Higher-Order Functions Write recursive function to multiply two natural numbers that uses pre defined add funion. Implement the game of nim in Haskell to apply list processing. Haskell code to represent infinite list e.g. fibobacci series Implement simple Calculator 	06	LO2

III	Declarative Programming Paradigm: Logic Programming	 Tutorial Installation and working of SWI Prolog Environment Implement at least 5 Prolog programs to understand declarative programming concepts. Students should clearly understand the syntax and the execution of the Prolog code Implementation. 	05	LO2
IV	Alternative Paradigms: Concurrency	At least two Programs preferably in c++ and java to demonstrate Thread management and synchronization	02	LO4
V	Run Time Program Management	A Program to understand Exception handling and Garbage collection, preferably in C++ and JAVA Students should understand the syntactic differences in the solutions in both Object Oriented Languages.	02	LO4
VI	Programming Assignment For comparative study of Different Paradigms	At Least two implementations each implemented on multiple paradigms like procedural, object oriented, functional, logic. The implementations should be done in a group of two/three students with appropriate difficulty level. Student should prepare small report and present the solution code and demonstrate execution for alternative solutions they build.	04	LO5, LO6

Text Books:

- 1. Scott M L, Programming Language Pragmatics, 3rd Edn., Morgan Kaufmann Publishers, 2009
- 2. Harold Abelson and Gerald Jay Sussman with Julie Sussman foreword by Alan J. Perlis, Structure and Interpretation of Computer Programs (2nd Edition)
- 3. Graham Hutton, Programming in Haskell, 2nd Edition, Cambridge University Press, 2016

4.

References:

- 1. Sethi R, Programming Languages Concepts and Constructs, 2nd Ed, Pearson Education
- 2. Yogesh Sajanikar, Haskell Cookbook, Packt Publishing, 2017

Online References:

Sr No	Website Description	Link
1	University Stuttgart Germany Lab Course on Programming Paradigms	http://software- lab.org/teaching/winter2019/pp/
2	Course at MIT Structure and Interpretation of Computer Programs [2019]	https://web.mit.edu/u/6.037
3	Edx Course Paradigms of Computer Programming – Fundamentals,	https://www.edx.org/course/paradigms- of-computer-programming- fundamentals
4	Tutorials point link for Haskel	https://www.tutorialspoint.com/haskell

Term Work: Term Work shall consist of at least 15 Practicals based on the above modules, but not limited to. Also, Term work Journal must include at least 3 tutorial reports and 01 report of programming assignment

as mentioned in module VI.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiments/Tutorials) + 5 Marks (Assignment write up) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & 1 Hr Practical exam will be held based on the above syllabus

Lab Code	Lab Name	Teaching Scheme (Contact Hours)		Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITL304	Java Lab (SBL)		04			02		02

Lab Code	Lab Name				Examina	ation Scheme		
			Theor	ry Marks				
		Inte	rnal asse	ssment	End	Term Work	Pract. /Oral	Total
		Test1	Test 2	Avg.	Sem. Exam			Total
ITL304	Java Lab (SBL)					25	25	50

Lab Objectives:

Sr. No.	Lab Objectives
The Lab e	experiments aims:
1	To understand the concepts of object-oriented paradigm in the Java programming language.
2	To understand the importance of Classes & objects along with constructors, Arrays ,Strings and vectors
3	To learn the principles of inheritance, interface and packages and demonstrate the concept of
	reusability for faster development.
4	To recognize usage of Exception Handling, Multithreading, Input Output streams in various
	applications
5	To learn designing, implementing, testing, and debugging graphical user interfaces in Java using
	Swings and AWT components that can react to different user events.
6	To develop graphical user interfaces using JavaFX controls.

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On succ	cessful completion, of course, learner/student will be able to:	
1	Explain the fundamental concepts of Java Programing.	L1, L2
2	Use the concepts of classes, objects, members of a class and the relationships among	L3
	them needed for a finding the solution to specific problem.	
3	Demonstrate how to extend java classes and achieve reusability using Inheritance, Interface and Packages.	L3
4	Construct robust and faster programmed solutions to problems using concept of Multithreading, exceptions and file handling	L3
5	Design and develop Graphical User Interface using Abstract Window Toolkit and Swings along with response to the events.	L6
6	Develop Graphical User Interface by exploring JavaFX framework based on MVC architecture.	L6

Hardware & Software Requirements:

Hardware Requirements	Software Requirements	Other Requirements
PC With Following	1. Windows or Linux Desktop OS	1. Internet Connection for installing
Configuration	2. JDK 1.8 or higher	additional packages if required
1. Intel PIV Processor	3. Notepad ++	
2. 2 GB RAM	4.JAVA IDEs like Netbeans or	
3. 500 GB Harddisk	Eclipse	
4. Network interface card	_	

Sr. No.	Module	Detailed Content	Hours	LO Manning
110.				mapping
0	Prerequisite	Basics of Computer Programming.	02	-
Ι	Java Fundamentals	Overview of procedure and object oriented Programming, Java Designing Goals and Features of Java Language.Introduction to the principles of object-oriented programming: Classes, Objects, Abstraction, Encapsulation, Inheritance, Polymorphism. Keywords, Data types, Variables, Operators, Expressions, Types of variables and methods. 	07	LO1

		the customer name, account number, initial balance, rate of interest, contact number and address field etc. Application should have following methods. 1. createAccount() 2. deposit() 3. withdraw() 4. computeInterest() 5. displayBalance() 5)Write a menu driven Java program which will read a number and should implement the following methods 1. factorial() 2. testArmstrong() 3. testPalindrome() 4. testPrime() 5. fibonacciSeries() 6) Create a Java based application to perform various ways of Method overloading.		
II	Classes, objects, Arrays and Strings	Classes & Objects: Reference Variables, Passing parameters to Methods and Returning parameters from the methods, Static members, Non-Static members Nested and Inner Classes. Static Initialization Block(SIB), Instance Initialization Block(IIB) Constructors: Parameterized Constructors, chaining of constructor, finalize() Method, Method overloading, Constructors Overloading. Recursion, Command-Line Arguments. Wrapper classes, InputBufferReader, OutputBufferReader, String Buffer classes, String functions. Arrays & Vectors: One and Two Dimensional arrays, Irregular arrays, dynamic arrays, Array List and Array of Object. (Perform any 3 programs that covers Classes & objects, Constructors, Command Line Arguments, Arrays/Vectors,String function and recursions).Experiments: 1) Write a program that would print the information (name, year of joining, salary, address) of three employees by creating a class named 'Employee'. The output should be as follows:Name Year of joining Address Robert2000 68D-WallsStreat Streat2) Write a program to print the area of a rectangle by creating a class named 'Area' having two methods, First method named as 'setDim' takes length and breadth of rectangle are entered through keyboard. 3) Write a Java program to illustrate Constructor Chaining.	07	LO1 LO2

		 4) Create a class 'Student' with three data members which are name, age and address. The constructor of the class assigns default values name as "unknown", age as 'O' and address as "not available". It has two members with the same name 'setInfo'. First method has two parameters for name and age and assigns the same whereas the second method takes has three parameters which are assigned to name, age and address of 10 students. Hint - Use array of objects. 5) Write a java programs to add n strings in a vector array. Input new string and check whether it is present in the vector. If it is present delete it otherwise add it to the vector. 6) Print the sum, difference and product of two complex numbers by creating a class named 'Complex' with separate methods for each operation whose real and imaginary parts are entered by user. 7)Write menu driven program to implement recursive Functions for following tasks. a) To find GCD and LCM b) To print n Fibonacci numbers c) To find reverse of number d) To solve 1 +2+3+4++(n-1)+n 8) Print Reverse Array list in java by writing our own function. 		
III	Inheritance, Packages and Interfaces.	 Inheritance: Inheritance Basics, Types of Inheritance in Java, member access, using Super- to call superclass Constructor, to access member of super class(variables and methods), creating multilevel hierarchy, Constructors in inheritance, method overriding, Abstract classes and methods, using final, Dynamic Method Dispatch Packages: Defining packages, creating packages and Importing and accessing packages Interfaces: Defining, implementing and extending interfaces, variables in interfaces, Default Method in Interface, Static Method in interface, Abstract Classes vs Interfaces. (Perform any 3 programs covering Inheritance, Interfaces and Packages). Experiments 1) Create a Teacher class and derive Professor/ Associate_Professor/Assistant_Professor class from Teacher class. Define appropriate constructor for all the classes. Also define a method to display information of Teacher. Make necessary assumptions as required. 2) Create a class Book and define a display method to display book information. Inherit Reference_Book and Magazine classes from Book class and override display method of Book class in Reference_Book and Magazine classes. Make necessary assumptions required. 	10	LO1 LO3

3) A university has two types of students — graduate students and research students. The University maintains the record of name, age and programme of every student. For graduate students, additional information like percentage of marks and stream, like science, commerce, etc. is recorded; whereas for research students, additionally, specialization and years of working experience, if any, is recorded. Each class has a constructor. The constructor of subclasses makes a call to constructor of the superclass. Assume that every constructor has the same number of parameters as the number of instance variables. In addition, every subclass has a method that may update the instance variable values of that subclass. All the classes have a function display student info(), the subclasses must override this method of the base class. Every student is either a graduate student or a research student.

Perform the following tasks for the description given above using Java :

(i) Create the three classes with proper instance variables and methods, with suitable inheritance.

(ii) Create at least one parameterised constructor for each class.

(iii) Implement the display_student_info() method in each class.

4) An employee works in a particular department of an organization. Every employee has an employee number, name and draws a particular salary. Every department has a name and a head of department. The head of department is an employee. Every year a new head of department takes over. Also, every year an employee is given an annual salary enhancement. Identify and design the classes for the above description with suitable instance variables and methods. The classes should be such that they implement information hiding. You must give logic in support of your design. Also create two objects of each class.

5) Consider a hierarchy, where a sportsperson can either be an athlete or a hockey player. Every sportsperson has a unique name. An athlete is characterized by the event in which he/she participates; whereas a hockey player is characterised by the number of goals scored by him/her. Perform the following tasks using Java :

(i)Create the class hierarchy with suitable instance variables and methods.

(ii) Create a suitable constructor for each class.

(iii) Create a method named display_all_info with suitable parameters. This method should display all the information about the object of a class.

(iv) Write the main method that demonstrates polymorphism.

6) Create an interface vehicle and classes like bicycle,

 Bicycle, Bike, car etc implement all these functionalities in their own class in their own way 7) Create a class "Amount In Words" within a user defined package to convert the amount into words. (Consider amount not to be more than 100000). 		
IV Exception Handling: Exception Handling: Multithreading, Input Output streams Fundamentals, Exception Types, Exception class Hierarchy, Using try and catch, Multiple catch Clauses, Nested try Statements, throw, throws, finally, Java's Built-in Exceptions, Creating Your Own Exception Subclasses Multithreaded Programming: The Java Thread Model and Thread Life Cycle, Thread Priorities, Creating a Thread, Implementing Runnable, Extending Thread, Creating Multiple Threads, Synchronization: Using Synchronized Methods, The synchronized Statement I/O Streams: Streams: Byte Streams and Character, The Predefined Streams, Reading Console Input, Reading Characters, Reading Strings, Writing Console Output, Reading and Writing Files. (Perform any 3 programs that cover Exception Handling, Multithreading and I/O Streams). Experiments: 1) Write java program where user will enter loginid and password as input. The password should be 8 digit containing one digit and one special symbol. If user enter valid password satisfying above criteria then show "Login Successful Message". If user enter invalid Password then create Invalid/PasswordException stating Please enter valid password StanceException It has a Class Called LessBalanceException It in the satement that Says WithDraw Amount, Withdraw Amount and Also Throws LessBalanceException It has a Class Called LessBalanceException With Generates a LessBalanceException Take Appropriate Action for the Same. 3) Create two threads such that one thread will print even number and another will print odd number in an ordered fashion. 4) Assume that two brothers, Joe and John, share a common bank account. They both can, independently, wead the be	10	LO1 LO3 LO4

		 money. Implement java application demonstrate how the transaction in a bank can be carried out concurrently. 5) You have been given the list of the names of the files in a directory. You have to select Java files from them 		
		A file is a Java file if it's name ends with ".java". For e.g. File- "Names.java" is a Java file, "FileNames.java.pdf" is not. Input: test.java, ABC.doc, Demo.pdf, add.java,		
		Output: tset.java, add.java, factorial.java		
V	GUI programming- I (AWT, Event Handling, Swing)	Designing Graphical User Interfaces in Java : Components and Containers, Basics of Components, Using Containers, Layout Managers, AWT Components, Adding a Menu to Window, Extending GUI Features	12	LO1 LO4 LO5
		Event-Driven Programming in Java : Event-Handling Process, Event-Handling Mechanism, Delegation Modelof Event Handling, Event Classes, Event Sources, Event Listeners, Adapter Classes as Helper Classes in Event Handling.		
		Introducing Swing: AWT vs Swings, Components and Containers, Swing Packages, A Simple Swing Application, Painting in Swing, Designing Swing GUI Application using Buttons, JLabels, Checkboxes, Radio Buttons, JScrollPane, JList, JComboBox, Trees, TablesScroll pane Menus and Toolbar		
		(Perform any 3 programs that contain AWT, Event handling and Swing to build GUI application).		
		1)Write a Java program to implement Swing components namely Buttons, JLabels, Checkboxes, Radio Buttons, JScrollPane, JList, JComboBox, Trees, Tables Scroll pane Menus and Toolbars to design interactive GUI.		
		2) Write a program to create a window with four text fields for the name, street, city and pincode with suitable labels. Also windows contains a button MyInfo. When the user types the name, his street, city and pincode and then clicks the button, the types details must appear in Arial Font with Size 32, Italics.		
		 3) Write a Java program to create a simple calculator using java AWT elements. .Use a grid layout to arrange buttons for the digits and basic operation +, -, /, *. Add a text felid to display the results. 4) Write a Java Program to create a Student Profile 		
		form using AWT controls.5) Write a Java Program to simulate traffic signal light using AWT and Swing Components.		

		 6) Write a Java Program to create a color palette. Declare a grid of Buttons to set the color names. Change the background color by clicking on the color button. 7) Build a GUI program that allows the user to add objects to a collection and perform search and sort on that collection.(Hint. Use Swing components like JButton, JList, JFrame, JPanel and JOptionPane.) 		
VI	GUI Programming II	JavaFX Basic Concepts, JavaFX application skeleton,	04	LO1
	Programming-II	Compliing and running JavaFX program, Simple		
	(JavaFX)	JavaFX control:Label, Using Buttons and events,		LO6
		Drawing directly on Canvas.		
		(Perform any one program that contains the concept of		
		JavaFX).		
		1)Write a Java program to design a Login Form using		
		JavaFX Controls.		
		2)Write Java program to draw various shapes on		
		Canvas using JavaFX.		

Text Books:

- 1. Herbert Schildt, "Java-The Complete Reference", Tenth Edition, Oracle Press, Tata McGraw Hill Education.
- 2. E. Balguruswamy, "Programming with Java A primer", Fifth edition, Tata McGraw Hill Publication
- 3. Anita Seth, B.L.Juneja, "Java One Step Ahead", oxford university press.

References:

- 1. D.T. Editorial Services, "Java 8 Programming Black Book", Dreamtech Press.
- 2. Learn to Master Java by Star EDU Solutions
- 3. Yashvant Kanetkar, "Let Us Java", 4th Edition, BPB Publications.

Term Work:

The Term work shall consist of at least 15 practical based on the above list. The term work Journal must include at least 2 Programming assignments. The Programming assignments should be based on real world applications which cover concepts from more than one modules of syllabus.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments/tutorial/write up) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Course Code	Course	Teaching Scheme (Contact Hours)			Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITM301	Mini Project – 1 A for Front end /backend Application using JAVA		04			02		02

Course	Course	Examination Scheme								
Code	Name		Theo	ry Marks						
		Inte	ernal asse	ssment	End	Term Work	Pract /Oral	Total		
		Test1	Test 2	Avg.	Sem. Exam		Tract. / Orar			
ITM301	Mini Project – 1 A for Front end /backend Application using JAVA					25	25	50		

Course Objectives

- 1. To acquaint with the process of identifying the needs and converting it into the problem.
- 2. To familiarize the process of solving the problem in a group.
- 3. To acquaint with the process of applying basic engineering fundamentals to attempt solutions to the problems.
- 4. To inculcate the process of self-learning and research.

Course Outcome: Learner will be able to...

- 1. Identify problems based on societal /research needs.
- 2. Apply Knowledge and skill to solve societal problems in a group.
- 3. Develop interpersonal skills to work as member of a group or leader.
- 4. Draw the proper inferences from available results through theoretical/ experimental/simulations.
- 5. Analyse the impact of solutions in societal and environmental context for sustainable development.
- 6. Use standard norms of engineering practices
- 7. Excel in written and oral communication.
- 8. Demonstrate capabilities of self-learning in a group, which leads to life long learning.
- 9. Demonstrate project management principles during project work.

Guidelines for Mini Project

- Students shall form a group of 3 to 4 students, while forming a group shall not be allowed less than three or more than four students, as it is a group activity.
- Students should do survey and identify needs, which shall be converted into problem statement for mini project in consultation with faculty supervisor/head of department/internal committee of faculties.
- Students hall submit implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly activity of mini project.
- A log book to be prepared by each group, wherein group can record weekly work progress, guide/supervisor can verify and record notes/comments.
- Faculty supervisor may give inputs to students during mini project activity; however, focus shall be on self-learning.

- Students in a group shall understand problem effectively, propose multiple solution and select best possible solution in consultation with guide/ supervisor.
- Students shall convert the best solution into working model using various components of their domain areas and demonstrate.
- The solution to be validated with proper justification and report to be compiled in standard format of University of Mumbai.
- With the focus on the self-learning, innovation, addressing societal problems and entrepreneurship quality development within the students through the Mini Projects, it is preferable that a single project of appropriate level and quality to be carried out in two semesters by all the groups of the students. i.e. Mini Project 1 in semester III and IV. Similarly, Mini Project 2 in semesters V and VI.
- However, based on the individual students or group capability, with the mentor's recommendations, if the proposed Mini Project adhering to the qualitative aspects mentioned above gets completed in odd semester, then that group can be allowed to work on the extension of the Mini Project with suitable improvements/modifications or a completely new project idea in even semester. This policy can be adopted on case by case basis.

Guidelines for Assessment of Mini Project:

Term Work

•

- The review/ progress monitoring committee shall be constituted by head of departments of each institute. The progress of mini project to be evaluated on continuous basis, minimum two reviews in each semester.
- In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.
 - Distribution of Term work marks for both semesters shall be as below;

0	Marks awarded by guide/supervisor based on log book	:10
0	Marks awarded by review committee	:10
0	Quality of Project report	: 05

Review/progress monitoring committee may consider following points for assessment based on either one year or half year project as mentioned in general guidelines.

One-year project:

- In first semester entire theoretical solution shall be ready, including components/system selection and cost analysis. Two reviews will be conducted based on presentation given by students group.
 - First shall be for finalisation of problem
 - Second shall be on finalisation of proposed solution of problem.
- In second semester expected work shall be procurement of component's/systems, building of working prototype, testing and validation of results based on work completed in an earlier semester.
 - First review is based on readiness of building working prototype to be conducted.
 - Second review shall be based on poster presentation cum demonstration of working model in last month of the said semester.

Half-year project:

- In this case in one semester students' group shall complete project in all aspects including,
 - Identification of need/problem
 - Proposed final solution
 - o Procurement of components/systems
 - Building prototype and testing
 - Two reviews will be conducted for continuous assessment,
 - First shall be for finalisation of problem and proposed solution
 - Second shall be for implementation and testing of solution.

Assessment criteria of Mini Project.

Mini Project shall be assessed based on following criteria;

- 1. Quality of survey/ need identification
- 2. Clarity of Problem definition based on need.
- 3. Innovativeness in solutions
- 4. Feasibility of proposed problem solutions and selection of best solution
- 5. Cost effectiveness
- 6. Societal impact
- 7. Innovativeness
- 8. Cost effectiveness and Societal impact
- 9. Full functioning of working model as per stated requirements
- 10. Effective use of skill sets
- 11. Effective use of standard engineering norms
- 12. Contribution of an individual's as member or leader
- 13. Clarity in written and oral communication
- In **one year, project**, first semester evaluation may be based on first six criteria's and remaining may be used for second semester evaluation of performance of students in mini project.
- In case of **half year project** all criteria's in generic may be considered for evaluation of performance of students in mini project.

Guidelines for Assessment of Mini Project Practical/Oral Examination:

- Report should be prepared as per the guidelines issued by the University of Mumbai.
- Mini Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organisations having experience of more than five years approved by head of Institution.
- Students shall be motivated to publish a paper based on the work in Conferences/students competitions.

Mini Project shall be assessed based on following points;

- 1. Quality of problem and Clarity
- 2. Innovativeness in solutions
- 3. Cost effectiveness and Societal impact
- 4. Full functioning of working model as per stated requirements
- 5. Effective use of skill sets
- 6. Effective use of standard engineering norms
- 7. Contribution of an individual's as member or leader
- 8. Clarity in written and oral communication

Program Structure for Second Year Engineering Semester III & IV UNIVERSITY OF MUMBAI (With Effect from 2020-2021)

Semester IV

Course	Course Name]	Feaching (Contact	Scheme Hours)	e	Credits Assigned						
Code		Theo	ry Prac	et.	Гut.	Theory	Pract.	Tut.	Total			
ITC401	Engineering Mathematics-IV	3			1	3		1	4			
ITC402	Computer Network and Network Design	3				3			3			
ITC403	Operating System	3				3			3			
ITC404	Automata Theory	3				3			3			
ITC405	Computer Organization and Architecture	3				3			3			
ITL401	Network Lab		2				1		1			
ITL402	Unix Lab		2				1		1			
ITL403	Microprocessor Lab		2				1		1			
ITL404	Python Lab (SBL)		4				2		2			
ITM401	Mini Project – 1 B for Python based automation projects		4\$				2		2			
	Total	15	14		1	15	7	1	23			
		Examination Scheme										
			Theory					Pract/ oral	Total			
Course Code	Course Name	Inter	nal Asses	sment	End Sem. Exam	Exam. Duratio . (in Hrs	n)					
		Test 1	Test 2	Avg.								
ITC401	Engineering Mathematics-IV	20	20	20	80	3	25		125			
ITC402	Computer Network and Network Design	20	20	20	80	3			100			
ITC403	Operating System	20	20	20	80	3			100			
ITC404	Automata Theory	20	20	20	80	3			100			
ITC405	Computer Organization and Architecture	20	20	20	80	3			100			
ITL401	Network Lab						25	25	50			
ITL402	Unix Lab						25	25	50			
ITL403	Microprocessor Lab						25	25	50			
ITL404	Python Lab (SBL)						25	<mark>25</mark>	<mark>50</mark>			
ITM401	Mini Project – 1 B for Python based automation projects						25	25	50			
	Total			100	400		150	75	775			

\$ indicates work load of Learner (Not Faculty), for Mini Project. Students can form groups with minimum 2 (Two) and not more than 4 (Four) <u>Faculty Load :</u> 1 hour per week per four groups

Course	Course Name	Teach (Cont	ing Sche tact Hou	eme rs)	Credits Assigned				
Code		Theory	Prac t.	Tut.	Theory	TW/Pract	Tut.	Total	
ITC401	Engineering Mathematics-IV	03	-	01	03	-	01	04	

		Examination Scheme								
		Inton	Theory							
Course		Inter	nai Ass	sessment						
Course Code	Course Name	Test1	Test2	Avg of Test 1 & 2	End Sem Exam	Term Work	Pract	Oral	Total	
ITC401	Engineering Mathematics-IV	20	20	20	80	25	-	-	125	

Pre-requisite: Engineering Mathematics-I, Engineering Mathematics-II, Engineering Mathematics-III, Binomial Distribution.

Course Objectives:

Sr. No.	Course Objectives					
The course aims:						
1	To study Matrix algebra and its application in engineering problems.					
2	To learn Line and Contour integrals and expansion of complex valued function in a power					
	series.					
3	To study Z-Transforms and Inverse Z-Transforms with its properties.					
4	To acquaint with the concepts of probability distributions and sampling theory for small					
	samples.					
5	To study and apply Linear and Non-linear programming Techniques to solve the optimization					
	problems					

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On succ	cessful completion, of course, learner/student will be able to:	Тихоношу
1	Apply the concepts of eigen values and eigen vectors to solve engineering problems.	L1, L2, L3
2	Illustrate the use of concepts of Complex Integration for evaluating integrals, computing residues & evaluate various contour integrals.	L3
3	Apply the concept of Z- transformation and its inverse in engineering problems.	L1,L2,L3

4	Apply the concept of probability distribution to engineering problems & testing hypothesis of small samples using sampling theory.	L3
5	Apply the concept of Linear Programming to solve the optimization problems	L1, L2, L3
6	Use the Non-Linear Programming techniques to solve the optimization problems.	L3

Module	Detailed Contents	Hours	CO Mapping
	Module: Linear Algebra (Theory of Matrices)		II 8
	1.1 Characteristic Equation, Eigenvalues and Eigenvectors and properties		
	(without proof)		
	1.2 Cayley-Hamilton Theorem (without proof), verification and reduction		
01	of higher degree polynomials	7	
	1.3 Similarity of matrices, diagonalizable and non-diagonalizable matrices		CO1
	Self-learning Topics: Derogatory and non-derogatory matrices, Functions of Square Matrix, Linear Transformations, Quadratic forms.		
	Module: Complex Integration		
	2.1 Line Integral, Cauchy's Integral theorem for simple connected and multiply connected regions (without proof), Cauchy's Integral formula (without proof).		
02	2.2 Taylor's and Laurent's series (without proof).	7	CO2
	2.3 Definition of Singularity, Zeroes, poles of $f(z)$, Residues, Cauchy's		
	Residue Theorem (without proof)		
	Self-learning Topics: Application of Residue Theorem to evaluate real		
	integrations.		
	Module: Z Transform		
	3.1 Definition and Region of Convergence, Transform of Standard		
	Functions: $(k) \leq k + n = -k + k + (k + k + k + k + k + k + k + k +$		
	$\{k^{n}a^{\kappa}\}, \{a^{ \kappa }\}, \{{}^{\kappa+n}nC.a^{\kappa}\}, \{c^{\kappa}\sin(\alpha k + \beta)\}, \{c^{\kappa}\sinh\alpha k\}, $		
0.2	$\{c^{\kappa}\cosh \alpha k\}.$	_	
03	3.2 Properties of Z Transform: Change of Scale, Shifting Property,	5	CO3
	Multiplication, and Division by k, Convolution theorem.		
	3.3 Inverse Z transform: Partial Fraction Method, Convolution Method.		
	Self-learning Topics: Initial value theorem, Final value theorem, Inverse of Z Transform by Binomial Expansion		
	Module: Probability Distribution and Sampling Theory		
	4.1 Probability Distribution: Poisson and Normal distribution		
	4.2 Sampling distribution. Test of Hypothesis Level of Significance		
	Critical region. One-tailed, and two-tailed test. Degree of freedom.		
04	4.3 Students' t-distribution (Small sample). Test the significance of mean	7	CO4
04	and Difference between the means of two samples. Chi-Square Test: Test of	/	
	goodness of fit and independence of attributes, Contingency table.		
	Self-learning Topics: Test significance for Large samples, Estimate		
	parameters of a population., Yate's Correction.		
05	Module: Linear Programming Problems	6	

	5.1 Types of solutions, Standard and Canonical of LPP, Basic and Feasible solutions, slack variables, surplus variables, Simplex method.		CO5
	5.2 Artificial variables, Big-M method (Method of penalty)		
	5.3 Duality, Dual of LPP and Dual Simplex Method		
	Self-learning Topics: Sensitivity Analysis, Two-Phase Simplex Method, Revised Simplex Method		
	Module: Nonlinear Programming Problems		
	6.1 NLPP with one equality constraint (two or three variables) using the method of Lagrange's multipliers		
	6.2 NLPP with two equality constraints		C06
06	6.3 NLPP with inequality constraint: Kuhn-Tucker conditions	7	00
	Self-learning Topics: Problems with two inequality constraints, Unconstrained optimization: One dimensional search method (Golden Search method, Newton's method). Gradient Search method		

References:

- 1. Advanced Engineering Mathematics, Erwin Kreyszig, John Wiley & Sons.
- 2. Advanced Engineering Mathematics, R. K. Jain and S. R. K. Iyengar, Narosa.
- 3. Complex Variables and Applications, Brown and Churchill, McGraw-Hill education.
- 4. Probability, Statistics and Random Processes, T. Veerarajan, McGraw-Hill education.
- 5. Operations Research: An Introduction, Hamdy A Taha, Pearson.
- 6. Engineering Optimization: Theory and Practice, S.S Rao, Wiley-Blackwell.
- 7. Operations Research, Hira and Gupta, S. Chand Publication.

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in

Term Work:

General Instructions:

- 1. Students must be encouraged to write at least 6 class tutorials on entire syllabus.
- 2. A group of 4-6 students should be assigned a self-learning topic. Students should prepare a presentation/problem solving of 10-15 minutes. This should be considered as mini project in Engineering Mathematics. This project should be graded for 10 marks depending on the performance of the students.

The distribution of Term Work marks will be as follows -

1. Attendance (Theory and Tutorial)	05 marks
2. Class Tutoria	ls on entire syllabus	10 marks
3. Mini project		10 marks

Assessment:

Internal Assessment Test:

Assessment consists of two class tests of 20 marks each. The first class test (Internal Assessment I) is to be conducted when approx. 40% syllabus is completed and second class test (Internal Assessment II) when additional 35% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of total 06 questions, each carrying 20 marks.
- 2. Total 04 questions need to be solved.
- 3. Question No: 01 will be compulsory and based on entire syllabus wherein 4 sub-questions of 5 marks each will be asked.
- 4. Remaining questions will be randomly selected from all the modules.
- 5. Weightage of each module will be proportional to number of respective lecture hours as mentioned in the syllabus.

Course Code Course		Teaching Scheme (Contact Hours)			Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
						/Oral		
ITC402	Computer	03			03			03
	Network and							
	Network							
	Design							

Course	Course	Examination Scheme						
Code	Name	Theory Marks						
		Inte	rnal asse	sessment End Torn		Term Work	Pract /Oral	Total
		Test1	Test 2	Avg.	Sem. Exam		Tract. / Orar	Total
ITC402	Computer Network and Network Design	20	20	20	80			100

Course Objectives:

Sr. No.	Course Objectives
The cours	e aims:
1	Understand the division of network functionalities into layers.
2	Understand the types of transmission media along with data link layer concepts, design issues
	and protocols
3	Analyze the strength and weaknesses of routing protocols and gain knowledge about IP
	addressing
4	Understand the data transportation, issues and related protocols for end to end delivery of
	data.
5	Understand the data presentation techniques used in presentation layer & client/server model
	in application layer protocols.
6	Design a network for an organization using networking concepts

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On suce	cessful completion, of course, learner/student will be able to:	
1	Describe the functionalities of each layer of the models and compare the Models.	L1
2	Categorize the types of transmission media and explain data link layer concepts, design issues and protocols.	L2, L3, L4
3	Analyze the routing protocols and assign IP address to networks.	L4
4	Explain the data transportation and session management issues and related protocols used for end to end delivery of data.	L1, L2
5	List the data presentation techniques and illustrate the client/server model in application layer protocols.	L1, L3
6	Use of networking concepts of IP address, Routing, and application services to design a network for an organization	L3

Prerequisite: PCOM

Sr. No.	Module	Detailed Content	Hours	CO Mapping
0	Prerequisite	Terminologies of communication	02	-
Ι	Introduction to Computer Networks	Uses Of Computer Networks, Network Hardware, Network Software, Protocol Layering, Reference Models: OSI, TCP/IP, Comparison of OSI & TCP/IP, Network Devices.	03	CO1
		in Network connection. College campus		
П	Physical Layer & Data Link Layer	Physical layer: Guided Media, Unguided Media, Wireless Transmission: Electromagnetic Spectrum. Switching: Circuit-Switched Networks, Packet Switching, Structure Of A Switch	08	CO2
		DLL Design Issues (Services, Framing, Error Control, Flow Control), Error Detection and Correction(Hamming Code,Parity, CRC, Checksum), Elementary Data Link protocols : Stop and Wait, Sliding Window(Go Back N, Selective Repeat), Piggybacking, HDLC		
		Medium Access Protocols: Random Access, Controlled Access, Channelization. Ethernet Protocol: Standard Ethernet, Fast Ethernet (100 Mbps), Gigabit Ethernet, 10-Gigabit Ethernet.		
		Self-learning Topics: Differentiate link layer in IOT network and Normal Network.		
III	Network Layer	Network Layer Services, Packet Switching, Network Layer Performance, IPv4 Addressing (classful and classless), Subnetting, Supernetting ,IPv4 Protocol, DHCP, Network Address Translation (NAT).	08	CO3
		Routing algorithms : Distance Vector Routing, Link state routing, Path Vector Routing.		
		Protocols –RIP,OSPF,BGP.		
		Next Generation IP: IPv6 Addressing,IPv6 Protocol, Transition fromIPV4 to IPV6		
		Self-learning Topics: Study difference between IPV4 and IPV6. Network Class A, B, C, D, E and subnet mask.		
IV	Transport Layer & Session Layer	 Transport Layer: Transport Layer Services, Connectionless & Connection-oriented Protocols, Transport Layer protocols: User Datagram Protocol: UDP Services, UDP Applications, Transmission Control Protocol: TCP Services, TCP Features, Segment, A TCP Connection, Windows in TCP, Flow Control, Error Control, TCP Congestion Control, TCP Timers. Session Layer: Session layer design issues, Session Layer protocol - Remote Procedure Call (RPC), Self-learning Topics: List real time example of UDP and TCP. 	07	CO4
----	---	---	----	-----
V	Presentation Layer & Application Layer	 Presentation layer :Compression: Comparison between Lossy Compression and Lossless Compression, Huffman Coding, Speech Compression, LZW, RLE, Image Compression – GIF,JPEG. Application layer: Standard Client-Server Protocols: World Wide Web, HTTP, FTP, Electronic Mail, Domain Name System (DNS), SNMP Self-learning Topics: Difference between HTTP and FTP Protocol. 	05	CO5
VI	Network Design Concepts	 Introduction to VLAN ,VPN A case study to design a network for an organization meeting the following guidelines: Networking Devices, IP addressing: Subnetting, Supernetting, Routing Protocols to be used, Services to be used: TELNET, SSH, FTP server, Web server, File server, DHCP server and DNS server. Self-learning Topics: Study the Network Design of your college campus. 	06	CO6

Text Books:

1. Andrew S Tanenbaum, Computer Networks -, 4th Edition, Pearson Education.

2. Behrouz A. Forouzan, Data Communications and Networking ,4th Edition,Mc Graw Hill education.

References:

1. S. Keshav, An Engineering Approach to Computer Networks, 2nd Edition, Pearson Education.

2.B. A. Forouzan, "TCP/IP Protocol Suite", Tata McGraw Hill edition, Third Edition.

3. Ranjan Bose, Information Theory, Coding and Cryptography, Ranjan Bose, Tata McGrawHill, Second Edition.

4. Khalid Sayood, Introduction to Data Compression, Third Edition, Morgan Kaufman.

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in
2.	https://swayam.gov.in
3.	https://www.coursera.org/

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of **six questions each carrying 20 marks Q.1** will be **compulsory** and should **cover maximum contents of the syllabus**
- **Remaining questions** will be **mixed in nature** (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered

Course Code	Course	Teaching Scheme (Contact Hours)			Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
ITC403	Operating System	03			03			03

Course	Course	Examination Scheme							
Code	Name	Theory Marks							
		Internal assessment			End	Tom Work	Droot /Orol	Total	
		Test1	Test 2	Avg.	Sem. Exam	Term work	Flact. /Ofai	Total	
ITC403	Operating System	20	20	20	80			100	

Course Objectives:

Sr. No.	Course Objectives
The cours	e aims:
1	To understand the major components of Operating System &its functions.
2	To introduce the concept of a process and its management like transition, scheduling, etc.
3	To understand basic concepts related to Inter-process Communication (IPC) like mutual
	exclusion, deadlock, etc. and role of an Operating System in IPC.
4	To understand the concepts and implementation of memory management policies and virtual
	memory.
5	To understand functions of Operating System for storage management and device management.
6	To study the need and fundamentalsof special-purpose operating system with the advent of new
	emerging technologies.

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On suce	cessful completion, of course, learner/student will be able to:	
1	Understand the basic concepts related to Operating System.	L1, L2
2	Describe the process management policies and illustrate scheduling of processes by CPU.	L1
3	Explain and apply synchronization primitives and evaluate deadlock conditions handled by Operating System.	L2
4	Describe and analyze the memory allocation and management functions of Operating System.	L1
5	Analyze and evaluate the services provided by Operating System for storage management.	L4, L5
6	Compare the functions of various special-purpose Operating Systems.	L2

Prerequisite: Programming Language C

Sr.	Module	Detailed Content	Hours	CO Monning
0	Prerequisite	Programming Language C; Basic of Hardware	02	-
		1.e. ALU, RAM, ROM, HDD, etc.; Computer- System Organization.		
Ι	Fundamentals of Operating System	Introduction to Operating Systems; Operating System Structure and Operations; Functions of Operating Systems; Operating System Services and Interface; System Calls and its Types; System Programs; Operating System Structure; System Boot. Self-learning Topics: Study of any three different OS. System calls with examples for	03	CO1
		different OS.		
Ш	Process Management	Basic Concepts of Process; Operation on Process; Process State Model and Transition; Process Control Block; Context Switching; Introduction to Threads; Types of Threads, Thread Models; Basic Concepts of Scheduling; Types of Schedulers; Scheduling Criteria; Scheduling Algorithms.	06	CO2
		Self-learning Topics: Performance comparison of Scheduling Algorithms, Selection of Scheduling Algorithms for different situations, Real-time Scheduling		
III	ProcessCoordinati on	Basic Concepts of Inter-process Communication and Synchronization; Race Condition; Critical Region and Problem; Peterson's Solution; Synchronization Hardware and Semaphores; Classic Problems of Synchronization; Message Passing; Introduction to Deadlocks; System Model, Deadlock Characterization; Deadlock Detection and Recovery; Deadlock Prevention; Deadlock Avoidance.	09	CO3
		Self-learning Topics: Study a real time case study for Deadlock detection and recovery.		
IV	Memory Management	 Basic Concepts of Memory Management; Swapping; Contiguous Memory Allocation; Paging; Structure of Page Table; Segmentation; Basic Concepts of Virtual Memory; Demand Paging, Copy-on Write; Page Replacement Algorithms; Thrashing. Self-learning Topics: Memory Management	09	CO4
		for any one Operating System, Implementation of Page Replacement Algorithms.		

V	Storage Management	Basic Concepts of File System; File Access Methods; Directory Structure; File-System Implementation; Allocation Methods; Free Space Management; Overview of Mass- Storage Structure; Disk Structure; Disk Scheduling; RAID Structure; Introduction to I/O Systems.	06	CO5
		Self-learning Topics: File System for Linux and Windows, Features of I/O facility for different OS.		
VI	Special-purpose Operating Systems	Open-source and Proprietary Operating System; Fundamentals of Distributed Operating System; Network Operating System;Embedded Operating Systems;Cloud and IoT Operating Systems; Real-Time Operating System;Mobile Operating System; Multimedia Operating System;Comparison between Functions of various Special-purpose Operating Systems.	04	CO6
		Special-purpose Operating Systems.		

Text Books:

- 1. A. Silberschatz, P. Galvin, G. Gagne, Operating System Concepts, 10th ed., Wiley, 2018.
- 2. W. Stallings, Operating Systems: Internal and Design Principles, 9th ed., Pearson, 2018.
- 3. A. Tanenbaum, Modern Operating Systems, Pearson, 4th ed., 2015.

Reference Books:

- 1. N. Chauhan, Principles of Operating Systems, 1st ed., Oxford University Press, 2014.
- 2. A. Tanenbaum and A. Woodhull, Operating System Design and Implementation, 3rd ed., Pearson.
- 3. R. Arpaci-Dusseau and A. Arpaci-Dusseau, Operating Systems: Three Easy Pieces, CreateSpace Independent Publishing Platform, 1st ed., 2018.

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in
2.	https://swayam.gov.in
3.	https://www.coursera.org/

Assessment: Internal Assessment (IA) for 20 marks:

- IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test
- > Question paper format
 - Question Paper will comprise of a total of **six questions each carrying 20 marks Q.1** will be **compulsory** and should **cover maximum contents of the syllabus**
 - **Remaining questions** will be **mixed in nature** (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
 - A total of **four questions** need to be answered

Course Code	Course	Teaching Scheme (Contact Hours)			Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
ITC404	Automata Theory	03			03			03

Course	Course	Examination Scheme							
Code	Name	Theory Marks							
		Internal assessment			End	Torm Work	Droot /Orol	Total	
		Test1	Test 2	Avg.	Sem. Exam		Flact. /Ofai	Total	
ITC404	Automata Theory	20	20	20	80			100	

Course Objectives:

Sr. No.	Course Objectives						
The cours	The course aims:						
1	To learn fundamentals of Regular and Context Free Grammars and Languages.						
2	To understand the relation between Regular Language and Finite Automata and machines.						
3	To learn how to design Automata's as Acceptors, Verifiers and Translators.						
4	To understand the relation between Regular Languages, Contexts free Languages, PDA and						
	TM.						
5	To learn how to design PDA as acceptor and TM as Calculators.						
6	To learn applications of Automata Theory.						

Course Outcomes:

Sr.	Course Outcomes	Cognitive levels
No.		of attainment as
		per Bloom's
		Taxonomy
On suce	cessful completion, of course, learner/student will be able to:	
1	Explain, analyze and design Regular languages, Expression and Grammars.	L2, L4, L6
2	Design different types of Finite Automata and Machines as Acceptor,	L6
	Verifier and Translator.	
3	Analyze and design Context Free languages and Grammars.	L4, L6
4	Design different types of Push down Automata as Simple Parser.	L6
5	Design different types of Turing Machines as Acceptor, Verifier, Translator	L6
	and Basic computing machine.	
6	Develop understanding of applications of various Automata.	L6

Prerequisite: Basic Mathematical Fundamentals: Sets, Logic, Relations, Functions.

Sr.	Module	Detailed Content	Hours	CO
No.				Mapping

0	Prerequisite	Basic Mathematical Fundamentals: Sets, Logic, Relations, Functions.	02	-
Ι	Introduction and Regular Languages	Languages: Alphabets and Strings. Regular Languages: Regular Expressions, Regular Languages, Regular Grammars, RL and LL grammars, Closure properties Self-learning Topics: Practice exercise on Regular Expressions. Identify the tools also.	05	CO1
Π	Finite Automata	 Finite Automata: FA as language acceptor or verifier, NFA (with and without ε) , DFA, RE to NFA, NFA to DFA, Reduced DFA , NFA-DFA equivalence, FA to RE. Finite State Machines with output : Moore and Mealy machines. Moore and Mealy M/C conversion. Limitations of FA. Self-learning Topics: Practice exercise on FA and NFA 	09	CO2
III	Context Free Grammars	Context Free Languages: CFG, Leftmost and Rightmost derivations, Ambiguity, Simplification and Normalization (CNF & GNF) and Chomsky Hierarchy (Types 0 to 3) Self-learning Topics: Practice numerical or exercise on CFG	08	CO3
IV	Push Down Automata	 Push Down Automata: Deterministic (single stack) PDA, Equivalence between PDA and CFG. Power and Limitations of PDA. Self-learning Topics: List the examples of PDA. 	05	CO4
V	Turing Machine	Turing Machine: Deterministic TM, Variants of TM, Halting problem, Power of TM. Self-learning Topics: Practice numerical of TM.	07	CO5
VI	Applications of Automata	Applications of FA, CFG, PDA & TM. Introduction to Compiler & Its phases.Self-learning Topics: Case study on any one compiler.	03	CO2,CO 3, CO4,CO 5, CO6

Text books

- 1. J.C.Martin, "Introduction to languages and the Theory of Computation", TMH.
- 2. Kavi Mahesh, "Theory of Computation A Problem Solving Approach", Wiley India
- 3. A. V. Aho, R. Shethi, Monica Lam , J.D. Ulman , "Compilers Principles, Techniques and Tools ",Pearson Education.

References

- 1. John E. Hopcroft, Rajeev Motwani, Jeffrey D. Ullman, "Introduction to Automata Theory, Languages and Computation", Pearson Education.
- 2. Daniel I.A. Cohen, "Introduction to Computer Theory", John Wiley & Sons.
- 3. Vivek Kulkarni," Theory of Computation", Oxford University.
- 4. N.Chandrashekhar, K.L.P. Mishra, "Theory of Computer Science, Automata Languages & Computations", PHI publications.
- 5.J. J. Donovan, "Systems Programming", TMH.

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in
2.	https://online.stanford.edu
3.	https://www.coursera.org/

Assessment:

Internal Assessment (IA) for 20 marks:

- IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test
- > Question paper format
 - Question Paper will comprise of a total of **six questions each carrying 20 marks Q.1** will be **compulsory** and should **cover maximum contents of the syllabus**
 - **Remaining questions** will be **mixed in nature** (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
 - A total of **four questions** need to be answered

Course Code	Course	Teaching (Contact	Scheme Hours)		Credits	Assigned		
	Name	Theory	Practical	Tutorial	Theory	Practical /Oral	Tutorial	Total
ITC405	Computer Organization and Architecture	03			03			03

Course	Course				Examina	ation Scheme		
Code	Name		Theorem	ry Marks				
		Inte	rnal asse	ssment	End Term Work Prost (Or		Pract /Oral	Total
		Test1	Test 2	Avg.	Sem. Exam		Flact. /Ofai	Total
ITC405	Computer Organization and Architecture	20	20	20	80			100

Course Objectives:

Sr. No.	Course Objectives
The cours	e aims:
1	Learn the fundamentals of Digital Logic Design.
2	Conceptualize the basics of organizational and features of a digital computer.
3	Study microprocessor architecture and assembly language programming.
4	Study processor organization and parameters influencing performance of a processor.
5	Analyse various algorithms used for arithmetic operations.
6	Study the function of each element of memory hierarchy and various data transfer techniques used in digital computer.

Course Outcomes:

Sr. No.	Course Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On succ	cessful completion, of course, learner/student will be able to:	1
1	Demonstrate the fundamentals of Digital Logic Design	L1, L2
2	Describe basic organization of computer, the architecture of 8086 microprocessor and implement assembly language programming for 8086 microprocessors.	L1
3	Demonstrate control unit operations and conceptualize instruction level parallelism.	L1, L2
4	List and Identify integers and real numbers and perform computer arithmetic operations on integers.	L1,L4
5	Categorize memory organization and explain the function of each element of a memory hierarchy.	L4
6	Examine different methods for computer I/O mechanism.	L3

Prerequisite: Basics of Electrical Engineering, Fundamentals of Computer.

Sr. No.	Module	Detailed Content	Hours	CO Mapping
				11 8
0	Prerequisite	Basics of Electrical Engineering, Fundamentals of Computer	02	
Ι	Fundamentals of Logic Design	ComputerNumber systems: Introduction to Number systems, Binary Number systems, Signed Binary Numbers, Binary, Octal, Decimal and Hexadecimal number and their conversions, 1's and 2's complement Combinational Circuits: NOT,AND,OR,NAND,NOR,EX-OR,EX-NOR Gates. Half & Full Adder and subtractor, Reduction of Boolean functions using K-map method (2,3,4 Variable), introduction to Multiplexers and Demultiplexers, Encoders & Decoders. 	07	CO1
		McCluskey, Flip-Flop conversion, Counter Design.		
П	Overview of Computer Architecture & Organization	Introduction of Computer Organization and Architecture. Basic organization of computer and block level description of the functional units. Evolution of Computers, Von Neumann model. Performance measure of Computer Architecture, Amdahl's Law Architecture of 8086 Family, Instruction Set, Addressing Modes, Assembler Directives, Mixed- Language Programming, Stack, Procedure, Macro. Self-learning Topics: Interfacing of I/O devices	08	CO2
		with 8086(8255,ADC,DAC).		
III	Processor Organization and Architecture	CPU Architecture, Instruction formats, basic instruction cycle with Interrupt processing. Instruction interpretation and sequencing. Control Unit: Soft wired (Microprogrammed) and hardwired control unit design methods. Microinstruction sequencing and execution. Micro operations, concepts of nano programming. Introduction to parallel processing concepts, Flynn's classifications, instruction pipelining, pipeline hazards. Self-learning Topics: Study the examples on	07	CO3
		instruction pipelining for practice.		
IV	Data Representation and Arithmetic Algorithms	Booth's algorithm. Division of integers: Restoring and non-restoring division, signed division, basics of floating-point representation IEEE 754 floating point (Single & double precision) number representation. Self-learning Topics: Implement Booth's Algorithm and Division methods.	04	CO4
V	Memory Organization	Introduction to Memory and Memory parameters. Classifications of primary and secondary memories. Types of RAM and ROM, Allocation policies, Memory hierarchy and characteristics. Cache memory: Concept, architecture (L1, L2, L3), mapping techniques. Cache Coherency, Interleaved and Associative memory	07	CO5

		Self-learning Topics: Case study on Memory Organization, Numerical on finding EAT, Address mapping.		
VI	I/O Organization	Input/output systems, I/O module-need & functions and Types of data transfer techniques: Programmed I/O, Interrupt driven I/O and DMA Self-learning Topics: Comparison of all I/O methods.	04	CO6

Text Books:

- 1. R. P. Jain,"Modern Digital Electronics", TMH
- 2. M. Morris Mano,"Digital Logic and Computer Design", PHI
- 3. Carl Hamacher, Zvonko Vranesic and Safwat Zaky, Computer Organization, Fifth Edition, Tata McGraw-Hill.
- 4. William Stallings, Computer Organization and Architecture: Designing for Performance, Eighth Edition,, Pearson
- 5. John Uffenbeck, 8086/8088 family: Design Programming and Interfacing, (Pearson Education

References:

- 1. A. Anand Kumar, "Fundamentals of Digital Circuits",. PHI
- 2. Donald P Leach, Albert Paul Malvino, "Digital Principals & Applications", TMH.
- 3. B. Govindarajulu, Computer Architecture and Organization: Design Principles and Applications, Computer Architecture and Organization: Design Principles and Applications, Tata McGraw-Hill
- 4. Dr. M. Usha, T. S. Srikanth, Computer System Architecture and Organization, First Edition, Wiley-India.
- 5. John P. Hayes, Computer Architecture and Organization, Third Edition., McGraw-Hill
- 6. K Bhurchandi, Advanced Microprocessors & Peripherals, Tata McGraw-Hill Education

Online References:

Sr. No.	Website Name
1.	https://www.nptel.ac.in
2.	https://www.geeksforgeeks.org
3.	https://www.coursera.org/

Assessment:

Internal Assessment (IA) for 20 marks:

• IA will consist of Two Compulsory Internal Assessment Tests. Approximately 40% to 50% of syllabus content must be covered in First IA Test and remaining 40% to 50% of syllabus content must be covered in Second IA Test

> Question paper format

- Question Paper will comprise of a total of **six questions each carrying 20 marks Q.1** will be **compulsory** and should **cover maximum contents of the syllabus**
- **Remaining questions** will be **mixed in nature** (part (a) and part (b) of each question must be from different modules. For example, if Q.2 has part (a) from Module 3 then part (b) must be from any other Module randomly selected from all the modules)
- A total of **four questions** need to be answered

Lab Code	Lab Name	Teaching (Contact	Scheme Hours)		Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITL401	Network Lab		02			01		01

Lab Code Lab Name Examination Scheme								
		Theory Marks						
		Inte	rnal asse	ssment	End	Term Work	Pract /Oral	Total
		Test1	Test 2	Avg.	Sem. Exam		Tact. /Orai	Total
ITL401	Network Lab					25	25	50

Lab Objectives:

Sr. No.	Lab Objectives				
The Lab experiments aims:					
1	To get familiar with the basic network administration commands				
2	To install and configure network simulator and learn basics of TCL scripting.				
3	To understand the network simulator environment and visualize a network topology and				
	observe its performance				
4	To implement client-server socket programs.				
5	To observe and study the traffic flow and the contents of protocol frames.				
6	To design and configure a network for an organization				

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as
		per Bloom's
		Taxonomy
On succ	cessful completion, of course, learner/student will be able to:	
1	Execute and evaluate network administration commands and demonstrate their	L3, L5
	use in different network scenarios	
2	Demonstrate the installation and configuration of network simulator.	L1, L2
3	Demonstrate and measure different network scenarios and their performance	L1, L2
	behavior.	
4	Implement the socket programming for client server architecture.	L3
5	Analyze the traffic flow of different protocols	L4
6	Design a network for an organization using a network design tool	L6

Prerequisite: C /Java

Hardware Requirement:	Software requirement:
PC i3 processor and above	NS2.34, Protocol Analyzer (eg. Wireshark), C/Java/python

Sr.	Module	Detailed Content	Hours	LO Monning
190.				wapping
0	Prerequisite	Programming Language (C/Java),	02	-
		Basic commands of windows and		
		Unix/Linux operating system. editor		
т		commands (eg nano/vi editor etc)	02	LO1
1	Fundamentals of	Understanding Basic networking Commands: liconing , ip,	02	LOI
	Computer	host arp hostname curl or weet mtr whois tondump		
	Network	• Execute and analyze basic networking commands.		
II	Basics of Network	Installation and configuration of	02	LO2
	simulation	NS2.		
		Introduction to Tcl Hello Programming		
		• Installation and configuring of NS-2 simulator		
		and introduction to Tcl using Hello program		
III	Simulation of	Implementation of Specific	06	LO3
	Network Topology	Network topology with respect to		LO5
	with different	1. Number of nodes and physical layer		
	Protocols	configuration		
		2. Graphical simulation of network with		
		RoutingProtocols(Distance Vector/ Link State		
		Routing) and trafficconsideration (TCP,		
		UDP) USING NAM.		
		5. Analysis of networkperformance for quality		
		ratio delayand throughout		
		4. Comparative analysis of routing protocols with		
		respect to QOS parametersusing Xgraph/gnuplot		
		fordifferent load conditions.		
		• Write TCL scripts to create topologies. Create and		
		run traffics and analyze the result using NS2		
		• Write TCL scripts for topology with Graphical		
		simulation of traffic consideration (TCP, UDP)		
		using NAW and plot the graph		
		• Implement distance vector and mik state routing protocols in NS2.		
IV	Socket	Socket Programming with C/Java/python	04	LO4
	Programming	1. TCP Client, TCP Server		
		2. UDP Client, UDP Server		
		• To study and Implement Socket Programming		
		using ICP.		

		• To study and Implement Socket Programming using UDP		
V	Protocol Analyzer	 Study of various Network Protocol Analyzer Tools likeWireshark, tcpdump, Windump, Microsoft Message Analyzer, Ettercap, Nirsoft SmartSniff etc. Install one of the Network protocol analyzer tools and analyze the traffic Study various network protocol analyzer tools and analyze the network traffics using one of the network protocol analyzer tools. 	04	LO5
VI	Network Design	 Network Design for an organization using the following concepts: Addressing (IP Address Assignment), Naming (DNS) Routing Perform remote login using Telnet Server Design a network for an organization using the concepts of Addressing (IP Address Assignment), Naming (DNS) and Routing. Also mention the internetworking devices used 	06	LO6

Text Books:

1. Computer Network Simulation in NS2 Basic Concepts and Protocol Implementation.-Prof Neeraj Bhargava,Pramod Singh Rathore,Dr.Ritu Bhargava,Dr.Abhishek Kumar, First Edition.BPB Publication.

- 2. Packet analysis with Wire shark, Anish Nath, PACKT publishing
- 3. TCP/IP Protocol Suite 4th Edition by Behrouz A. Forouzan

References:

- 1. NS2.34 Manual
- 2. Practical Packet Analysis: Using Wireshark to Solve Real-World Network Problems by Chris Sanders

Term Work: Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Lab Code	Lab Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITL402	Unix Lab		02			01		01

Lab Code	Lab Name			Examination Scheme					
			Theorem	ry Marks					
		Inte	rnal asse	ssment	End	Term Work	Pract. /Oral	Total	
		Test1	Test 2	Δνα	Sem.			Total	
		16811	Test Z	Avg.	Exam				
ITL402	Unix Lab								
						25	25	50	

Lab Objectives:

Sr. No.	Lab Objectives			
The Lab experiments aims:				
1	To understand architecture and installation of Unix Operating System			
2	To learn Unix general purpose commands and programming in Unix editor environment			
3	To understand file system management and user management commands in Unix.			
4	To understand process management and memory management commands in Unix			
5	To learn basic shell scripting.			
6	To learn scripting using awk and perl languages.			

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as per Bloom's
		Taxonomy
On succ	cessful completion, of course, learner/student will be able to:	
1	Understand the architecture and functioning of Unix	L1, L2
2	Identify the Unix general purpose commands	L4
3	Apply Unix commands for system administrative tasks such as file system	L3
	management and user management.	
4	Execute Unix commands for system administrative tasks such as process	L4
	management and memory management	
5	Implement basic shell scripts for different applications.	L3
6	Implement advanced scripts using awk & perl languages and grep, sed, etc.	L3
	commandsfor performing various tasks.	

Prerequisite: Programming Language C

Hardware Requirement:	Software requirement:
PC i3 processor and above	Unix, Editor, Bash shell, Bourne shell and C shell

Sr. No.	Module	Detailed Content	Hours	LO Mapping
0	Prerequisite	Basic Programming Skills, Concepts of Operating System	02	-
Ι	Introduction to Unix	Case Study: Brief History of UNIX, Unix Architecture; Installation of Unix Operating System	03	LO1
II	Basic Commands	 a) Execution of Unix General Purpose Utility Commands like echo, clear, exit, date, time, uptime, cal, cat, tty, man, which, history, id, pwd, whoami, ping, ifconfig, pr, lp, lpr, lpstat, lpq, lprm, cancel, mail, etc. b) Working with Editor Wighthere ditered 	03	LO2
III	Commands for File System Management and	 a) Study of Unix file system (tree structure), file and directory permissions, single and multiuser environment. 	04	LO3
	User Management	b) Execution of File System Management Commands like ls, cd, pwd, cat, mkdir, rmdir, rm, cp, mv, chmod, wc, piping and redirection, grep, tr, echo, sort, head, tail, diff, comm, less, more, file, type, wc, split, cmp, tar, find, vim, gzip, bzip2, unzip, locate, etc.		
		c) Execution of User Management Commands like who, whoami, su, sudo, login, logout, exit, passwd, useradd/adduser, usermod, userdel, groupadd, groupmod, groupdel, gpasswd, chown, chage, chgrp, chfn, etc.		
IV	Commands for Process Management and	a) Execution of Process Management Commands like ps, pstree, nice, kill, pkill, killall, xkill, fg, bg, pgrep, renice, etc.	04	LO4
	Memory Management	b) Execution of Memory Management Commands like free, /proc/meminfo, top, htop, df, du, vmstat, demidecode, sar, pagesize, etc.		
V	Basic Scripts	a) Study of Shell, Types of Shell, Variables andOperatorsb) Execute the following Scripts (at least 6):	04	L02, L03, L05
		 (i) Write a shell script to perform arithmetic operations. (ii) Write a shell script to calculate simple interest. (iii) Write a shell script to determine largest among three integer numbers. (iv) Write a shell script to determine a given year is leap year or not. (v) Write a shell script to print multiplication table of given number using while statement. 		

		 (vi) Write a shell script to search whether element is present is in the list or not. (vii) Write a shell script to compare two strings. (viii) Write a shell script to read and check if the directory / file exists or not, if not make the directory / file. (ix) Write a shell script to implement menu-driven calculator using case statement. (x) Write a shell script to print following pattern: * ** *** *** *** (xi) Write a shell script to print following pattern: * ** *** <		
VI	Advanced Scripts	 a) Execute the following scripts using grep / sed commands: (i) Write a script using grep command to find the number of words character, words and lines in a file. (ii) Write ascriptusing egrep command to display list of specific type of files in the directory. (iii) Write a script using sed command to replace all occurrences of particular word in given a file. (iv) Write a script using sedcommand to print duplicated lines in input. b) Execute the following scripts using awk / perl languages: (i) Write an awk script to print all even numbers in a given range. (ii) Write a perl script to sort elements of an array. (iv) Write a perl script to check a number is prime or not. 	06	LO2, L03, L06

Text Books:

- 1. S. Das, Unix Concepts and Applications, 4th ed., McGraw Hill, 2017.
- 2. R. Michael, Mastering Unix Shell Scripting, 2nd ed., Wiley, 2008.
- 3. D. Ambawade, D. Shah, Linux Labs and Open Source Technologies, Dreamtech Press, 2014.

References:

- 1. Y. Kanetkar, Unix Shell Programming, BPB Publications, 2003.
- 2. B. Forouzan and R. Gilberg, Unix and Shell Programming, Cengage Learning, 2003.

Term Work: Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Lab Code	Lab Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITL403	Microprocessor Lab		02			01		01

Lab	Lab Name	Examination Scheme							
Code		Theory Marks							
		Inte	rnal asse	ssment	nt End Term Work		Pract /Oral	Total	
		Test1	Test 2	Avg.	Sem. Exam		Flact. /Ofai	Total	
ITL403	Microprocessor Lab					25	25	50	

Lab Objectives:

Sr. No.	Lab Objectives					
The Lab e	experiments aims:					
1	Learn assembling and disassembling of PC					
2	Design, simulate and implement different digital circuits					
3	Get hands on experience with Assembly Language Programming.					
4	Study interfacing of peripheral devices with 8086 microprocessor.					
5	Realize techniques for faster execution of instructions and improve speed of operation and					
	performance of microprocessors.					
6	Write and debug programs in TASM/MASM/hardware kits					

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as per Bloom's Taxonomy
On succ	cessful completion, of course, learner/student will be able to:	
1	Demonstrate various components and peripheral of computer system	L2
2	Analyze and design combinational circuits	L4, L6
3	Build a program on a microprocessor using arithmetic & logical instruction	L3
	set of 8086.	
4	Develop the assembly level programming using 8086 loop instruction set	L6
5	Write programs based on string and procedure for 8086 microprocessor.	L1
6	Design interfacing of peripheral devices with 8086 microprocessor.	L6

Prerequisite: Logic Design, Programming Languages(C, C++)

Hardware & Software Requirements:

NOTE: Programs can be executed on assembler or hardware boards.

Hardware Requirement:

- Motherboard, RAM, Processor, Connectors, Cables, SMPS, HDD, Monitor, Graphics card (optional), and Cabinet.
- 8086 microprocessor experiment kits with specified interfacing study boards

Software requirement:

- Microsoft Macro Assembler (TASM)/Turbo Assembler (TASM)
- ➢ Virtual simulator lab.
- Proteus design suite

Sr. No	Module	Detailed Content	Hours	LO Manning
110.				mapping
Ι	PC Assembly	Study of PC Motherboard Technology (South Bridge and North Bridge). Internal	02	LO1
		Components and Connections used in		
		computer system.		
II	Implementation of	1. Verify the truth table of various logic gates	06	LO2
	combinational	(basic and universal gates)		
	circuits	2. Realize Half adder and Full adder		
		3. Implementation of MUX and DeMUX		
III	Arithmetic and	1. Program for 16 bit BCD addition	05	LO3
	logical operations	2. Program to evaluate given logical		
	in 8086 Assembly	expression.		
	language	3. Convert two digit Packed BCD to		
	programming	Unpacked BCD.		
		(any two)		
IV	Loop operations in	1. Program to move set of numbers from one	06	LO4
	8086 Assembly	memory block to another.		
	language .	2. Program to count number of 1's and 0's in		
	programming	a given 8 bit number		
		3. Program to find even and odd numbers		
		from a given list		
		4. Program to search for a given number		
V	String & Dug ag dung	(any three)	0.4	L O5
v	in 8086 Assembly	1. Check whether a given string is a	04	LOS
	language	2 Compute the factorial of a positive integer		
	programming	'n' using procedure		
	Programming	OR		
		Generate the first 'n' Fibonacci numbers.		
VI	Interfacing with	1. Interfacing Seven Segment Display	03	LO6
	8086	2. Interfacing keyboard matrix		
	microprocessor	3. Interfacing DAC		
	Ĩ	(any one)		

- 1. Scott Mueller, "Upgrading and repairing PCs", Pearson,
- 2. R. P. Jain, "Modern Digital Electronics", Tata McGraw Hill.
- 3. John Uffenbeck, "8086/8088 family: Design Programming and Interfacing:"Pearson Education

Reference Books:

- 1. M. Morris Mano, "Digital Logic and computer Design", PHI
- 2. K Bhurchandi, "Advanced Microprocessors & Peripherals", Tata McGraw-Hill Education

Term Work: Term Work shall consist of at least 10 to 12 practical's based on the above list. Also Term work Journal must include at least 2 assignments.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Lab Code	Lab Name	Teaching Scheme (Contact Hours)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITL404	Python Lab (SBL)		04			02		02

Lab Code	Lab Name	Examination Scheme						
			Theorem	ry Marks				
		Inte	rnal asse	ssment	End	Term Work	Pract. /Oral	Total
		Test1	Test 2	Avg.	Sem. Exam			
ITL404	Python Lab (SBL)					25	25	50

Lab Objectives:

Sr. No.	Lab Objectives				
The Lab experiments aims:					
1	Basics of python including data types, operator, conditional statements, looping statements, input and				
	output functions in Python				
2	List, tuple, set, dictionary, string, array and functions				
3	Object Oriented Programming concepts in python				
4	Concepts of modules, packages, multithreading and exception handling				
5	File handling, GUI & database programming				
6	Data visualization using Matplotlib, Data analysis using Pandas and Web programming using Flask				

Lab Outcomes:

Sr. No.	Lab Outcomes	Cognitive levels of attainment as
		Taxonomy
On suce	cessful completion, of course, learner/student will be able to:	· · · · ·
1	Understand the structure, syntax, and semantics of the Python language.	L1, L2
2	Interpret advanced data types and functions in python	L1, L2
3	illustrate the concepts of object-oriented programming as used in Python	L2
4	Create Python applications using modules, packages, multithreading and exception	L6
	handling.	
5	Gain proficiency in writing File Handling programs ,also create GUI applications	L1, L2
	and evaluate database operations in python.	
6	Design and Develop cost-effective robust applications using the latest Python trends	L6
	and technologies	

Prerequisite: Structured Programming Approach & Java Programming Lab

Hardware & Software Requirements:

Hardware Requirements	Software Requirements	Other Requirements		
PC With following Configuration	1. Windows or Linux Desktop OS	1. Internet Connection for installing additional packages if required		
	2. Python 3.6 or higher	n required		
1.IntelDualcoreProcessor or higher	3. Notepad ++			
2. Minimum 2 GB RAM	4.Python IDEs like IDLE,			
	Pycharm, Pydev, Netbeans or			
3. Minimum 40 GB Hard	Eclipse			
disk	5. Mysql			
4. Network interface card				

Sr. No.	Module	Detailed Content	Hours	LO Mapping
				FF 8
0	Prerequisite	Python IDE installation and environment setup.	02	
Ι	Basics of Python	Introduction, Features, Python building blocks – Identifiers, Keywords, Indention, Variables and Comments, Basic data types (Numeric, Boolean, Compound) Operators: Arithmetic, comparison, relational, assignment, logical, bitwise, membership, identity operators, operator precedence Control flow statements: Conditional statements (if, ifelse, nested if) Looping in Python (while loop, for loop, nested loops) Loop manipulation using continue, pass, break. Input/output Functions, Decorators, Iterators and Generators.	08	LO 1
Π	Advanced data types & Functions	Lists: a) Defining lists, accessing values in list, deleting values in list, updating lists b) Basic list operations c) Built-in list functions Tuples: a) Accessing values in Tuples, deleting values in Tuples, and updating Tuples b) Basic Tuple operations c) Built-in Tuple functions Dictionaries: a) Accessing values in Dictionary, deleting values in Dictionary, and updating Dictionary b) Basic Dictionary operations c) Built-in Dictionary functions Sets: a) Accessing values in Set, deleting values in Set, updating Sets b) Basic Set operations, c) Built-in Set functions Strings: a) String initialization, Indexing, Slicing, Concatenation, Membership & Immutability b) Built-in String functions Arrays: a) Working with Single dimensional Arrays: Creating, importing, Indexing, Slicing, copying and processing array arrays. b) Working with Multi-dimensional Arrays using Numpy: Mathematical operations, Matrix operations, aggregate and other Built-in functions	09	LO 1 LO 2

		Functions: a) Built-in functions in python b) Defining function, calling function, returning values, passing parameters c) Nested and		
		(Lambda Man Reduce Filter)		
ш	Object Oriented	Overview of Object-oriented programming	08	101
	Programming	Creating Classes and Objects. Self-Variable.	00	
		Constructors, Inner class, Static method,		
		Namespaces.		
		Inheritance: Types of Inheritance (Single,		
		Multiple, Multi-level, Hierarchical), Super()		
		method, Constructors in inheritance, operator		
		overloading, Method overloading, Method		
		overriding, Abstract class, Abstract method, Interfaces in Python		
IV	Exploring concept	Modules: Writing modules importing objects	06	LO 1
11	of modules	from modules. Python built-in modules (e.g.	00	
	nackages.	Numeric and Mathematical module. Functional		LO 4
	multithreading and	Programming module, Regular Expression		
	exception handling	module), Namespace and Scoping.		
		Packages: creating user defined packages and		
		importing packages.		
		Multi-threading: process vs thread, use of threads,		
		types of threads, creating threads in python, thread		
		synchronization, deadlock of threads.		
		Exception handling: Complete time errors, Buntime errors exceptions types of exception try		
		statement except block raise statement Assert		
		statement, User-Defined Exceptions.		
V	File handling, GUI	File Handling: Opening file in different modes,	09	LO 1
	& database	closing a file, writing to a file, accessing file		LO 5
	programming	contents using standard library functions, reading		
		from a file - read (), readline (), readlines (),		
		Renaming and Deleting a file, File Exceptions,		
		Pickle in Python.		
		Graphical user interface (GUI): different GUI		
		Working with containers Canvas Frame		
		Widgets (Button Label Text Scrollbar Check		
		button, Radio button, Entry, Spinbox, Message		
		etc.) Connecting GUI with databases to perform		
		CRUD operations. (on supported databases like		
		SQLite, MySQL, Oracle, PostgreSQL etc.).		
VI	Data visualization,	Visualization using Matplotlib: Matplotlib with	10	LO 1
	analysis and web	Numpy, working with plots (line plot, bar graph,		LO 6
	programming using python	histogram, scatter plot, area plot, ple chart etc.),		
	using python	Data manipulation and analysis using Pandas:		
		Introduction to Pandas, importing data into		
		Python, series, data frames, indexing data frames.		
		basic operations with data frame, filtering,		
		combining and merging data frames, Removing		
		Duplicates.		
		SciPy: Linear algebra functions using Numpy and		
		Scipy.		
		web programming: introduction to Flask, Creating a Basic Flask Application Build a		
1		a busic mask Application, build a		

List of Experiments/Mini-Project.

	Write python programs to understand
1)	 a) Basic data types, Operators, expressions and Input Output Statements b) Control flow statements: Conditional statements (if, ifelse, nested if) c) Looping in Python (while loop, for loop, nested loops) d) Decorators, Iterators and Generators.
	Write python programs to understand
2)	 a) Different List and Tuple operations using Built-in functions b) Built-in Set and String functions c) Basic Array operations on 1-D and Multidimensional arrays using Numpy d) Implementing User defined and Anonymous Functions
	Write python programs to understand a) Classes Objects Constructors Inner class and Static method
3)	 b) Different types of Inheritance c) Polymorphism using Operator overloading, Method overloading, Method overriding, Abstract class, Abstract method and Interfaces in Python.
4)	 Write python programs to understand a) Creating User-defined modules/packages and import them in a program b) Creating user defined multithreaded application with thread synchronization and deadlocks c) Creating a menu driven application which should cover all the built-in exceptions in python
	Write python programs to understand a) Different File Handling operations in Python
5)	b) Designing Graphical user interface (GUI) using built-in tools in python (Tkinter, PyQt, Kivy etc.).
	c) GUI database connectivity to perform CRUD operations in python (Use any one database like SQLite, MySQL, Oracle, PostgreSQL etc.)
6)	 Write python programs to implement a) Different types of plots using Numpy and Matplotlob b) Basic operations using pandas like series, data frames, indexing, filtering, combining and merging data frames. c) Different Linear algebra functions using Scipy. d) A Basic Flask Application to build a Simple REST API.

Mini Project

Mini-project have to be developed in a group of three students which should cover all above topics. **Suggested Mini-Project Topics:**

1. Railway reservation	27 IT Team	52. Business Directory	78. Practice Test
system	Workspace		Management.
2. Inventory Management	29 Job Requisition and	53. Education	79. Asset Management
system.	Interview Management	Directory	System
3 Classroom Management	28 Knowledge Base	54. Dental Clinic	80. Travel Agency
		Management	System.
4 Clinical Trial Initiation	29 Lending Library	55. Fund Raising	81. Placement
and Management		Management	Management System.

5 Competitive Analysis Web Site	30 Physical Asset Tracking and	56. Clinic/ Health Management	82. Polls Management
(Discussion Frances	Management	57 Calila Managamant	92 Container
6 Discussion Forum	31 Project Tracking Workspace	57. Cable Management	83. Customer Management
7 Disputed Invoice	32 Shopping Cart	58 Survey Creation	84 Project
Management	52. Shopping Curt .	and Analytics	Management System.
8 Employee Training	33 Knowledge Base	59. Museum	85. Network Marketing
Scheduling and Materials	C	Management System	System
9 Equity Research	34 Lending Library	60. Multi-Level	86. Yoga Health Care
Management		Marketing System	Management
10 Integrated Marketing	35 Physical Asset	61. Learning	87. Personal Finance
Campaign Tracking	Tracking and	Management System	Management System
	Management		
11 Manufacturing Process	36 Project Tracking	62. Knowledge	88. Real Estate
Managements	Workspace	Management System	Management System
12 Product and Marketing	3 / Room and	63. Missing Person	89. Stock Mutual
Requirements Flaming	Reservations	Sile	runus management
13 Request for Proposal	38 Sales Lead Pineline	64 Disaster	90 Careers and
Software	50 Bales Lead I Ipenne	Management Site	Employment
		Tranagement Site	Management System
14 Sports League	39. Yellow Pages &	65. Job Management	91. Music Albums
Management	Business Directory	Site	Management System
15 Absence Request and	40. Time & Billing	66. Financial Portfolio	92. Classified Ads
Vacation Schedule		Management	Managements
Management			
16 Budgeting and Tracking	41. Class Room	67. Market Research	93. Property
Multiple Projects	Management	Management	Management System
17 Bug Database	42. Expense Report	68. Order Management	94. Sales & Retail
Management	Database	System	Management
18 Call Center	43. Sales Contact	69. Point of Sale	95. Dating Site
Management Software	Management Database		
19 Change Request	44. Inventory	/0. Advertisement	96. Hotel Management
Wanagement	Management Database	and Analytics	System
20 Compliance Process	45 Issue Database	71 Export	97 Search Engine
Support Site	43. Issue Database	Management System	Jr. Searen Englite
21 Contacts Management	46. Event Management	72. Invoice	98. Online News Paper
Software	Database	Management	Site
22 Document Library and	47. Service Call	73. Recruitment	99. Image Gallery
Review	Management Database	Management System	
23 Event Planning and	48. Accounting Ledger	74. Articles / Blog /	100. Staffing and
Management	Database	Wiki Web site	Human Capital
			Management
24 Expense Reimbursement	49. Asset Tracking	75. Online Planner	101. Development of a
and Approval	Database		feature-rich, practical
			Online Survey 1001
25 Help Deck and Ticket	50 Cycle Factory	76 Mock Tests and	102 Development of a
Management	Works Management	Examination	Web/Email based
	,, orks management	Management	Search Engine
26 Inventory Tracking	51. Sales Corporation	77. Examination	103. Development of a
	Management	System	web-based
			Recruitment Process
			System for the HR
			group for a company

Text Books:

1. Dr. R. Nageswara Rao," Core Python Programming", Dreamtech Press, Wiley Publication

2. M. T. Savaliya, R. K. Maurya, "Programming through Python", StarEdu Solutions.

3. E Balagurusamy, "Introduction to computing and problem-solving using python", McGraw Hill Publication.

References:

- 1. Zed A. Shaw, "Learn Python 3 the Hard Way", Zed Shaw's Hard Way Series.
- 2. Martin C. Brown," Python: The Complete Reference", McGraw-Hill Publication.
- 3. Paul Barry," Head First Python", 2nd Edition, O'Reilly Media, Inc.

Online resources:

- 1) https://docs.scipy.org/doc/numpy/user/quickstart.html
- 2) https://matplotlib.org/tutorials/
- 3) https://pandas.pydata.org/docs/getting_started/
- 4) https://www.geeksforgeeks.org/python-build-a-rest-api-using-flask/

Term Work:

The Term work shall consist of at least 15 practical based on the above list. The term work Journal must include at least 2 Programming assignments. The Programming assignments should be based on real world applications which cover concepts from more than one modules of syllabus.

Term Work Marks: 25 Marks (Total marks) = 15 Marks (Experiment) + 5 Marks (Assignments/tutorial/write up) + 5 Marks (Attendance)

Practical & Oral Exam: An Oral & Practical exam will be held based on the above syllabus.

Course Code	Course	Teaching (Contact	Scheme Hours)		Credits Assigned			
	Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ITM401	Mini Project – 1 B for Python based automation projects		04			02		02

Course	Course	Examination Scheme							
Code	Name		Theor	ry Marks					
		Inte	rnal asse	ssment	End	Term Work	Pract. /Oral	Total	
		Test1	Test 2	Avg.	Sem. Exam	Term Work			
ITM401	Mini Project – 1 B for Python based automation projects					25	25	50	

Course Objectives

- 1. To acquaint with the process of identifying the needs and converting it into the problem.
- 2. To familiarize the process of solving the problem in a group.
- 3. To acquaint with the process of applying basic engineering fundamentals to attempt solutions to the problems.
- 4. To inculcate the process of self-learning and research.

Course Outcome: Learner will be able to...

- 1. Identify problems based on societal /research needs.
- 2. Apply Knowledge and skill to solve societal problems in a group.
- 3. Develop interpersonal skills to work as member of a group or leader.
- 4. Draw the proper inferences from available results through theoretical/ experimental/simulations.
- 5. Analyse the impact of solutions in societal and environmental context for sustainable development.
- 6. Use standard norms of engineering practices
- 7. Excel in written and oral communication.
- 8. Demonstrate capabilities of self-learning in a group, which leads to life long learning.
- 9. Demonstrate project management principles during project work.

Guidelines for Mini Project

- Students shall form a group of 3 to 4 students, while forming a group shall not be allowed less than three or more than four students, as it is a group activity.
- Students should do survey and identify needs, which shall be converted into problem statement for mini project in consultation with faculty supervisor/head of department/internal committee of faculties.
- Students hall submit implementation plan in the form of Gantt/PERT/CPM chart, which will cover weekly activity of mini project.
- A log book to be prepared by each group, wherein group can record weekly work progress, guide/supervisor can verify and record notes/comments.
- Faculty supervisor may give inputs to students during mini project activity; however, focus shall be on self-learning.
- Students in a group shall understand problem effectively, propose multiple solution and select best possible solution in consultation with guide/ supervisor.

- Students shall convert the best solution into working model using various components of their domain areas and demonstrate.
- The solution to be validated with proper justification and report to be compiled in standard format of University of Mumbai.
- With the focus on the self-learning, innovation, addressing societal problems and entrepreneurship quality development within the students through the Mini Projects, it is preferable that a single project of appropriate level and quality to be carried out in two semesters by all the groups of the students. i.e. Mini Project 1 in semester III and IV. Similarly, Mini Project 2 in semesters V and VI.
- However, based on the individual students or group capability, with the mentor's recommendations, if the proposed Mini Project adhering to the qualitative aspects mentioned above gets completed in odd semester, then that group can be allowed to work on the extension of the Mini Project with suitable improvements/modifications or a completely new project idea in even semester. This policy can be adopted on case by case basis.

Guidelines for Assessment of Mini Project:

Term Work

- The review/ progress monitoring committee shall be constituted by head of departments of each institute. The progress of mini project to be evaluated on continuous basis, minimum two reviews in each semester.
- In continuous assessment focus shall also be on each individual student, assessment based on individual's contribution in group activity, their understanding and response to questions.
- Distribution of Term work marks for both semesters shall be as below;

0	Marks awarded by guide/supervisor based on log book	: 10
0	Marks awarded by review committee	: 10
0	Quality of Project report	: 05

Review/progress monitoring committee may consider following points for assessment based on either one year or half year project as mentioned in general guidelines. One-year project:

- In first semester entire theoretical solution shall be ready, including components/system selection and cost analysis. Two reviews will be conducted based on presentation given by students group.
 - First shall be for finalisation of problem
 - Second shall be on finalisation of proposed solution of problem.
- In second semester expected work shall be procurement of component's/systems, building of working prototype, testing and validation of results based on work completed in an earlier semester.
 - First review is based on readiness of building working prototype to be conducted.
 - Second review shall be based on poster presentation cum demonstration of working model in last month of the said semester.

Half-year project:

- In this case in one semester students' group shall complete project in all aspects including,
 - $\circ \quad \text{Identification of need/problem}$
 - \circ Proposed final solution
 - Procurement of components/systems
 - Building prototype and testing
 - Two reviews will be conducted for continuous assessment,
 - First shall be for finalisation of problem and proposed solution
 - Second shall be for implementation and testing of solution.

Assessment criteria of Mini Project.

Mini Project shall be assessed based on following criteria;

- 1. Quality of survey/ need identification
- 2. Clarity of Problem definition based on need.
- 3. Innovativeness in solutions
- 4. Feasibility of proposed problem solutions and selection of best solution
- 5. Cost effectiveness
- 6. Societal impact
- 7. Innovativeness
- 8. Cost effectiveness and Societal impact
- 9. Full functioning of working model as per stated requirements
- 10. Effective use of skill sets
- 11. Effective use of standard engineering norms
- 12. Contribution of an individual's as member or leader
- 13. Clarity in written and oral communication
- In **one year, project**, first semester evaluation may be based on first six criteria's and remaining may be used for second semester evaluation of performance of students in mini project.
- In case of **half year project** all criteria's in generic may be considered for evaluation of performance of students in mini project.

Guidelines for Assessment of Mini Project Practical/Oral Examination:

- Report should be prepared as per the guidelines issued by the University of Mumbai.
- Mini Project shall be assessed through a presentation and demonstration of working model by the student project group to a panel of Internal and External Examiners preferably from industry or research organisations having experience of more than five years approved by head of Institution.
- Students shall be motivated to publish a paper based on the work in Conferences/students competitions.

Mini Project shall be assessed based on following points;

- 1. Quality of problem and Clarity
- 2. Innovativeness in solutions
- 3. Cost effectiveness and Societal impact
- 4. Full functioning of working model as per stated requirements
- 5. Effective use of skill sets
- 6. Effective use of standard engineering norms
- 7. Contribution of an individual's as member or leader
- 8. Clarity in written and oral communication

University of Mumbai

No. UG/44 of 2019-20

CIRCULAR:-

Attention of the Principals of the Affiliated Colleges, Directors of the recognized Institutions in Science & Technology Faculty is invited to this office Circular No. UG/249 of 2010 dated 12th August, 2010 relating to the revised syllabus of Fourth Year (Sem.VII & VIII) of the

They are hereby informed that the recommendations made by the Board of Studies in Civil Engineering at its meeting held on 11th April, 2019 have been accepted by the Academic Council at its meeting held on 15th April, 2019 vide item No. 4.51 and that in accordance therewith, the revised syllabus as per the (CBCGS) for the B.E. Civil Engineering (Sem. VII & VIII) has been brought into force with effect from the academic year 2019-20, accordingly. (The same is available on the University's website www.mu.ac.in).

MUMBAI - 400 032 oth July, 2019 To

low (Dr. Ajay Deshmukh) REGISTRAR

The Principals of the affiliated Colleges, and Directors of the recognized Institutions in Science & Technology Faculty. (Circular No. UG/334 of 2017-18 dated 9th January, 2018.)

A.C/4.51/15/04/2019

No. UG/44 -A of 2018-19

MUMBAI-400 032

9th July, 2019

Copy forwarded with Compliments for information to:-

1) The I/c Dean, Faculty of Science & Technology,

2) The Chairman, Board of Studies in Civil Engineering,

3) The Director, Board of Examinations and Evaluation,

4) The Director, Board of Students Development,

5) The Co-ordinator, University Computerization Centre,

chom

(Dr. Ajay Deshmukh) REGISTRAR

UNIVERSITY OF MUMBAI

Revised syllabus (Rev- 2016) from Academic Year 2016 -17

Under

FACULTY OF TECHNOLOGY

Civil Engineering

Second Year with Effect from A.Y. 2017-18

Third Year with Effect from A.Y. 2018-19

Final Year with Effect from A.Y. 2019-20

As per Choice Based Credit and Grading System

with effect from the A.Y. 2016–17

Dean, Faculty of Science and Technology

Preamble:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome-based education in the process of curriculum development. Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEOs) and give freedom to affiliated Institutes to add few (PEOs). It is also resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology and developed curriculum accordingly. In addition to outcome-based education, semester-based credit and grading system is also introduced to ensure quality of engineering education. Choice based Credit and Grading system enables a much-required shift in focus from teacher-centric to learner centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scales to grade learner's performance. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 2-3 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc. Choice based Credit and grading system is implemented from the academic year 2016-17 through optional courses at department and institute level. This will be effective for SE, TE and BE from academic year 2017-18, 2018-19 and 2019-20 respectively.

Dr. S. K. Ukarande

Dean(I/c) Faculty of Science and Technology,

Member - Academic Council,

University of Mumbai, Mumbai

<mark>Chairman</mark>

Preamble:

Engineering education in India is expanding and is set to increase manifold. The major challenge in the current scenario is to ensure quality to the stakeholders along with expansion. To meet this challenge, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education and reflects the fact that in achieving recognition, the institution or program of study is committed and open to external review to meet certain minimum specified standards. The major emphasis of this accreditation process is to measure the outcomes of the program that is being accredited. Program outcomes are essentially a range of skills and knowledge that a student will have at the time of graduation from the program. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating the philosophy of outcome-based education in the process of curriculum development. As the Chairman, Board of Studies in Civil Engineering of the University of Mumbai, I am happy to state here that, the Program Educational Objectives for Undergraduate Program were finalized in a brain storming session, which was attended by more than 40 members from different affiliated Institutes of the University. They are either Heads of Departments or their senior representatives from the Department of Civil Engineering. The Program Educational Objectives finalized for the undergraduate program in Civil Engineering are listed below; 1. To prepare the Learner with a sound foundation in the mathematical, scientific and engineering fundamentals 2. To motivate the Learner in the art of self-learning and to use modern tools for solving real life problems 3. To inculcate a professional and ethical attitude, good leadership qualities and commitment to social responsibilities in the Learner's thought process 4. To prepare the Learner for a successful career in Indian and Multinational Organisations In addition to Program Educational Objectives, for each course of the program, objectives and expected outcomes from a learner's point of view are also included in the curriculum to support the philosophy of outcome-based education. I strongly believe that even a small step taken in the right direction will definitely help in providing quality education to the major stakeholders.

Dr. S. K. Ukarande

Chairman, Board of Studies in Civil Engineering,

University of Mumbai

University of Mumbai

Scheme of Instructions and Examination

Second Year Engineering (Civil Engineering)

(With effect from 2017- 2018)

(Semester-III)

		Т	eaching Sche	eme	Credits Assigned				
Subject	Subject Name	(Contact Hou	rs)					
Coue		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
CE-C301	Applied Mathematics -III*	4	-	1	4	-	1	5	
CE-C302	Surveying- I	4	2	-	4	1	-	5	
CE-C303	Strength of Materials	4	2	-	4	1	-	5	
CE-C304	Engineering Geology	3	2	-	3	1	-	4	
CE-C305	Fluid Mechanics-I	3	2	-	3	1	-	4	
Total		18	8	1	18	4	1	23	

		Examination Scheme								
		Theory								
Subject	Subject Name	Internal Assessment			End	Exam	TW	Oral &	Total	
Code		Test1	Test2	Avg	Sem	Duration		Practical		
					Exam					
CE-C301	Applied Mathematics- III	20	20	20	80	3	25	-	125	
CE-C302	Surveying- I	20	20	20	80	3	25	25**	150	
CE-C303	Strength of Materials	20	20	20	80	3	25	25	150	
CE-C304	Engineering Geology	20	20	20	80	3	25	25	150	
CE-C305	Fluid Mechanics -I	20	20	20	80	3	25	25	150	
			100	400	-	125	100	725		

*Common with Mechanical/ Automobile/ Mechatronics

** For the course 'Surveying-I (CE-C 302)", the oral examination will be conducted in conjunction with practical/s
University of Mumbai Scheme of Instructions and Examination

Second Year Engineering (Civil Engineering)

(With effect from 2017-2018)

(Semester -IV)

		Teachin	g Scheme	(Contact	Credits Assigned				
Subject	Subject Name		Hours)						
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
CE-C401	Applied Mathematics-IV*	4	-	1	4	-	1	5	
CE-C402	Surveying-II	3	3	-	3	1.5	-	4.5	
CE-C403	Structural Analysis-I	4	2	-	4	1	-	5	
CE-C404	Building Design & Drawing	2	3	-	2	1.5	-	3.5	
CE-C405	Building Materials & Construction Technology	4	2	-	4	1	-	5	
CE-C406	Fluid Mechanics-II	3	2	-	3	1	-	4	
	Total	20	12	1	20	6	1	27	

]	Exami	nation Sch	eme		
Subject				Theor	·у				
Code	Subject Name	Intern	al Ass	essment	End	Exam	TW	Oral &	Total
		Test1	Test2	Avg.	Sem	Duration		Practical	
					Exam	(in Hrs)			
CE-C401	Applied Mathematics- IV*	20	20	20	80	3	25		125
CE-C402	Surveying-II	20	20	20	80	3	50	25**	175
CE-C403	Structural Analysis-I	20	20	20	80	3	25	25	150
CE-C404	Building Design & Drawing	20	20	20	80	4	25	25@	150
CE-C405	Building Materials & Construction Technology	20	20	20	80	3	25	25	150
CE-C406	Fluid Mechanics-II	20	20	20	80	3	25	25	150
	Total			120	480		175	125	900

* Common with Mechanical/ Automobile/ Mechatronics

** For the course 'Surveying-II (CE-C 402), the oral examination will be conducted in conjunction with practical/s

@ For the course 'Building Design and Drawing (CE-C 404)', the oral examination shall be conducted in conjunction with the sketching examination.

University of Mumbai Scheme of Instructions and Examination

Third Year Engineering (Civil Engineering)

(With effect from 2018- 2019)

(Semester -V)

Subject	Subject Name	Teaching Scheme (Contact Hours)			Credits Assigned				
Code		Theory	Practs.	Tut.	Theory	Practs.	Tut.	Total	
CE-C501	Structural Analysis – II	4	2		4	1		5	
CE-C502	Geotechnical Engineering – I	3	2		3	1		4	
CE-C503	Applied Hydraulics	3	2		3	1		4	
CE-C504	Environmental Engineering -I	3	2		3	1		4	
CE-C505	Transportation Engineering – I	3	2		3	1		4	
CE- DLO506X	Department Level Optional Course – I	3	2		<mark>3</mark>	1		4	
CE-C507	Business and Communication Ethics		4#			2		2	
Total		19	16		19	8	-	27	

		Examination Scheme								
				Theor	ry					
Subject	Subject Name	Interna	al Asses	sment	End	Exam.	Term			
Code		Test 1	Test 2	Avg	Sem.	Duration	Work	Practs	Oral	Total
					Exam.	(In Hrs.)		•		
CE-C501	Structural Analysis-II	20	20	20	80	3	25		25	150
CE-C502	Geotechnical Engineering	20	20	20	80	3	25		25	150
CE C503	Applied									
CE-C505	Hydraulics	20	20	20	80	3	25		25	150
CE-C504	Environmental	20	20	20	20	2	25		25	150
	Engineering -I	20	20	20	80	3	25		25	150
CE-C505	Transportation	20	20	20	20	2	25		25	150
	Engineering – I	20	20	20	80	3	25		25	150
CE-	Department Level	20	20	20	00	2	25		25	150
DLO506X	Optional Course -I	20	20	20	80	<u>c</u>	23		25	150
CE-C507	Business and									
	Communication Ethics						50*			50
	Total			120	480		200		150	950

University of Mumbai Scheme of Instructions and Examination Third Year Engineering (Civil Engineering) (With effect from 2018- 2019) (Semester -VI)

Subject	Subject Name	Teachi (Conta	ng Scho act Hou	eme 1rs)	Credits Assigned				
Code		Theory	Pract	Tut.	Theory	Practs	Tut.	Total	
CE-C601	Geotechnical Engineering. – II	3	2		3	1		4	
CE-C602	Design and Drawing of Steel Structures	4	2		4	1		5	
CE-C603	Transportation Engineering. – II	3	2		3	1		4	
CE-C604	Environmental Engineering. – II	3	2		<mark>3</mark>	1	-	<mark>4</mark>	
CE-C605	Water Resource Engineering –I	3	2		3	1		4	
CE- DLO606X	Department Level Optional Course – II	3	2		3	1		4	
CE-C607	Software Applications in Civil Engineering		2			1		1	
	19	14		19	7		26		

					Exam	ination So	cheme			
Subject				Theo	ory					
Code	Subject Name	Internal Assessment			End Sem.	Exam. Duration	Term	Pract.	Oral	Tatal
		Test1	Test2	Avg	Exam	(InHrs.)	V OI K			Totai
CE-C601	Geotechnical Engineering-II	20	20	20	80	3	25		25	150
CE-C602	Design and Drawing of Steel Structures	20	20	20	80	4	25		25 [@]	150
CE-C603	Transportation Engineering- II	20	20	20	80	3	25			125
CE-C604	Environmental Engineering-II	20	20	20	80	3	25		25	150
CE-C605	Water Resource Engineering-I	20	20	20	80	3	25		25	150
CE- DLO606X	Department Level Optional Course-II	20	20	20	80	3	25		25	150
CE-C607	Software Applications in Civil Engineering						25		25	50
	Total	120	120	120	480		175		150	925

For the course 'Business and Communication Ethics (CE- C507), although 04 (Four) clock hours are mentioned under the head of Practical, 02 (Two) clock hours out of these 04 (Four) clock hours may be utilized as the Theory at the Institute/ College Level so as to enable the instructor (teacher) to impart the theoretical aspects of the said course. Accordingly, the provision may be made in the Time Table.

* Further, the oral examination in respect of the course 'Business and Communication Ethics (CE-C 507)' will be an internal oral and will be conducted in conjunction with seminar/ presentation.

@ For the course, Design and Drawing of Steel Structures (CE-C 602), the oral examination will be conducted in conjunction with sketching.

Department Level Optional Course –I	Department Level Optional Course- II
CE-DLO5061: Advanced Surveying	CE-DLO6061: Advanced Construction Equipment
CE-DLO5062: Advanced Concrete Technology	CE-DLO6062: Traffic Engineering and Management
CE-DLO5063: Building Services and Repairs	CE-DLO6063: Ground Improvement Techniques
CE-DLO5064: Advanced Structural Mechanics	CE-DLO6064: Advanced Structural Analysis

University of Mumbai Scheme of Instructions and Examination Fourth Year Engineering (Civil Engineering) (With effect from 2019-2020) (Semester -VII)

Subject	Subject Subject Name		ing Sche tact Hou	me rs)	Credits Assigned				
Code		Theory	Practs.	Tut.	Theory	Pract.	Tut.	Total	
CE-C701	Quantity Survey Estimation and Valuation	4	2		4	1	-	5	
CE-C702	Theory of Reinforced Concrete Structures	4	2		4	1		5	
CE-C703	Water Resource Engineering -II	3		2	3		2	5	
CE- DLO704X	Department Level Optional Course-III	3		2	3		2	5	
ILO701X	Institute Level Optional Course-I	<mark>3</mark>			<mark>3</mark>			<mark>3</mark>	
CE-C705	Project – Part I		6			3		3	
	Total	17	10	4	17	5	4	26	

					Exam	ination So	cheme			
				The	ory					
Subject	Subject Name	Internal			End	Exam.	_			
Code	Subject Mame	Ass	Assessment			Duration	Term	Pract	Oral	Total
		Test1	Test 2	Avg	Exam.	(InHrs.)	Work			
	Quantity Survey Estimation									
CE-C701	and Valuation	20	20	20	80	4	25		25	150
CE C702	Theory of Reinforced									
CE-C702	Concrete Structures	20	20	20	80	3	25		25	150
CE C703	Water Resource									
CE-C703	Engineering-II	20	20	20	80	3	25		25	150
CE-	Department Level Optional									
DLO704X	Course-III	20	20	20	80	3	25		25	150
U 0701X	Institute Level Optional									
ILO/01X	Course I	20	20	20	80	3			-	100
CE-P705	Project – Part I						50		25 [@]	75
	Total	100	100	100	400		150		125	775

@ For Project Part-I (CE-P 706), the oral examination shall be based on the presentation/ seminar before the board of internal examiners to be appointed by the Head of the concerned Department.

University of Mumbai Scheme of Instructions and Examination Fourth Year Engineering (Civil Engineering) (With effect from 2019-2020) (Semester- VIII)

Subject	Subject Name	Teacl (Cor	ning Scho ntact Hou	eme 1rs)	Credits Assigned				
Code		Theory	Practs	Tut.	Theory	Practs	Tut	Total	
CE-C801	Design and Drawing of Reinforced Concrete Structures	4	2		4	1	-	5	
CE-C802	Construction Management	4	2		4	1	-	5	
CE- DLO803X	Department Level Optional Course- IV	4	2		4	1		5	
ILO802X	Institute Level Optional Course- II	3			3			3	
CE-P804	Project – Part II		12			6		6	
	Total	15	18	-	15	9	-	24	

		Examination Scheme								
			1	Theor	ſy					
Subject Subject		Internal			End	Exam.	Term			
Code	Name	As	Assessment		Sem	Duration	Work	Pract	Oral	Total
		Test1	Test 2	Avg	Exam	(In Hrs.)				
	Design and Drawing of									
CE-C801	Reinforced Concrete	20	20	20	80	4	25		25	150
	Structures									
CE-C802	Construction Management	20	20	20	80	3	25		25	150
CE-	Department Level									
DLO803X	Optional Course-IV	20	20	20	80	3	25		25	150
	Institute Level Optional	20	20	20	00	2	25			100
ILU802A	Course II	20	20	20	80	3	25			100
CE-P804	Project – Part II						50		50 [#]	100
	Total	80	80	80	320		150		125	650

[#] The oral examination for the Project- Part II (CE-P 806) shall be based on the presentation/ seminar to be delivered by the projectee/s before the board of examiners. The board of internal examiners will comprise of the internal examiners and the external examiners to be approved by the University from the pool of eligible examiners.

Guidelines for Project, i.e., Dissertation (Part-I and II)

(i) Students can form groups with minimum of 2 (Two) students and not more than 4 (Four) students.

(ii) Faculty load: In Semester VII: 01 (One) clock hour per week per project group and in Semester VIII: 02 (Two) clock hours per week per project group.

(iii) Each faculty member shall be permitted to guide maximum 04 (Four) project groups.

Department Level Optional Course – III	Department Level Optional Course – IV
<mark>(Semester – VII)</mark>	(Semester – VIII)
CE-DLO7041: Pre-stressed Concrete	CE-DLO8031: Advanced Design of Steel Structures
CE-DLO7042: Solid Waste management	CE-DLO8032: Industrial Waste Treatment
CE-DLO7043: Pavement Sub-grade and Materials	CE-DLO8033: Pavement Design and Construction
	CE-DLO8034: Bridge Engineering and Design
CE-DLO7044: Structural Dynamics	CE-DLO8035: Appraisal and Implementation of
CE-DLO7045: Application of GIS and Remote	Infrastructure Projects
Sensing	CE-DLO8036: Soil Dynamics
CE-DLO7046: Foundation Analysis and Design	CE-DLO8037: Applied Hydrology and Flood Control

Institute Level Optional Course – I	Institute Level Optional Course – II
(Semester –VII)	(Semester – VIII)
ILO7011: Product Lifecycle Management	ILO8021: Project Management
ILO7012: Reliability Engineering	ILO8022: Finance Management
ILO7013: Management Information Systems	ILO8023: Entrepreneurship Development and
ILO7014: Design of Experiments	Management
ILO7015: Operations Research	ILO8024. Human Resources Management
ILO7016: Cyber Security and Laws	Responsibility (CSR)
ILO7017: Disaster Management and Mitigation Measures	ILO8026: Research Methodology
ILO7018: Energy Audit and Management	ILO8027: Intellectual Property Rights and Patenting
ILO7019: Development Engineering	ILO8028: Digital Business Management
	ILO8029: Environment Management

Semester-VII

Semester VII					
Subject Code	Subject Name	Credits			
CE-C 701	Quantity Survey, Estimation & Valuation	5			

Teaching Scheme						
Contact Hours				Cre	dits Assigned	
Theory	Practical	Tutorial	Theory	Practical	Tutorials	Total
04	02		04	01		05

Evaluation Scheme								
Theory Term Work/ Practical/Oral						Total		
Inter	nal Asses	ssment	End	Duration				
Tost 1	Toot 2	Average	Sem	of End	TW	PR	OR	
Test I	1 est 2	Average	Exam	Sem Exam				
20	20	20	80	04 Hrs.	25	-	25	150

Any structure, i.e., building, bridge, dam etc. consists of various building materials. Due to rise in the cost of materials, the structure has to be designed so that it is safe, serviceable and economical. Without proper design and estimation, it may lead to the increase in cost of construction and it further affects the economical aspect of the structure. A prior knowledge of various building materials is required for the construction and it controls the cost of the structure, save wastage of labour-hours and eventually helps in giving the correct amount required and quantity of various materials required. It also helps in scheduling of men, materials and machine to be used in the project at stages. The scope of the subject includes estimating, costing, analysis of rates, specification, valuation, tender and contracts etc.

Objectives

•To read, understand and interpret plans, sections, detailed drawings and specifications for a construction project.

• To study the various methods of detailed and approximate estimates.

•To emphasize the importance of relevant IS: 1200- 1964 codes and relevant Indian Standard specifications, taking out quantities from the given requirements of the work, and drafting specifications.

•To conduct a material and labour survey to understand the current market rates for the various materials required for construction and the different categories of labour required.

•To perform the rate analysis for various items: standard and non-standard and the use of DSR in this process.

•To study the process of tendering and its various stages, various types of contracts, its suitability and validity as per the Indian Contract Act of 1872 and draft various clauses and conditions of a contract.

•To study the arbitration process.

•To study assessment of the value of a property.

Detailed Syllabus								
Module		Sub-Modules/ Contents I						
	Intr	oduction						
	1.1	Importance of Course	03					
I.	1.2	Measurement systems for various items of civil engineering						
		structures.	-					
	1.3	Units of measurement of various items of works						
	1.4	I.S1200						

	Spe	cifications & Rate Analysis				
	2.1	Types & importance of specifications, rules to be followed for	08			
		drafting the specifications of various items of work etc				
II.	2.2	Rate analysis, its importance & necessity, Factors affecting rate				
		analysis, Task work, sources of materials, Study of IS 7272 regarding				
		labour output ,District Schedule of Rates(DSR)				
		Rate analysis of important items of construction works.				
	Esti	mates				
	3.1	Approximate Estimate				
		Definition & Purposes of approximate estimates, Methods for				
		preparing approximate estimates & numerical based on methods,	14			
		Various terms such as administrative approval, Technical sanction,	14			
		Contingencies, Work charged establishments etc.				
111.	3.2	Detailed Estimate				
		Definition & purposes of detailed estimate, Data required for				
		preparation of detailed estimate. Methods of taking out quantities such				
		as long wall & short wall method, Centre line method etc Bar Bending				
		various structural elements as per code IS2502 Preparation of detailed				
		estimate of R C C framed structures				
	estimate of R.C.C framed structures					
	4 1	Matheda of computation of volume of carthwork such as mean area	06			
TX 7	4.1	method mid-sectional area method Prismoidal formula Tranezoidal				
1.		formula Spot level method etc. & numericals based on methods Mass				
		haul diagram & its necessity. Terms like lead & lift etc.				
	-					
	Ten	ders & Contracts				
	5.1	Tenders	00			
		Definition & types of tenders, Tender notice & its inclusions, Pre-	00			
		qualification of contractors, Pre-bid meeting, Procedure for submission & Opening of tender accentence & mission of tender				
		Submission & Opening of tender, acceptance & rejection of tender,				
V.		Tender validity period, E-Tendering				
••	52	Contracts				
	0.2	Definition, basic forms such as Valid, void & voidable contract.				
		General types of contract with their suitability, conditions of contract				
	5.3	Dispute resolution methods				
		Causes of disputes & disputes resolution methods such as litigation,				
		mediation & arbitration				
	Val	uation				
	6.1	Difference between cost, price & value, Types of value, Valuation &				
X/T	011	its purposes. Various terms such as depreciation, sinking fund.	00			
V 1.		its purposes. Various terms such as depreciation, sinking fund, capitalized value, years purchase etc. Methods for calculating				
		depreciation of building				
	6.2	Methods of valuation such as Rental method, land & building method,				
		Belting method etc.				
	6.3	Freehold Properties, Leasehold Properties, Easement rights				
	6.4	Numericals based on valuation				

Contribution to Outcomes

On completion of the course, the learners will be able to:

- 1) **apply** the measurement systems to various civil engineering items of work.
- 2) draft the specifications for various items of work & determine unit rates of items of works
- 3) **estimate** approximate cost of the structures by using various methods&**prepare** detailed estimates

of various civil engineering structures by referring drawings.

- 4) **assess** the quantities of earthwork &**construct** mass haul diagrams.
- 5) draft tender notice & demonstrate the significance of the tender as well as contract process.
- 6) **determine** the present fair value of any constructed building at stated time.

Theory examination:

Question paper will comprise of six questions; each carrying 20 marks.

The **first** question will be **compulsory** based on computation of quantities of various items of work by referring drawings.

The remaining **five** questions will be based on all the modules of entire syllabus. For this, the module shall be divided proportionately further, and the weightage of the marks shall be judiciously awarded in proportion to the importance of the sub-module or contents thereof.

There can be an **internal** choice in various sub-questions/ questions in order to accommodate the questions on all the topics/ sub-topics.

The students will have to attempt any **three** questions out of remaining five questions. Total **four** questions need to be attempted.

Oral Examination:

The oral examination will be based on the entire syllabus and the term work.

Term Work:

The term work shall consist of the following:

- 1) At least **eight** assignments based on entire syllabus
- 2) Detailed estimate of any **Three** of the following with the required material survey for the same.
 - Single Storied building (RCC) Road work
 - Load bearing structure Cross drainage work
- 3) Valuation report in a standard format of the Government/ Private company/Firm.

The use of quantity survey software and the use of worksheets/databases while solving some of the afore-mentioned assignments is desirable.

Distribution of Term Work Marks:

The marks of the term-work shall be judiciously awarded depending upon the quality of the term work including that of the report on assignments. The final certification and acceptance of the term-work warrants the satisfactory and the appropriate completion of the assignments; and the minimum passing marks to be obtained by the students. The following weight age of marks shall be given for different components of the term work.

Assignments : 20 Marks

Attendance : 05 Marks

Further, while giving weightage of marks on the attendance, following guidelines shall be resorted to. 75%- 80%: 03 Marks; 81%- 90%: 04 Marks; 91% onwards: 05 Marks

Recommended Books:

- 1) Estimating, Costing, Specifications and Valuation: Chakraborty, M., Kolkata.
- 2) Building and Engineering Contracts: Patil, B. S., University Press, Hyderabad.
- 3) Estimating and costing: Datta, B. N., UBS Publications
- 4) Relevant Indian Standard Specifications, BIS Publications
- 5) World Bank approved contract documents

Semester VII				
Subject Code	Subject Name	Credits		
CE-C 702	Theory of Reinforced Concrete Structures	05		

Teaching Scheme						
Contact Hours				Cre	dits Assigned	
Theory Practical Tutorial		Theory	Practical	Tutorials	Total	
04	02		04	01		05

Evaluation Scheme								
Theory Term Work/ Practical/Oral						Total		
Inter	rnal Asses	ssment	End	Duration				
Teat 1	Test 2	Avenage	Sem	of End	TW	PR	OR	
Test I	Test 2	Average	Exam	Sem Exam				
20	20	20	80	04 Hrs.	25	-	25	150

Working stress Method (WSM) makes use of the concept of modular ratio based on the higher factor of safety in evaluating the stresses in two different materials of the RCC i.e. steel and the concrete. The limit state method (LSM) is based on the statistical probability which provides the rational solution to the design problem. The philosophy lies behind LSM uses multiple safety factors format which attempts to provide adequate safety at the ultimate load as well as adequate serviceability at service load by considering all possible limit states. The subject involves the application of working stress and limit state method in the analysis and design of various elements of the civil engineering structures.

Objectives

- 1. To develop the clear understanding of design philosophy amongst the students for the design of reinforced concrete structure using (WSM) working stress method and (LSM) limit state method.
- 2. To study the various clauses of IS: 456-2000 and its significance in the RCC design.
- 3. To apply the concepts of LSM in the analysis and design of beams, slabs and columns.
- 4. To study the concept of Serviceability and durability for deflection and crack width calculation in RCC structures.
- 5. To study the concept of reinforced concrete footing design subjected to axial load and moment.
- 6. To develop the concept of design using ready charts and curves for column subjected to axial load and moments.

Detailed Syllabus

Module	Contents	Periods
I.	Working Stress Method	12
	Concept of reinforced concrete, Working Stress Method (WSM) of design for	
	reinforced concrete, permissible stresses as per IS-456-2000; stress- strain	
	curve of concrete and steel, characteristics of concrete steel reinforcement.	
	Concept of balanced, under reinforced and over reinforced sections. Analysis	
	design of singly reinforced and doubly reinforced rectangular beams for	

	flexure, shear by WSM, Analysis and design of Cracked and un-cracked RCC	
	column sections by WSM	
II.	Limit State Method	03
	Introduction to limit state method of design as per IS-456-2000; concepts of	
	probability and reliability, characteristic loads, characteristic strength, partial	
	safety factors for loads and materials, introduction to various limit states.	
III.	Limit State of Collapse – Flexure, Shear, Bond and Torsion	15
	Limit state of collapse in flexure, shear and Limit state of serviceability in	
	deflection and cracking, design of singly and doubly reinforced rectangular	
	and T sections for flexure, design of members in shear and bond, design of	
	beam subjected to bending and torsion. Requirements governing reinforcement	
	detailing. Deflection and crack width calculation for RCC members.	
IV.	Design of Slabs using LSM:	06
	Design of one way, one way continuous slab and two way slabs with all end	
	conditions as per IS-456-2000.	
V.	Limit State of Collapse – Compression:	08
	Limit state of collapse compression for short and slender column. Members	
	subjected to combined axial and uni-axial as well as biaxial bending.	
	Development of interactive curves and their use in column design.	
VI.	Design of Foundations:	08
	Isolated square and rectangular footings subjected to axial load and moments.	
	Design of combined rectangular pad footings, slab beam type footing. Design	
	of Raft foundations (No numerical to be asked on raft foundations in the	
	exam)	
	Total	52

Contribution to Outcomes

On successful completion of the course, the student shall be able to:

- 1. Understand the pros and cons of the WSM and LSM.
- 2. Understand the various clauses specified in IS: 456-2000 for designing structural members with the safety and economy.
- 3. Carry out analysis and design of various elements of the reinforced concrete structures such as beam, slab, column, footings using the concept of Limit state method.
- 4. Understand and the use of readymade design curves from Special publications of Bureau of Indian standards.

Theory Examination:-

- 1. Use of IS:456-2000 shall be allowed in the examination.
- 2. Question paper will comprise of **six** questions; each carrying 20 marks.
- 3. The **first** question will be **compulsory** will have the short questions having weightage of 4-5 marks covering the entire syllabus.
- 4. The remaining **five** questions will be based on all the modules of the entire syllabus. For this, the modules shall be divided proportionately further; and the weightage of the marks shall be judiciously awarded in proportion to the importance of the sub-module contents thereof.
- 5. There can be an **internal** choice in various sub-questions/ questions in order to accommodate the questions on all the topics/ sub-topics.
- 6. The students will have to attempt any **three** questions out of remaining five questions.
- 7. Total **four** questions need to be attempted.

Term Work:

The term-work shall comprise of the neatly written report of the assignments. The assignments shall be given covering the entire syllabus in such a way that the students would attempt at least two problems on each modules/ sub-modules contents thereof.At least one numerical on raft foundation shall be included in assignments.

Distribution of Term-work Marks:

The marks of the term-work shall be judiciously awarded depending upon the quality of the term work including that of the report on assignments. The final certification acceptance of the term-work warrants the satisfactory and the appropriate completion of the assignments, the minimum passing marks to be obtained by the students. The following weightage of marks shall be given for different components of the term work.

- Assignments : 20 Marks
- Attendance : 05 Marks

Further, while giving weightage of marks on the attendance, following guidelines shall be resorted to.

75%- 80%: 03 Marks; 81%- 90%: 04 Marks 91% onwards: 05 Marks

Recommended Books:-

- 1. Design of Reinforced Concrete Structures: Dayaratnam, P; Oxford and IBH.
- 2. Limit State Design Reinforced Concrete: Jain A. K, Nemchand and Bros., Roorkee
- 3. Limit State Design Reinforced Concrete: *Shah and Karve*, Structure Publications, Pune.
- 4. Ultimate Strength Design for Structural Concrete: *Arthur, P. D. and Ramakrishnan, V.,* Wheeler and Co. Pvt. Ltd.
- 5. Reinforced Concrete: H.J. Shah, Charotar Publishers, Anand.
- 6. Fundamentals of Reinforced Concrete: Sinha& Roy, S. Chand and Co. Ltd.
- 7. Illustrated Reinforced Concrete Design: Dr. V. L. Shah and Dr. S. R. Karve, Structure Publications, Pune.
- 8. Reinforced Concrete Design: *Wang, C. K., Salmon, C. G., and Pincheira, J. A*, John Wiley (2007), 7th Edition.
- 9. Reinforced Concrete Fundamentals: *Ferguson, P. M., Breen, J. E., and Jirsa, J. O.*, John Wiley & Sons (1988) 5th Edition.
- 10. RCC Design (WSM and LSM): *Punmia, B. C., Jain, A. K., and Jain, Arun, K.*, Laxmi Publications.
- 11. Limit State Design of Reinforced Concrete (as per IS: 456-2000): *Punmia, B. C., Jain, A. K., and Jain, Arun, K.*, Laxmi Publications.
- 12. Design of RCC structural Elements (RCC Vol-I): *Bhavikatti*, S. S., New Age International Publications.
- 13. Reinforced Concrete: Syal and Goel; Wheeler Publishers.
- 14. Relevant IS Codes: BIS Publications, New Delhi.
- 15. Reinforced Concrete Design: *Pillai,S.U.*and*Menon,Devdas*, Tata Mc-Graw Hill Publishing House, New Delhi.
- 16. Reinforced Concrete Designby S.N. Sinha, Tata Mc-Graw Hill Publishing House, New Delhi.
- 17. Theory of Reinforced concrete structures by N. Subramanian, Oxford University Press.

Semester VII					
Subject Code	Subject Name	Credits			
CE-C 703	Water Resources Engineering II	05			

Teaching Scheme											
Contact Hours Credits Assigned											
Theory	Practical	Tutorial	Theory	Practical	Tutorials	Total					
03	-	02	03	-	02	05					

	Evaluation Scheme												
Theory						Term W Practical	ork/ /Oral	Total					
Internal Assessment		End	Duration of										
Test 1	Test 2	Average	Sem Evor	End Sem	TW	PR	OR						
		_	Ехаш	Exam									
20	20	20	80	04 Hrs.	25	-	25	150					

This subject provides necessary knowledge about design of gravity dams, earthen dams, energy dissipaters, canal headwork's, and canal structures. This subject is also useful with respect to facts, concepts, principles and procedures related to canal design, canal lining, cross drainage works and water logging. Further students will be able to plan and execute the construction of these structures.

Objectives

- 1. To understand different types of dams and its suitability to a particular region.
- 2. To study design consideration of earthen dams
- 3. To study various types of Spillways
- 4. To understand the importance of silt theories for design of irrigation channels
- 5. To study the classification of canals and design of canal system.

Detailed Syllabus

Modul e	Topics	Periods
Ι	Gravity dams	08
	Definition, typical cross section, forces acting on gravity dam, modes of	
	failure and structural stability analysis, profile of dam- elementary and	
	practical profile, low and high gravity dam, design consideration and fixing of	
	section of dam, methods of design, construction of galleries in dams, types of	
	joints, temperature control in concrete dams, foundation treatment, Arch dams,	
	types of arch dams	
II	Earth and rock fill dams:	06
	Types of earth dams, method of construction, causes and failures of earth	
	dams, design criteria, selecting suitable preliminary section, seepage line for	
	different conditions and its location, seepage control through embankment and	
	through foundations, Swedish circle method with pore pressure, details of	
	construction and maintenance, types of rock fill dams, stability analysis,	
	advantages	
III	Spillways and flood control works:	06
	Introduction, location of spillway, design consideration of main spillway,	

	controlled and uncontrolled spillway, types of spillways, design principles of ogee spillway. Chute spillway. Siphon spillway and shaft spillway, energy dissipation below overflow and other types of spillways, design of bucket type energy dissipater and stilling basin, flood mitigation reservoirs. Crest gates, types, advantagSes, design of radial gate, outlet works through dams, intake structures.	
IV	Irrigation Channels (Silt Theories)	07
	Kennedy's theory, Kennedy's methods of channel designs silt supporting	
	capacity according to Kennedy's theory. Drawbacks in Kenned' % theory	
	Lacey's regime theory, Lacey's theory applied to channel design. Comparison	
	of Kennedys and Lace 'S theory defects in Lacey's theory. Introduction to	
	Sediment transport in channels.	
V	Canal Head works and Distribution System	06
	Canals: Classification, canal alignment, canal losses, estimation of discharge,	
	cross sections of irrigation canals, maintenance of irrigation canal, canal	
	lining, economics of canal lining, water logging, effect of water logging,	
	remedial measures.	
VI	Canal structures	06
	Canal falls, types of canal falls, canal escapes, types, canal head regulators,	
	cross regulators, canal outlets and its types cross drainage works and types of	
	cross drainage works.	

Course Outcomes

On completion of this course the student will be able to:

- 1. Design the section of gravity dams, earth and rockfill dams, arch dams and buttress dams.
- 2. Design spillways and energy dissipaters.
- 3. Apply silt theories to design irrigation canals.
- 4. Explain various types of canals and its maintenance.
- 5. Explain different cross drainage works of a canal system.

Theory examination:

1. The question paper will comprise of six questions; each carrying 20 marks.

2. The first question will be compulsory and will have short questions having weightage of 4-5 marks covering the entire syllabus.

3. The remaining five questions will be based on all the modules of the entire syllabus. For this, the modules shall be divided proportionately and further, the weightage of the marks shall be judiciously awarded in proportion to the importance of the sub-module and contents thereof.

4. The students will have to attempt any three questions out of remaining five questions.

5. Total four questions need to be attempted.

Oral Examination:

The oral Examination shall be based upon the entire syllabus and the term work consisting of the

assignments.

Term Work:

The term work shall comprise of the neatly written report based on assignments. The assignments shall be given covering the entire syllabus in such a way that the students would attempt at least four problems on each sub-modules and contents thereof further.

Distribution of the Term Work Marks:

The marks of the term work shall be judiciously awarded depending upon the quality of the term work. The final certification and acceptance of term work warrants the satisfactory and appropriate completion of the assignments.

The following weightage of marks shall be given for different components of the term work.

- Assignments : 20 Marks
- Attendance : 05 Marks

Further, while giving weightage of marks on the attendance, following guidelines shall be resorted to.

• 75%-80% : 03 Marks; 81%-90%: 04 Marks 91% onwards: 05 Marks

Recommended Books:

- 1. Irrigation and Water Power Engineering: *B.C. Punmia, PandeB.B.Lal, A.K Jain.* Laxmi Publications Pvt, Ltd. New Delhi.
- 2. Irrigation Engineering and Hydraulic Structures: *S.K. Ukarande*, Ane Books Pvt. Ltd.ISBN,9789383656899.
- 3. Irrigation Water Resources and Water Power Engineering: *P.N. Modi*, Standard Book House, Delhi, ISBN 978-81-87401-29-0.
- 4. Irrigation Engineering and Hydraulics Structures: S. K. Garg, Khanna Publishers. Delhi.
- 5. Design of Irrigation Structures: S. K. Sharma, S. Chand and Co.
- 6. Theory and Design of Irrigation Structures: R. S. Varshney and R, C. Gupta, Nem Chand
- 7. Engineering for Dams, Vol. I to III: Crager, Justin and Hinds, John Wiley
- 8. Design of Small Dams: USBR.
- 9. Hydro Power Structures: R. S. Varshney, Nem Chand and Bross.
- 10. Concrete Dams: R. S. Varshney, Oxford and IBH Publishing Co.

	Semester-VII											
Subjec	ct Code	Code Subject Name C										
CE-DI	.O 7041	Pre-stressed Concrete								5		
Teaching Scheme												
	Cont	act Hours			(Credi	ts Assią	gned				
Theor	y Pr	actical '	Futorials	5 Theory	y Pract	ical	TW/1	Futorials]	Fotal		
3		-	2	3	-		2			5		
	•		E	Evaluation S	Scheme		•					
		Theory			Termwo	rk/Pı	actical	/Oral/Tut	ori	Total		
							als					
Inte	nal Assessments ESE			Duration	TW/TU		PR	OR				
IAE-I	IAE-II	Average		of ESE								
20	20	20	80	3Hr	25		-	25		150		

The course is aimed to make the student to be aware of highly mechanized technology in civil engineering construction and to develop the basic understanding of prestressed concrete which is used in a wide range of building and civil structures. A Prestressed Concrete section improves performance/efficiency, reduces structural thicknesses, and material savings compared with simple reinforced concrete sections. Typical applications of prestressed concrete include high rise buildings, residential slabs and bridge structures etc.

Objectives

1. To bring the students to such a level so as to enable them to take the appropriate decision in respect of choice of prestressed section over R. C. C. as a civil engineer.

2. To make the candidate to understand the analysis of Prestressed Concrete sections and losses in prestress.

3. To make the candidate able to understand and implement the guidelines of Indian Standard code for analysis and design sections using limit state philosophy.

Detailed Syllabus							
Module	Sub module/Contents	Periods					
1	Introduction to prestressed concrete and analysis of prestressed	04					
	concrete section :						
	Basic concept and general principles, materials used and their properties,						
	methods, techniques and systems of prestressing						
2	Analysis of Prestressed Concrete Section:	10					
	Loading stages, stress method, load balancing method and internal resisting						
	couple method of analysis, cable profiles, pressure line, kern points, choice						
	and efficiency of sections						
3	Losses in prestress:	06					
	Loss of stresses due to elastic deformation of concrete, creep in concrete,						
	creep in steel, shrinkage in concrete, relaxation in steel, anchorage slip and						
	friction						
4	Analysis of Prestressed Concrete Members in Limit State of	03					
	Serviceability deflection:						
	Short time and long time deflection of uncracked members, permissible						
	limits						
5	Analysis and Design of Prestressed Concrete Members for Limit State	05					
	of Collapse Shear						
	Calculation of principle tension, permissible principle tension, Analysis and						

	Design of members in shear (sections uncracked in flexure)	
6	Analysis and Design of Prestressed Concrete Members for Limit State	03
	of Collapse Flexure	
	General philosophy of design, Analysis and design of members in flexure	
7	Analysis and Design of Prestressed Concrete Members for Limit State	05
	of Serviceability Cracking	
	permissible stresses in concrete and steel at different stages, suitability of	
	section, safe cable zone	

Contribution to outcome

On successful completion of the course, the students shall be able:

1. To understand the concept of pre-stressing its casting techniques and applications, behaviour of the pre-stressed structures vis-à-vis that of the RCC structure.

2. To take the decision with respect to the choice of pre-stressed section over RCC.

3. To analyze the various pre-stressed components of the structure and design the same using relevant IS Code.

Theory Examination:-

1. Question paper will comprise of six questions; each carrying 20 marks.

2. The **first** question will be **compulsory** which will have the short questions having weightage of 4-5 marks covering the entire syllabus.

3. The remaining **five** questions will be based on all the modules of entire syllabus. For this, the module shall be divided proportionately further, and the weightage of the marks shall be judiciously awarded in proportion to the importance of the sub-module and contents thereof.

4. There can be an **internal** choice in various sub-questions/ questions in order to accommodate the questions on all the topics/ sub-topics.

5. The students will have to attempt any **three** questions out of remaining five questions.

6. Total **four** questions need to be attempted.

Oral Examination:

The oral Examination shall be based upon the entire syllabus, site visit and the term work.

Site Visit/ Field Visit:

The students shall visit the site where the construction of structure using pre-stressed concrete is going on. The students shall prepare the detailed report thereof and submit as a part of the term work.

Term Work:

The term work shall consist of the assignments. The assignments shall be given covering the entire syllabus in such a way that the students would attempt at least three problems/ questions on each modules/ sub-modules and contents thereof further. The report of the site visit/ field visit shall also form a part of the term work.

Distribution of Term Work Marks:

The marks of term-work shall be judiciously awarded depending upon its quality. The final certification and acceptance of the term-work warrants the satisfactory and the appropriate completion of the assignments, properly compiled report of the site visit /field visit and the minimum passing marks to be obtained by the student.

The following weightage of marks shall be given for different components of the term work. Assignments: 15 Marks Report of the Site Visit/Field Visit: 05 Marks Attendance: 05 Marks

Further, while giving weightage of marks on the attendance, following guidelines shall be resorted to: 75%- 80%: 03 Marks; 81%- 90%: 04 Marks; 91% onwards: 05 Marks

Recommended Books:

- 1. Prestressed Concrete: N. Krishna Raju, McGraw Hill, New York.
- 2. Prestressed Concrete: N. Rajgopalan, Narosa Publishing House.
- 3. Fundamentals of Prestressed Concrete: Sinha, N.C.andS.K. Roy, S.C. Chand and Company.
- 4. Prestressed Concrete Structures: *Dayaratnam*, *P*., Oxford andIBH
- 5. Design of Prestressed Concrete Structures: T.Y.LinandN.H. Burns, John Willey, New York.
- 6. Design of Prestressed Concrete: Nilson Arthur, McGraw Hill Book Company.
- 7. Prestressed Concrete Vol—I: IY.Guyon, Contractors Record, London.
- 8. Prestressed Concrete: S. Ramamurtham, DhanpatRaiandSon's
- 9. Relevant latest IS codes (IS:1343-2012)

				Semes	ster-VII					
Subjec	Subject CodeSubject NameC									
CE-DL	-DLO 7042 Solid Waste Management								5	
			I	Teaching So	cheme					
	Conta	act Hours				Cred	its A	ssigned		
Theor	y Pra	actical '	Futorials	Theory	y Prac	Practical		V/Tutorials	Т	otal
3		-	2	3	-	-		2		5
			E	Evaluation S	Scheme					
		Theory			Teamwo	ork/Pr	actio	cal/Oral/Tut	orial	Total
							S			
Internal Assessments ESE			Duration	TW/T	Pl	R	OR			
IAE-I	IAE-II	Average		of ESE	U					
20	20	20	80	3Hr	25	-		25		150

This course will be of interest to those wishing to understand the principles and techniques of solid waste management, including the legislative, environmental, economic and social drivers. Students will be introduced to the selection and design of appropriate methods of storage, collection, transfer, treatment and disposal in both industrialized and developing countries. The course also provides the opportunity to visit recycling facilities and disposal sites to better understand links between theory and practice.

Objectives

- To make the students conversant with different aspects of the types, sources, generation, storage, collection, transport, processing and disposal of municipal solid waste.
- To provide knowledge of different types of sources, sampling and characteristics of solid waste.
- To impart knowledge and skills in the collection, storage, transport and recycling options for solid wastes including the related engineering principles, design criteria, methods and equipments.
- To fully appreciate the current practices available and implement the systems available in solid waste management.
- To be aware of the significance of recycling, reduce, reuse of solid wastes and also to impart students with the skill of design and operation of disposal system based on latest technology.
- To provide students prerequisite knowledge necessary for higher studies and research in the field of Solid waste management.

Module	Sub Modules/Contents	Periods
1.	Introducing Municipal Solid Waste Management	03
	Overview: problems and issues of solid waste management - Need for solid	
	waste management-Functional elements such as waste generation, storage,	
	collection, transfer and transport, processing, recovery and disposal in the	
	management of solid waste.	
2.	Generation and characteristics of waste	03
	Sources, Types, composition, quantity, sampling and characteristics of	
	waste, factors affecting generation of solid wastes	

3.	Waste collection, storage and transport Collection and storage of municipal solid waste; Methods of collection - House to House collection -collection routes; on site storage methods- materials used for containers -Recycling and Reuse of waste -Need for transfer and transport; transfer station-selection of location, operation and maintenance; transportation Methods-manual, Mechanical methods with or without compaction, economy in transportation of waste optimization of transportation routes.	10
4.	Waste processing techniques Processing techniques-biological and chemical conversion technologies – composting and its methods, Vermi-composting, mechanical composting, In vessel composting, incineration, pyrolysis, gasification.	04
5.	Disposal of Solid Waste Segregation, Volume reduction at source, recovery and recycle; dumping of solid waste-sanitary waste- sanitary landfills-site selection-design and operation of sanitary landfill - leachate and landfill gas management- landfill closure and environmental monitoring-landfill remediation; Municipal solid waste in Indian conditions, legal aspects of solid waste disposal, Plastic waste disposal.	10
6.	Types of Solid Waste Industrial Waste products during manufacturing and packing, operation of pollution control facilities, generation, and minimization at source, recycling, disposal. Hazardous waste Definition, sources, hazardous characteristics, management, treatment and disposal Electronic waste Waste characteristics, generation, collection, transport and disposal Biomedical waste Definition, sources, classification, collection, segregation- Color coding, treatment and disposal.	09

Contribution to outcomes

On completion of this course, the students will be able to understand the various methods of disposal of solid waste. They will have better understanding of the nature and characteristics of solid waste and regulatory requirements regarding solid waste management and further they will have an ability to plan waste minimization. Besides, they will be prepared to contribute practical solutions to environmental problems in our society.

After the completion of the course the student should be able to

- Explain generation, storage, collection, transfer and transport, processing, recovery and disposal in the management of solid waste.
- Understand the characteristics of different types of solid waste and the factors affecting variation.
- Identify the methods of collection, storage and transportation of solid waste.
- Suggest suitable technical solutions for processing of wastes.
- Ability to plan waste minimization and disposal of municipal solid waste.
- Ensure the safe handling and treatment of Hazardous, Electronic and Biomedical waste.

Theory Examination:-

1. Question paper will comprise of six questions; each carrying 20 marks.

2. The first question will be compulsory which will have the short questions having weightage of 4-5 marks covering the entire syllabus.

3. The remaining five questions will be based on all the modules of entire syllabus. For this, the module shall be divided proportionately further, the weightage of the marks shall be judiciously awarded in proportion to the importance of the sub-module contents thereof.

4. The students will have to attempt any three questions out of remaining five questions.

5. Total four questions need to be attempted.

Site Visit: The students will visit landfilling /composting site in the nearby vicinity and prepare detailed report thereof. This report will form a part of the term work.

Oral Examination:-

The oral Examination shall be based upon the entire syllabus and the term work consisting of the

Assignments, Tutorials including the site visit report.

Distribution of Term Work Marks:

The marks of the term work shall be judiciously awarded for the various components depending upon the quality of the term work. The final certification and acceptance of term work warrants the satisfactory and appropriate completion of the assignments. Each student shall prepare a report on any industrial/hazardous/municipal solid waste comprising source, characterization, transportation, recycles, treatment and disposal.

The following weightage of marks shall be given for different components of the term work.

- 1. Report (on any industrial/hazardous/municipal solid waste/site visit): 05 Marks
- 2. Seminar : 05Marks
- 3. Attendance : 05 Marks
- 4. Assignments and Tutorials :10 Marks

Further, while giving weightage of marks on the attendance, following guidelines shall be resorted to

75% - 80%: 03 Marks; 81% - 90%: 04 Marks; 91% onwards: 05 Marks

Recommended Books:-

1. Integrated Solid Waste Management: Techobanglous, Thisen and Vigil, McGraw Hill International.

2. Hazardous Waste Management: Lagrega, Buckingham and Evans, McGraw Hill International.

3. Solid Waste Management in Developing Countries: A.D. Bhide, Nagpur publications.

4. Environmental Pollution Control Engineering: C.S. Rao, Wiley Eastern, Manual of solid waste of management, CPHEEO.

5. E-Waste: Implications, Regulations, and Management in India and Current Global Best Practices, Rakesh Johri, The Energy and Resources Institute.

6. Biomedical Waste Management in India: <u>Jugal Kishore</u> and <u>G. K. Ingle</u>, Century Publications.

Subject	~ .				Sem	este	r-V11					
	Subject Code Subject Name									Cre	dits	
CE-DLO 7043 Pavement Subgrade and Materials								5	5			
	Teaching Scheme											
	Conta	ct Hours					C	redit	s Ass	igned		
Theory	Pra	octical	Tutorial	S	Theory	y	y Practical		TW/Tutorials		Tot	tal
3		-	2		3		-		2		5	1
		•]	Evalu	ation S	Sche	eme					
		Theory				Te	ermworl	k/Pra	actica	al/Oral/Tuto	r To	otal
									ials			
Interna	al Asses	sments	ESE	Duration		T	W/TU	PH	R	OR		
IAE-I I	IAE-II	Average		of ESE								
20	20	20	80	3Hr		25 -			25	1	50	

Highway and airways mode of transportation contributes to the economical, industrial, social and cultural development of any country. For the design and construction of highway and airfield, it is imperative to know the properties of the materials such as soil, aggregates and bitumen used in the construction of pavements. The various tests are required to be conducted to evaluate the properties of these materials for the scientific design of the pavements and economic utilization of the different materials. The course also deals with the soil survey, stresses in soil and various ways and means of improving the soil and implementing techniques of improvement. The course also deals with the various surface and sub-surface drainage.

Objectives

- To give the students hands on experience on various material properties and testing procedures of pavement materials as per IRC standards.
- To study the significance of the soil subgrade along with its functions.
- To study the soil classification for highway engineering purpose as per different classification system.
- To understand the concept of stresses in soil.
- To enable the student to identify the basic deficiencies of various soil deposits and to arrive upon the various ways and means of improving the soil and implementing the techniques of improvement.
- Learn bituminous mix and cement concrete mix designs
- Learn basic principles of superpave technology of bituminous mixes

Module	Sub-Modules/ Contents	Periods
I.	Soil: Soil-Classification methods, Tests: CBR test, effect of lateral confinement on CBR and E value of Subgrade soil, Consistency, Engineering Properties and Modulus of sub-grade reaction ofsoil, estimation of modulus of subgrade reaction, Static and cyclic plate load test, correction for plate size, correction for worst moisture content. Soil classification as per HRB.	08

Detailed Syllabus

II.	Stresses in Soil: Theories of elastic and plastic behavior of soils, Cyclic triaxial test on subgrade soils, resilient deformation, resilient strain, resilient modulus Stabilized Soils: Method of sampling and Preparation of Stabilized Soils for testing, Relation for Moisture content and Dry Density of Stabilized mixes, UCS of Stabilized soil, test for: soil bituminous, soil lime and soil fly ash mixes.	06
III.	Aggregate: Classification, requirements, Blending of aggregates, Importance of aggregate shape factor in mix design. Grading requirements for aggregate, selection of bases and sub-base material (including stabilized materials),	04
IV.	Bitumen, Tar and Bituminous Mix Design ; requirements, criteria for selection of different binders, Temperature susceptibility, Bituminous emulsion and Cutbacks, fillers, extenders Polymers, Crum rubber, and rubber modified bitumen and anti-Stripping agents on pavement performance.	08
V.	Bituminous Mix Design: selection of different grade of bitumen, skid qualities, types of bituminous surfaces, bituminous mix design, Marshall Stability test, design aspect of paving concrete.Experimental characteristics of road aggregate.	06
VI.	Introduction to Super pave Technology: Methods of selection of suitable ingredient for super pave method, Gyratory compaction, rolling thin film oven, pressure aging vessel, rotational viscometer, dynamic shear rheometer, bending beam rheometer, direct tension test. Use of super pave perform and grade binder specifications. Comparison between Marshal Mix method and Super pave method.	07

Contribution to Outcomes

On the successful completion of the course, the students shall be able to:

- Understand the soil classification in accordance with various soil classify the system and evaluate the ability of the soil as a subgrade material.
- Understand the requirements and desirable properties of the various materials to be used in the construction of pavements.
- Understand the characterization of different paving materials along with the tests to be conducted on these materials.
- Know the various ground improvement methods.
- Understand subgrade soil strength in terms of standard engineering parameters
- Application of basic principles of mix design of cement concrete and bituminous mixes

Theory Examination:

Question paper will comprise of **six** questions; each carrying 20 marks.

The **first** question will be **compulsory** which will have the short questions having weightage of 4-5 marks covering the entire syllabus.

The remaining five questions will be based on all the modules of entire syllabus. For this, the module shall be divided proportionately further, and the weightage of the marks shall be judiciously awarded in proportion to the importance of the sub-module and contents thereof. There can be an internal choice in various sub-questions/ questions in order to accommodate the questions on all the topics/ sub-topics.

The students will have to attempt any three questions out of remaining five questions. Total four questions need to be attempted.

Oral Examination:

The oral examination shall be based upon the entire syllabus and the term work.

Term Work:

The term-work shall comprise of the neatly written report comprising of the assignments. The assignments shall be given covering the entire syllabus in such a way that the students would attempt at least two problems/ two questions on each modules/ sub-modules and contents thereof further.

Distribution of Term Work Marks:

The marks of term-work shall be judiciously awarded depending upon the quality of the term work which will comprise of the report on assignments. The final certification and acceptance of term-work warrants the satisfactory and the appropriate completion of the termwork; and the minimum passing marks to be obtained by the students.

The following weightage of marks shall be given for different components of the term work.

Assignments : 20 Marks

Attendance : 05 Marks

Further, while giving weightage of marks on the attendance, following guidelines shall be resorted to.

75%- 80%: 03 Marks; 81%- 90%: 04 Marks; 91% onwards: 05 Marks

Recommended Books:-

- 1. Principles of Pavement Design, Second Edition, 1975: *Yoder, E.J.*, John Wiley and Sons, Inc., New York.
- 2. Concrete Roads: *HMSO*, Road Research Laboratory, London.
- 3. Highway Engineering: *Khanna, S.K., Justo, C,E.G. and Veeraragavan, A.*,Nem Chand and Brothers, Roorkee (10th Revised Edition, 2014)
- 4. Principles and Practices of Highway Engineering; *Dr. L. R. Kadiyali and Dr. N. B.Lal*, Khana Publishers, New Delhi.
- 5. Highway Engineering, *Sharma*, *S.K.*, S. Chand Technical Publishers, New Delhi (3rd Revised Edition, 2013).
- 6. Principles of Transportation and Highway Engineering: *Rao, G.V.*, Tata Mc-Graw Hill Publications, New Delhi

Semester-VII												
Subject Code Subject Name							Cı	edits				
CE-DL	O 7044			Stru	ctur	al Dyna	mics					5
Teaching Scheme												
Contact Hours Credits Assigned												
Theor	y Pra	actical	cal Tutorials			neory	Practical		TW/Tutorials		rials	Total
3		-	2	2	3		-	2		2		4
				Eva	luati	on Sch	eme					
		Theory				Term	work/P	ractio	cal/C)ral/Tu	torials	Total
Internal Assessments ESE		Dura	ntio	TW	T/TU	PH	R	0	R			
IAE-I	IAE-II	Avg.		n of E	ESE							
20	20	20	80	3H	r	2	5	-		2	25	150

Course Objective

- To expose the students to understand the basic theory of structural dynamics, structural behaviour under vibratory load and the effect of damping.
- To study the difference between static load and different types of dynamic loads.
- To study the free vibration analysis of SDOF systems, concept of damping and dynamic analysis of SDOF system subjected to different dynamic loads.
- To study the dynamic degrees of freedom and calculation of the frequencies and mode shapes for lumped mass for discrete Two DOF systems,
- To study the modal analysis of Two DOF systems and analysis of systems with distributed mass for continuous system.

Module	Contents	Hrs
I.	Introduction to structural Dynamics- Definition of Basic Problem in	4
	Dynamics. Static vs. Dynamic loads.	
	Different types of dynamics loads	
II	Introduction to single Degree of freedom (SDOF) Systems.	10
	Undamped vibration of SDOF system natural frequency and period of	
	vibration	
	Damping in structures, viscous damping and Coulomb damping, effect of	
	damping on frequency of vibration and amplitude of vibration,	
	Logarithmic decrement.	
	Forced vibration, response to periodic loading, response to pulsating	
	forces, dynamic load factor.	
	Response of structure subjected to General dynamic load, Duhamel's	
	Integral Numerical	
	Evaluation of Dynamics Response of SDOF system.	
	Equivalent stiffness of spring in series and parallel	
III	Introduction to vibration isolation.	4
	Distributed mass system idealized as SDOF system, use of Rayleigh's	
	method.	
	Response of SDOF system subjected to ground motion	
IV	Lumped mass multi-degree of freedom (Two DOF) system, coupled	12
	and uncoupled system	
	Direct determination of frequencies of vibration and mod shape.	
	Orthogonality principle.	
	Vibration of Two DOF systems with initial conditions	

Details Syllabus

Γ

	Approximate method of determination of natural frequencies of vibration	
	and mode shapes – Energy methods	
V	Earthquake analysis – Introduction.	12
	Seismicity of a region, causes of earthquake	
	Intensity of earthquake, Richter Scale, Measurement of Earthquake ground	
	motion, Seismogram, construction of seismograph	
	Application of modal analysis concept to seismic disturbance, Introduction	
	to Response spectrum method.	
VI	I.S code provisions for seismic analysis of buildings.	6
	Approximate method of earthquake analysis- Seismic co-efficient method	
	and its limitation	
	Introduction to time history analysis.(6)	

Contributions to Outcomes

The students are expected to understand the difference between static and dynamic loads and analysis. They are expected to evaluate the response of SDOF and Two DOF systems to different types of dynamic loads including ground motions. They are also expected to understand the basics of random vibrations and the application of this concept to analyze Linear SDOF systems.

Term Work:

The term-work shall comprise of the neatly written report of the assignments. The assignments shall be given covering the entire syllabus in such a way that the students would attempt at least four problems on each modules/ sub-module content thereof further. There shall be theory questions as well.

Distribution of Term-work Marks

The marks of term-work shall be judiciously awarded depending upon the quality of the term work including that of the report on experiments assignments. The final certification acceptance of term-work warrants the satisfactory the appropriate completion of the assignments the minimum passing marks to be obtained by the students. The following weightage of marks shall be given for different components of the term work.

- Assignments: 20 Marks
- Attendance: 05 Marks

Further, while giving weightage of marks on the attendance, following guidelines shall be resorted to: 75%- 80%: 03 Marks; 81%- 90%: 04 Marks 91% onwards: 05 Marks

Theory Examination:

1. Question paper will comprise of six questions; each carrying 20 marks.

2. There can be an **internal** choice in various sub-questions/ questions in order to accommodate the questions on all the topics/ sub-topics.

3. The students will have to attempt any **four** questions out of **total six** questions.

4. The questions can be of **mixed nature** irrespective of modules.

Oral Examination

Oral examination will be based on entire syllabus and the afore-mentioned term work.

Recommended Books:-

1. Craig R.R.: 'Structural Dynamics-An Introduction to Computer Methods', John Wiley and Sons.

- 2. Anil K. Chopra: 'Dynamics of Structures', Prentice Hall India Pvt. Ltd.
- 3. CloguhandPenzein: 'Dynamics of Structures' TataMc-Graw Hill Pvt. Ltd.
- 4. John M. Biggs: 'Structural Dynamics', TataMc-Graw Hill.
- 5. Mario Paz: 'Structural Dynamics Theory and Computation', CBS Publisher.

Semester VIII						
Subject Code	Subject Name	Credits				
CE-DLO 7045	Applications of Geographic Information Systems &	05				
	Remote Sensing					

Teaching Scheme								
Co	Credits Assigned							
Theory	Practical	Tutorial	Theory	Practical	Tutorials	Total		
03		02	04		02	05		

Evaluation Scheme									
Theory					Term Work/ Practical/Oral			Total	
Internal Assessment			End Sem	Duration of					
Tost 1	Tost 2	Avorago	Exam	End Sem	TW	PR	OR		
I est I	I est 2	2 Average		Exam					
20	20	20	80	03 Hrs.	25	-	25	150	

Geographic Information Systems & Remote Sensing Applications provides power of mapping to civil engineers. GIS lets us visualize, question, analyze and interpret date to understand relationships, patterns and trends. In this subject, the students get acquainted with the detailed study of GIS & Remote sensing. Data models of spatial and non-spatial information are also explained. An overview on digitizing, editing and structuring of map data is also provided for error detection, correction and appropriate topology creation. Digital Elevation Models (DEM) and their needs are also incorporated along with the applications of Remote Sensing and GIS. Solution can be provided for Various Civil Engineering problems using Integration GIS-GPS & Remote Sensing Techniques.

Objectives

- To Study principles of physics of Electromagnetic radiation as applied to remote sensing.
- To Learn the GIS data & its processing using Softwares
- To get acquainted with GPS Satellite & their segments
- To Understand the GIS & RS Applications in various fields of Civil Engineering

Module	Content	Periods
Ι	Remote sensing (RS): Introduction, physics of remote sensing- electromagnetic radiations and their characteristics, thermal emissions, multi-concept in remote sensing, remote sensing satellites and their data products, sensors and orbital characteristics, spectral reflectance curves for earth surface features, methods of remotely sensed data interpretation- visual interpretation, concept of fcc, digital image processing- digital image and its characteristics, satellite data formats, image rectification and restoration, image enhancement- contrast manipulation, spatial feature manipulation, multi-image manipulation.	8
II	Geographical Information System (GIS): History, Introduction , spatial and non- spatial information,	8

	geographical concept and terminology, advantages of GIS, Basic component of GIS Commercially available GIS hardware and Software Field data, statistical data, maps, aerial Photographs, satellite data, points, lines, and areas features, vector and raster data, data entry through keyboard, digitizer and scanners, pre-processing of data rectification and registration, interpolation techniques, introduction to GIS softwares (Arc GIS, QGIS, Gram++. etc)	
III	Global Positioning System (G.P.S) : G.P.S. Segments: Spaces Segment, Control Segment, User Segment Features of G.P.S. Satellites, Principle of Operation Surveying with G.P.S.: Methods of observations, Absolute Positioning, Relative Positioning, differential G.P.S., Kinematics of G.P.S. G.P.S. Receivers: Navigational Receivers, Surveying Receivers, Geodetic Receivers, Computation of Co- ordinates:- Transformation from Global to Local Datum , Geodetic Coordinates to map co- ordinates , G.P.S. Heights and mean sea level Heights Applications of G.P.S	5
IV	Application of G.I.S.& R.S. in Water Resources & Environmental Studies: Site selection of Hydraulic Structures, Surface water delineation, surface keys for subsurface water, Steps in water investigations of the area, Water management	6
V	Application of G.I.S.& R.S. in Infrastructure Management; Role of GIS in Town Planning , Urban Transport Planning, Underground Infrastructure Management	6
VI	Application of G.I.S.& R.S in Disaster Management : RS and GIS applications for disaster vulnerable zones, fire hazards, flood and storm water inundations, earthquake impact assessment, post Tsunami/ cyclone damage assessment.	6

Contribution to Outcomes

After completion of course, student will be able to:

CO1. Explain the principles of physics of Electromagnetic radiation as applied to remote sensing.

CO2. Describe Spatial and non-spatial database of geographic information system

CO3 Demonstrate the GPS Satellites & their Segments.

CO4. Apply the GIS & RS techniques in Water Resources & Environmental Management.

CO5. Integrate the GIS-GPS & RS techniques for Infrastructure Management

CO 6 Illustrate applications of GIS& RS in Disaster Management

Theory examination:

Question paper will comprise of six questions; each carrying 20 marks.

The **first** question will be **compulsory** which will have the short questions having weightage of 4-5 marks covering the entire syllabus.

The remaining **five** questions will be based on all the modules of entire syllabus. For this, the module shall be divided proportionately further, and the weightage of the marks shall be judiciously awarded in proportion to the importance of the sub-module or contents thereof.

There can be an **internal** choice in various sub-questions/ questions in order to accommodate the questions on all the topics/ sub-topics.

The students will have to attempt any three questions out of remaining five questions.

Total **four** questions need to be attempted.

Oral Examination:

The oral examination will be based on the entire syllabus and the term work.

Term Work:

The term work will comprise of the neatly written report based on assignments. The assignments shall be given covering the entire syllabus in such a way that the students would attempt at least four problems and /or questions on each sub-modules and contents thereof further

Distribution of Term Work Marks:

The marks of the term-work shall be judiciously awarded depending upon the quality of the term work including that of the report on assignments. The final certification and acceptance of the term-work warrants the satisfactory and the appropriate completion of the assignments; and the minimum passing marks to be obtained by the students. The following weight age of marks shall be given for different components of the term work.

Assignments : 20 Marks

Attendance : 05 Marks

Further, while giving weightage of marks on the attendance, following guidelines shall be resorted to.

75%- 80%: 03 Marks; 81%- 90%: 04 Marks; 91% onwards: 05 Marks

Recommended Books:

- 1. Introduction to GeographicInformationSystems:Kang-TsungChang,TataMcGrawHill.
- 2. Text book on Remote Sensing -C.S.Agrawal and P.K.Garg, Wheeler Publishing, New-Delhi.
- 3 G.I.S- Anji Reddy, publishers- MGH.
- 4. GIS, SpatialAnalysis, andModeling:Maguire,D.,M.Batty,andM.Goodchild.2005.ESRIPress.
- 5 Remote sensing in Civil Engineering T. J. M. Kennie and M. C. Mathews, Surry University press, London
- 6. Principles of Remote Sensing- P.N.Patel and Surendra Singh, Scientific Publishers, Jodhapur.7. RemoteSensingandImageInterpretation: LillesandandKiefere:, JohnWiley,1987.
- 8. GlobalPositioningSystem: Signals, Measurements, andPerformance, PratapMisraandPe r Enge(2nd Ed.), 2006.

9. Introduction to geomatics –QGIS user guide – Mr.C.V. Nishinkanth, Mrs.AnnuNishinkanth, Dr S S Vasudevan, Dr P Ramkumar, Publishers-

Semester VII							
Subject Code	Subject Name	Credits					
CEC-DLO7046	Foundation Analysis and Design	5					

Teaching Scheme								
Co	Credits Assigned							
Theory	Practical	Tutorial	Theory	Practical	Tutorials	Total		
03	-	02	03	-	02	05		

Evaluation Scheme										
Theory					_	Total				
						Practical/Oral				
Internal Assessment			End	Duration of						
Tost 1	Tost 2	Avorago	Sem	End Sem	TW	PR	OR			
1651 1	1651 2	Average	Exam	Exam						
20	20	20	80	04 Hrs.	25	-	25	150		

Objectives

- To study the bearing capacity and settlement of shallow foundations and To understand the design concepts for shallow foundations including strip and raft foundations
- To study the estimation of vertical stresses in soil
- To study different types of well foundations
- To study the load carrying capacity of pile and design of under reamed piles
- To study Cantilever sheet piles including anchored sheet piles in cohesion-less and cohesive soils and to analyse braced cuts
- To learn different types of machine foundations and understand the design philosophy; and carry out the design thereof.

Detailed Syllabus		
Module	Sub Modules/Contents	Periods
I	Estimation of stresses in soils: Boussinesque and Westergaard's theories, Newmark Chart, Practical applications.	06
II	Shallow Foundation : Basic requirements of foundation, types and selection of foundation, design of shallow foundations by Terzaghi's and IS code method; total settlement analysis including elastic settlements; Structural design of strip and raft foundation.	07
ш	Pile Foundation : Introduction, Necessity of piles, Types of pile foundation, load carrying capacity of single pile and pile in group, , group efficiency, group settlements, design of single pile and pile cap, design of under-reamed pile foundation	06
IV	Floating Foundation and Well Foundation: Floating Foundation- Introduction, Floatation, bottom elastic heave, Design of floating foundation on piles, Well Foundation- Introduction, forces acting on well foundation.	06
V	Sheet piles and Braced cuts: Cantilever sheet piles including anchored sheet piles in cohesion-less and cohesive soils: lateral earth pressure diagram, computation of embedment depth. Difference in open cut and retaining wall theories, apparent earth pressure diagram, Average apparent earth pressure diagram for cohesion-less and cohesive soils. Estimation of strut loads in	08

	braced cuts placed in cohesion-less and cohesive soils.	
VI	Machine Foundations: Introduction, Dynamic soil properties, types of machine vibrations, basic principal of machine foundation.	06

Contribution to outcomes

- 1. On successful completion of the course, the learner shall have an: 1. Ability to identify, formulate and solve geotechnical engineering problems
- 2. Ability to design a suitable foundation system from economic and safe aspects
- 3. Ability to design machine foundations
- **4.** Ability to relate easily to allied subjects such soil dynamics; advanced engineering geology, rock mechanics etc.
- **5.** Ability to understand design of sheet piles
- 6. Ability to analyze vertical stresses developed in soil and used in practical problems

Theory Examination:-

- 1. Question paper will comprise of six questions; each carrying 20 marks.
- 2. The first question will be compulsory which will have the short questions having weightage of 4-5 marks covering the entire syllabus.
- 3. The remaining five questions will be based on all the modules of entire syllabus. For this, the module shall be divided proportionately further, the weightage of the marks shall be judiciously awarded in proportion to the importance of the sub-module contents thereof.
- 4. The students will have to attempt any three questions out of remaining five questions.
- 5. Total four questions need to be attempted.

Oral Examination:-

The oral Examination shall be based upon the entire syllabus and the term work consisting of the Assignments, Tutorials.

Distribution of Term Work Marks:

The marks of the term work shall be judiciously awarded for the various components depending upon the quality of the term work. The final certification and acceptance of term work warrants the satisfactory and appropriate completion of the assignments. Each student shall prepare a report on any industrial/hazardous/municipal solid waste comprising source, characterization, transportation, recycles, treatment and disposal.

The following weightage of marks shall be given for different components of the term work.

- 5. Attendance : 05 Marks
- 6. Assignments and Tutorials :20 Marks

Further, while giving weightage of marks on the attendance, following guidelines shall be resorted to

75%- 80%: 03 Marks; 81%- 90%: 04 Marks; 91% onwards: 05 Marks

Recommended Books:-

1. Bowels J.E.: 'Analytical and Computer Methods in Foundation', *McGraw Hill Book Co. New York*, 1974

2. Das, B. M.: 'Geotechnical Engineering Handbook', J. Ross Publishing, 2010

3. Verghese, P. C.: 'Foundation Engineering', PHI Learning Private Limited, Delhi, 2012

4. Verghese, P. C.: 'Design of Reinforced Concrete Foundations', PHI Learning Private Limited, Delhi, 2011

5. N. Subramanian: 'Reinforced Concrete Structures', Oxford University Press, 2013

6. Alam Singh: 'Soil Mechanics and Foundation Engineering', Vol. I- II. Standard Book House, Delhi

7. Swami Saran: 'Analysis and Design of Substructures', Oxford and IBH publishing company, Delhi 1998
Semester-VIII

	Semester VIII	
Subject Code	Subject Name	Credits
CE-C 801	Design and Drawing of Reinforced Concrete	5
	Structures	

Teaching Scheme							
Contact Hours Credits Assigned							
Theory	Practical	Tutorial	Theory	Practical	Tutorials	Total	
04	02		04	01		05	

	Evaluation Scheme									
Theory						Term W	ork/	Total		
Practical/Oral					/Oral					
Inter	nal Asses	ssment	End	Duration of						
Teat 1	Teat 2	Average	Sem	End Sem	TW	PR	OR			
Test I Test 2 Average		Exam	Exam							
20	20	20	80	04 Hrs.	25	-	25	150		

Reinforced concrete construction are widely used for residential, commercial and industrial structures. IS code has specified the use of Limit State Method (LSM) design philosophy for design of structures. Pre-stressed Concrete structures are another class of structures used for bridge girders, long span slabs etc.Civil engineers must have knowledge of designing and detailing of RCC and PSC structures to make structures safe and serviceable during its life span.Also the knowledge about response of structures during an earthquake is prerequisite of design engineers. During previous semester students have studied design of basic elements by LSM. This course coves complete design of G+3 structures in addition to advanced topics of design of water tank and retaining wall. The course also contains PSC beam topics and introduces Earthquake Resistant Design of structures, drawing and detailing of structures.

Objectives

- To explain the LSM design procedure of G+ 3 structures by proper application of IS code clauses including loading calculation, analysis and design of individual elements.
- To acquaint the concepts in the design of staircase, water tank and retaining wall.
- To explain concept of Pre-stressed Concrete members.
- To introduce Earthquake Resistant Design method.
- To explain drawing and detailing of structures.
- To develop the concept of design using ready charts and curves for different elements of structure.

	Detailed Syllabus					
Module	Contents	Periods				
Ι	COMPREHENSIVE DESIGN OF BUILDING:	12				
	Complete design of residential/commercial/industrial G+ 3 structures. Load					
	transfer mechanism, arrangement of beams, slabs ,columns. Design of footing,					
	beams, columns, staircase, lintels, chajja.					
II	DESIGN OF STAIRCASE:	3				
	Design of dog legged and open well staircase					
III	DESIGN OF RETAINING WALL:	7				

by seismic coefficient method.Ductile design and detailing as per IS:13920. PRESTRESSED CONCRETE: Prestressed Concrete: Basic principles of prestressed concrete, materials used, systems of prestressing, losses in prestress, analysis of beam sections at transfer and service loads.	7
by seismic coefficient method.Ductile design and detailing as per IS:13920. PRESTRESSED CONCRETE: Prestressed Concrete: Basic principles of prestressed concrete, materials used, systems of prestressing, losses in prestress, analysis of beam sections at	7
by seismic coefficient method.Ductile design and detailing as per IS:13920. PRESTRESSED CONCRETE: Prestressed Concrete: Prestressed Concrete:	7
by seismic coefficient method.Ductile design and detailing as per IS:13920. PRESTRESSED CONCRETE:	7
by seismic coefficient method. Ductile design and detailing as per IS:13920.	
Earthquake and ground motion, response of structure, design forces calculation	
EARTHQUAKE RESISTANT DESIGN OF STRUCTURES:	12
Design of elevated water tank.frame and shaft type of staging.	
Use of IS coefficient method and approximate method.	
rectangular water tanks resting on ground and underground. Codal provisions.	
Classification of Water Tank, Permissible Stresses, design of circular and	
DESIGN OF WATER TANK	11
Design of Cantilever and Counterfort retaining wall	
	Design of Cantilever and Counterfort retaining wallDESIGN OF WATER TANKClassification of Water Tank, Permissible Stresses, design of circular and rectangular water tanks resting on ground and underground. Codal provisions. Use of IS coefficient method and approximate method. Design of elevated water tank.frame and shaft type of staging.EARTHQUAKE RESISTANT DESIGN OF STRUCTURES: Earthquake and ground motion, response of structure, design forces calculation

Contribution to Outcomes

On successful completion of the course, the student shall be able to:

- Design independently RCC structure by applying IS code provisions.
- Design staircase, water tank and retaining wall.
- Explain principles of PSC and calculate losses.
- Draw and explain the structural detailing.
- Explain response of structure during an earthquake and calculate design forces.

Theory Examination:-

- 8. Question paper will comprise of five questions. First question will carry 32 marks and remaining four will carry 16 marks each. The **first** question will be **compulsory**. From remaining four questions any **three** questions can be answered. Total **four** questions need be attempted.
- 9. The **first** question will be based on design project from following. (any one out of given two is to be answered)
- a) Design of slab and continuous beam (max three span) or design of column from terrace to footing.
- b) Design of counterfort retaining wall
- c) Design of overhead water tank including design of staging
- 10. The next four questions will be based on remaining modules of syllabusand the weightage of the marks shall be judiciously awarded in proportion to the importance of the module and number of hours allotted for the module. There can be an **internal** choice in various sub-questions/ questions in order to accommodate the questions on all the topics/ sub-topics.
- 11. All relevant IS codes will be allowed during examination.

Oral Examination:@

The oral examination accompanied by **sketching** will be based on entire syllabus and the term work and site visit report.

Term Work:

The term work shall consist of a neatly written Design Report including detailed drawings on the following topics:

- 1. Design report of (G+3) building using relevant IS codes.
- 2. Design report of counter fort retaining wall OR overhead water tank and staging.
- 3. Report of one site visit to under construction building/PSC site.
- 4. Assignments consisting of max five questions each on module III to VI.

Design report and at least four A-1 (Full imperial) size drawings sheets for above two projects shall be submitted as term work. All drawing work is to be done in pencil only. Design of building project will be done using design aids and anyone of available software.

Distribution of Term Work Marks: The marks of term-work shall be judiciously awarded depending upon its quality. The final certification and acceptance of the term-work warrants the satisfactory and the appropriate completion of the assignments, properly compiled design report; and the minimum passing marks to be obtained by the students.

The following weightage of marks shall be given for different components of the term work.

- 1. Design report and drawing sheets : 15marks
- 2. Assignments and site visit report: 05 marks
- 3. Attendance : 05 marks

Further, while giving weightage of marks on the attendance, following guidelines shall be resorted to.

Attendance	Marks awarded
75%- 80%	03 Marks
81%- 90%	04 Marks
91% onwards	05 Marks

Recommended Books:-

- 18. Design of Reinforced Concrete Structures: Dayaratnam, P; Oxford and IBH.
- 19. Limit State Design Reinforced Concrete: *Shah and Karve*, Structure Publications, Pune.
- 20. Reinforced Concrete Limit State Design: Ashok K. Jain, Nemchand& bro.
- 21. Reinforced Concrete: H.J. Shah, Charotar Publishers, Anand.
- 22. Illustrated Reinforced Concrete Design: Dr. V. L. Shah and Dr. S. R. Karve, Structure Publications, Pune.
- 23. Reinforced Concrete Design: Wang, C. K., Salmon, C. G., and Pincheira, J. A, John Wiley.
- 24. Reinforced Concrete Fundamentals: Ferguson, P. M., Breen, J. E., and Jirsa, J. O., John Wiley & Sons.
- 25. Design of Prestressed Concrete Structures: Lin T.Y. and Ned Burns; John Wiley.
- 26. Prestressed concrete : Krishna Raju, Tata Mc-Graw Hill Publishing House, NewDelhi
- 27. Prestressed concrete, problems and solutions, Krishna Raju, CBS Publishers and distributors, New Delhi.
- 28. Prestressed concrete : N. Rajgopalan, Narosa Publishers.
- 29. Earthquake resistant design of structures: S. K. Duggal, Oxford University Press.
- 30. Earthquake resistant design of structures: Pankaj Agarwal, Manish Shrikhande, PHI, New Delhi.
- 31. Relevant IS Codes: BIS Publications, New Delhi

	Semester VIII	
Subject Code	Subject Name	Credits
CE-C 802	Construction Management	5

Teaching Scheme							
C	Credits Assigned						
Theory	Practical	Tutorial	Theory	Practical	Tutorials	Total	
04	02		04 01 05				

	Evaluation Scheme									
Theory						Term Work/				
		Practical/Oral								
Inter	nal Asses	ssment	End	Duration of						
Tost 1	Test 2	Avorago	Sem	End Sem	TW	PR	OR			
Test I	Test 2	Average	Exam	Exam						
20	20	20	80	04 Hrs.	25	-	25	150		

This course is intended to teach students the management skills to be applied during all the stages of Civil Engineering Project. The professional construction engineering practice will be rendered meaningless if service is not offered with a scientific approach and managerial practices. This course deals with the techniques to be applied for scheduling projects, optimizing time-cost and other resources in construction, monitoring & ensuring quality and safety aspects in projects.

Objectives

- To understand the basic functions and construction management.
- To learn scheduling techniques such as CPM &PERT.
- To gain knowledge of time-cost optimization & effective utilization of resourceson construction sites.
- To understand allocating the resources and project monitoring
- To know about safety and quality aspect of construction works..

Detailed Syllabus					
Module	Sub Modules/Contents	Periods			
	Introduction to Construction Management:				
	1.1 Concept of Management, Principles of management, contribution				
Ι	byeminent personalities towards growth of management thoughts.				
	1.2 Significance of construction, management, objectives& functions of	04			
	construction management				
	1.3 Resources required for construction.				
	Construction Projects:				
	2.1 Role of Construction industry in economic development of country				
	2.2 Unique features of construction industry.				
	2.3 Construction projects- Classification, Characteristics, Project life cycle etc.	05			
	2.4Roles and responsibilities of various agencies associated with a				
II	Construction project.				
	2.5 Pre-requisites of commencing construction work such as sanctions,				
	Approvals to be sought, and feasibility studies.				
	2.6 Site layout, organizing & mobilizing the site				

	Construction project planning & Scheduling:	
	3.1 Stages of planning in the view of owner/Department as well as contractor.	
	3.2 W.B.S, Bar Charts.	
III	3.3 Network-Terminology, Network Rules, Fulkerson's rule, skip numbering,	
	Precedence network etc.	
	3.4 C.P.M- Activity & event with their types, activity times, event times,	12
	Critical path, forward pass, backward pass, float & its types.	
	3.5 P.E.R.T- Assumption underlying PERT analysis time estimates, slack& its	
	types, probability of completing the project etc.	
	Resources Management & Allocation :	
	4.1 Material Management- Importance, objectives, functions of material	
IV	management, Inventory control, A-B-C analysis, E.O.Q etc.	
	4.2 Human Resource Management- Manpower planning, recruitment, Selection	
	training, performance evaluation of worker etc.	
	4.3 Resources Allocation Methods- Resource levelling resource smoothening.	10
	Project Monitoring& Cost Control :	
	5.1 Supervision, record keeping, Periodic progress reports etc.	
	5.2 Updating- Purpose of frequency of updating method of updating anetwork	
	etc.	
V	5.3 Time cost optimization in construction projects compression &	08
	decompression of network etc.	
	5.4 Common causes of time over run & cost overrun & Corrective measures.	
	Safety & Health on Construction Sites	
	6.1 Common causes of accidents on construction sites, costs of accident,	
VI	precautionary measures to avoid accidents,	
	6.2 Occupational health hazards in construction industry.	03
	6.3 Safety & Health Campaign.	
	6.4 O.S.H.A	
	Quality Control :	
VII	7.1 Concept of Quality, quality control check list in quality control etc.	0.2
	7.2 Role of inspection in quality control,	03
	7.3 Quality manual, Quality assurance statistical quality control	
1 /111	Construction Labors & Legislation :	02
VIII	8.1 Need for legislation & Importance of labour laws.	03
	8.2 Acts applicable to Indian construction labours such as Payment of wages	
	act, Minimum wages act, Workmen's compensation act, Factories act etc.	

Contribution to Outcomes

On completion of the course, the learners will be able to:-

1) understand & apply the knowledge of management functions like planning, scheduling, executing & controlling the construction projects.

- 2) Prepare feasible project schedule by using various scheduling techniques.
- 3) gain knowledge of managing various resources & recommend best method of allocating the resources to the project.
- 4) develop optimum relationship between time & cost for construction projects
- 5) Implement quality & safety measures on construction sites during execution of civil engineering projects.
- 6) Understand the importance of labour legislation

Term Work: At least 10 assignments covering the entire syllabus.

Theory Examination:

- 1) The question paper will comprise of six questions, each carrying 20 marks.
- 2) The first question will be compulsory & out of remaining questions students have to attempt Any three questions.
- 3) Total four questions need to be attempted.

Oral Examination: The oral examination shall be based on the entire syllabus & the Term-work Prepared by the students including assignments..

Recommended books:

- 1) Construction Engineering and Management: S.Seetaraman.
- 2) Construction Planning & Management Dr.U.K.Shrivastava.
- 3) Professional Construction Management: Barrie D.S. & Paulson B C, McGraw Hill
- 4) Construction Project Management: Chitkara K K Tata McGraw Hill
- 5) Handbook of Construction Management: P K Joy, Macmillan, India
- 6) Critical Path Methods in Construction Practice: Antill J M & Woodhead R W, Wiley
- 7) Construction Hazard and Safety Handbook: King &Hudson,Butterworths

	Semester VIII	
Subject Code	Subject Name	Credits
CE-C DLO8031	Advanced Design of Steel Structures	5

Teaching Scheme							
Co	Credits Assigned						
Theory	Practical	Tutorial	Theory	Practical	Tutorials	Total	
04	02		04	01		05	

Evaluation Scheme										
Theory					Term Work/ Practical/Oral			Total		
Inter	Internal Assessment			Duration of						
Tost 1	Test 1 Test 2	Average	Sem	End Sem	TW	PR	OR			
1051 1	1651 2		Average	Average	Average	Exam	Exam			
20	20	20	80	04 Hrs.	25	-	25	150		
-•	-•		00	•••••••			20	100		

There are various types of the Civil Engineering structures which are subjected to various types of loading and their combination. Most of the industrial structures for which the higher strength is a prime concern, are made up of steel .These special structure are design by working stress method and limit state method. The design approaches of different components given in the syllabus are based on limit state method and working state method.

Objectives

To understand the analysis and design concept of round tubular structures

To understand the design concept of different type of steel water tank

To understand the design concept of lattice tower and steel chimney

To understand the design concept of gantry girder

To develop Civil Engineering graduates having clear understanding of concepts and practical knowledge of modern Civil Engineering techniques for design of steel structures.

Use of various relevant IS codes for designing such special steel structures

	Detailed Syllabus					
Module	Sub – Modules / Contents	Periods				
Ι	1. Introduction to Steel Structure	03				
	Introduction to types of steel, mechanical properties of Structural steel, advantages of steel as structural material, design philosophies of Working Stress Method (WSM), Limit state method and design of simple bolted connection.					
	2. Moment Resistant Beam End Connections :	05				
	Design of moment resistant bolted and welded beam end connections by					
	limit state method					
II	3. Round Tubular Structural Members :	06				

	Properties of steel tubes, design of tension member and compression	
	member, design of welded connections, design of flexural members,	
	analysis and design of tubular trusses including purlins and supports.	
III	4. Elevated Steel Tanks and Stacks :	14
	Loads acting on tanks including wind and earthquake, design of circular	
	tanks with hemispherical and conical bottom, supporting ring beam,	
	staging for circular tanks including design of columns and foundation,	
	design of rectangular steel tanks including design of staging, columns and	
	foundation(consider the effect of wind and earthquake)	
IV	5. Gantry Girder :	07
	Loads acting on gantry girder, Analysis of gantry girder, design of gantry	
	girder by limit state method.	
	6. Lattice Tower :	09
V	Different configuration of lattice towers, loads acting on lattice towers,	
	Analysis of lattice tower, design of lattice tower including welded or	
	bolted connections for members by limit state method.(consider the	
	effect of wind and earthquake)	
VI	7. Steel Chimney :	08
	Forces acting on chimney, design of self supporting welded and bolted	
	chimney and components including design of foundation(consider the	
	effect of wind and earthquake)	

Contribution to Outcomes

On completion of this course, the students will be able

- 1. To perform the analysis and design of special steel structures
- 2. The will be able to analysis and design the gantry girder by limit state method.
- 3. They will be able to analysis and design steel chimney, lattice tower, tubular truss and watertank
- 4. Students should able to independently design steel structures using relevant IS codes.

Theory Examination:-

- 1. Question paper will comprise of six question; each carrying 20 marks.
- 2. The first question will be compulsory and will have short question having weightage of 4-5 marks covering the entire syllabus.
- 3. The remaining five questions will be based on all the modules of the entire syllabus. For this, the modules shall be divided proportionately and further, the weightage of the marks shall be judiciously awarded in proportion to the importance of the sub-module and contents thereof.
- 4. The students will have to attempt any three questions out of remaining five questions.
- 5. Total four questions need to be attempted

Oral Examination:

The oral examination shall be based upon the entire syllabus and the term work consisting of the assignments and projects.

Term Work:

The Term work shall consists of a design report and detailed drawings on three projects as indicated below:

1) Roofing system including details of supports using tubular section

- 2) Design of elevated circular tank with conical bottom or rectangular steel tank.
- 3) Design of lattice tower or steel chimney.

The drawing should be drawn in pencil only on minimum of A-1 (imperial) size drawing sheets. Each student has to appear for at least two written test during term .The term work shall comprise of the neatly written report based on assignments. The assignments shall be given covering the entire syllabus.

Distribution of the Term Work Marks:

The marks of the term work shall be judiciously awarded depending upon the quality of the term work.

The final certification and acceptance of term work warrants the satisfactory and appropriate completion of the assignments and projects.

Recommended Books:

- 1 Design of Steel Structures : N Subramanian, Oxford- University Press
- 2 Design of Steel Structures: Punamia, A. K. Jain & Arun Kumar Jain .Laxmi Publication
- 3 Design of Steel Structures: Dayaratnam, Wheeler Publication, New Delhi.
- 4 Design of steel structures: Krishnamachar B.S, & AjithaSinha D.

Reference Books:

- 1. Design of Steel Structures: Mac. Ginely T.
- 2. Design of Steel Structures: Kazimi S. M. & Jindal R. S., Prentice Hall of India.
- 3. Design of Steel Structures: Breslar, Lin and Scalzi, John Willey, New York.
- 4. Design of Steel Structures: Arya and Ajmani, New chand& Bros.
- 5. Relevant IS codes, BIS Publication, New Delhi
- 6. Steel structures, Controlling behavior through design: R. Englekirk, Wiley
- 7. LRFD Steel Design : William T. Segui, PWS Publishing
- 8. Design of Steel Structures: Edwin H. Gaylord, Charles N. Gaylord and James. Stallmeyer, McGraw-Hill

	Semester VIII	
Subject Code	Subject Name	Credits
CE-C DLO8032	Industrial Waste Treatment	5

Teaching Scheme							
C	Credits Assigned						
Theory	Practical	Tutorial	Theory	Practical	Tutorials	Total	
04	02		04	01		05	

	Evaluation Scheme								
	Theory						Term Work/		
						Practical/Oral			
Inter	Internal Assessment			Duration of					
Teat 1	Test 2	Average	Sem	End Sem	TW	PR	OR		
1 est 1	Test 2		Exam	Exam					
20	20	20	80	04 Hrs.	25	-	25	150	

Industrial waste waters are generally much more polluted than the domestic or even commercial wastewaters. Such industrial wastewaters cannot always be treated easily by the normal methods of treating domestic wastewaters, and certain specially designed methods. In order to achieve this aim, it is generally always necessary, and advantageous to isolate and remove the troubling pollutants from the wastewaters, before subjecting them to usual treatment processes. Thus Wastewater treatment is closely related to the <u>standards</u> and/or expectations set for the effluent quality. Wastewater treatment processes are designed to achieve improvements in the quality of the wastewater.

Objectives

- To provide knowledge of different types and characteristics of industrial wastes. Also to make the students conversant with effluent and stream standards.
- To study the problems faced by many industrial plants with new effluent limits to be met with their existing treatment plant.
- To understand in-depth yet practical review of wastewater treatment technologies and how to optimize their operation.
- To develop rational approaches towards sustainable waste water management via sludge recovery and treatments.
- To provide an understanding of the mechanisms and processes used to treat waters that have been contaminated in some way by various industrial activities prior to its release into the environment or its re-use.
- To study the sources of contaminants, legislative framework for their remediation as well as the technical aspects of the unit operations involved. To Utilize EIA documents for policy development, project planning or for legal or political action planning.

Detailed Syllabus					
Module	Sub Modules/Contents	Periods			
1	General:Liquid wastes from industries – their volumes and characteristics, Effect of disposal into natural water courses, Municipal sewers and on land, stream standards and effluent standards.	04			
2	Sampling and analysis of industrial wastes, Treatability study, good housekeeping, bioassay test, population equivalence.	04			
3	Stream sanitation: Effects of industrial wastes on self-purification of streams and fish life, Statement and significance of the parameters of Streeter and Phelp's equation and BOD equations, Deoxygenating and reaeration, Oxygen sag and numerical based on this.	06			
4	General treatment of industrial wastes:Neutralization, Equalization, segregation. Modification of conventional aerobic and anaerobic biological treatment methods. Dewatering and disposal of sludges,unit operation– floatation, Vacuum filtration, Centrifugation, Filter press and membrane filters, Advanced treatment.	12			
5	Detailed consideration of wastes produced from following industries: Manufacturing processes normally followed , Volume and effects of raw and treated effluent on streams, Sewers, Characteristics of effluents and land Treatment methods, reuse-recovery 1) Sugar-sugarcane 2) Distilleries 3) Pulp & paper: Sulphate process 4) Textiles: Cotton 5) Dairy 6) Tanneries 7)Electroplating	16			
6	Provision of various acts pertaining to industrial wastes / effluents, introduction to environmental impact assessment and environmental audit. Common Effluent Treatment Plants (CETPs): Location, Need, Design, Operation & Maintenance Problems and Economical aspects.	10			

Contribution to outcomes

On completion of this course, the students will have an ability to understand the industrial waste sources, effects and its treatment. The students will understand the various methods of disposal of industrial waste. They will have an understanding of the nature and characteristic of industrial waste and regulatory requirements regarding industrial waste treatment and further, they will have an ability to plan industrial waste minimization.

Students should able to

- 1. Understand the characteristics of industrial wastewater.
- 2. Identify sampling method and analyze industrial waste.
- 3. Design facilities for the processing and reclamation of industrial waste water.

4. Explain on-site treatment methods and solve Analyze and design wastewater treatment systems. (floatation, vacuum filtration, centrifugation, filter press and membrane filters)

5. Detailed on-site manufacturing processes and treatments of industrial waste water.

6.Analyze proposed development project plans for possible environmental effects and to improve treated effluent quality to confirm standard prescribed by regulatory agencies.

Theory Examination:-

1. Question paper will comprise of six questions; each carrying 20 marks.

2. The first question will be compulsory which will have the short questions having weightage of 4-5 marks covering the entire syllabus.

3. The remaining five questions will be based on all the modules of entire syllabus. For this, the module shall be divided proportionately further, the weightage of the marks shall be judiciously awarded in proportion to the importance of the sub-module contents thereof.

4. The students will have to attempt any three questions out of remaining five questions.

5. Total four questions need to be attempted.

Oral Examination:-

The oral Examination shall be based upon the entire syllabus and the term work consisting of the assignments and Tutorial including the site visit report.

Distribution of Term Work Marks:

The marks of the term work shall be judiciously awarded for the various components depending upon the quality of the term work. The final certification and acceptance of term work warrants the satisfactory and appropriate completion of the assignments. Each student shall prepare a report comprising design criteria and flow sheet of the proposed treatment scheme including laboratory analysis for any one industrial waste. Demonstration of available software for design of effluent treatment plant is to be considered.

The following weightage of marks shall be given for different components of the term work.

- 7. Report (on any industry/site visit): 05 Marks
- 8. Seminar: 05Marks
- 9. Attendance : 05 Marks
- 10. Assignments and Tutorials :10 Marks

Further, while giving weightage of marks on the attendance, following guidelines shall be resorted to

75% - 80%: 03 Marks; 81% - 90%: 04 Marks; 91% onwards: 05 Marks

Recommended Books:-

- 1. Waste Water Treatment: Rao & Datta, Oxford & IBH Publishing Co.
- 2. Environmental Pollution and control in chemical process industries: S.C.Bhatia, Khanna Publication.
- 3. Industrial Water Pollution Control: W W Eckenfelder Jr, Mc Graw Hill.
- 4. Industrial Water Pollution Management: E F Gurnham, John Wiley.
- 5. Biological Waste Treatment: Eckenfelder & Connor Pergamon Press.
- 6. Theories and Practices of Industrial Waste Treatment: Addisoon Wesley.
- 7. Pollution Control in Process Industries: S P Mahajan, Tata mcgraw Hill.

- 8. Industrial Waste: W Rudolfs ,(Ed), L E C Publishers Inc.
- 9. The Treatment of Industrial Wastes: E D BesselievreMcgraw Hill.
- 10. Industrial Waste Disposal: R D Ross, (Ed), Reinhld Bok Croporation.
- 11. Wastewater Engineering, Treatment and Reuse : Metcalf and Eddy, Tata mcgraw Hill
- 12. Industrial Wastewater Management Handbook, Hardam S. Azad.
- 13. Industrial Waste Treatment, Frank Woodwoard.
- 14. Environmental Impact Assessment :Larry W. Canter, Mcgraw Hill Book Company.
- 15. Environmental Impact Analysis Handbook :G.J. Rao and C.D. Weeten ,Mcgraw Hill
- 16. Environmental Management, Vijay Kulkarni and T. V. Ramchandra, Capital Publishing
- 17. Environmental Audit, MhaskarA.K., Enviro Media Publications.

	Semester VIII	
Subject Code	Subject Name	Credits
CE-C DLO8033	Pavement Design and Construction	5

Teaching Scheme							
Co	Credits Assigned						
Theory	Practical	Tutorial	Theory	Practical	Tutorials	Total	
04	02		04	01		05	

	Evaluation Scheme								
Theory						Term Work/ Practical/Oral			
Internal AssessmentTest 1Test 2Average		End Sem Exam	Duration of End Sem Exam	TW	PR	OR			
20	20	20	80	04 Hrs.	25	-	25	150	

The pavements are classified according to mode of transportation (highway and airways) and structural behaviour (flexible and rigid). The design of any pavement warrants the proper analysis thereof. The course deals with the various methods of the analyses and design of pavements. The evaluation of the pavements on routine basis and subsequent maintenance is essential to avoid the distresses in pavements. The course also covers the various distresses likely to take place in the pavements and various methods of evaluating the existing pavements. The distressed pavement needs either strengthening or rehabilitation depending upon the distresses the pavement has undergone. For the proper working and maintenance of the pavement, the concept of pavement management system has emerged. The course also covers these aspects. It also gives major thrust on the low volume roads and construction of concrete roads.

Objectives

- To study the different types of pavements(highway and airfield) depending upon the mode of transportation, use and structural behaviour.
- To understand the concept of consideration of wheel loads, axle loads, wheel-axle configuration and allied aspects as a pre-requisite in the analysis and design of the pavement.
- To study the various types of structural responses (stresses and deformations) inducing the pavements due to wheel load and other climatic variations.
- To study the various methods of analysis and design of the pavements and its subsequent applications to the various types of pavements.
- To study the different types of distresses in pavement, evaluation of the existing pavements using different methods and rehabilitation of the distressed pavements.
- To study the construction of the concrete roads and low volume roads.
- To study the quality control and quality assurance in the road construction and introduce pavement management system.

Detailed Syllabus						
Module	Sub-Modules/ Contents	Periods				
I.	Pavement structure and functional attributes, factors affecting pavement design, types of wheel loads for highways and airports, development of design method for highway and airport pavements. Stresses in flexible pavements, 1-layer, 2-layer, 3-layers theories, EWLF,ESWL Stresses in Rigid pavement: load and temperature stresses, combined stresses.	12				
II.	 Flexible Pavement Design Airport pavement: Corps of Engineer's method, FAA method CDOT method, Asphalt institute method. Highway Pavement: Empirical methods using no soil strength criteria, empirical method based no soil strength criteria: CBR method as specified by IRC-37 1970,1984,2001,2012,2018 Road note 29 methods, AASHTO method, Asphalt institute method. Fatigue and rutting as a failure criterion. Rigid Pavement Design: Airport pavements: PCA methods, corps of Engineer's method, FAA method. Joints and reinforcement requirement. Highway pavement: Current British procedure, IRC-58-2012,2015. 	16				
III.	 Evaluation and strengthening: flexible and rigid pavement distresses, condition and evaluation surveys, present serviceability index, roughness measurement, Benkelman beam deflections, design of overlays(IRC-81-1997), skid resistance and measurement. Concrete road construction: Mix design, concrete strength, size of aggregates, gradation, and workability, preparation of base form work, placing of reinforcement, compaction, and finishing, curing, joints. 	12				
IV.	Low Cost Roads (Rural Areas) (IRC-SP-20-2002) Classification of low cost roads, construction of low cost roads, stabilization of subgrade, base and its advantages, construction of granular base courses, macadam surface, macadam bases, low cost materials and methods used for highway construction, suitability of different types of roads under different situation. Soils.	05				
V	Quality control (QC) and Quality assurance (QA) during construction of various pavements, importance, process control and end product control, statistical methods in quality control, control charts, frequency of testing etc. (IRC-SP-11-1997) (MORTH SECTION 900).	05				
VI	Introduction to pavement management systems.	02				

Course Outcome

On successful completion of the course, the students shall be able to:

- Understand the structural actions involved in the pavement due to different types of load acting thereon and the various methods of analysis of pavements.
- Understand the applications of the analysis in the design of pavements using different methods of pavement design.

- Know the different types of distresses occurring in the existing pavements and carry out the structural and functional evaluation of the pavements.
- Apply the knowledge of evaluation in pre-empting the failure and to arrive upon the methodology of the rehabilitation of pavements.
- Understand the various aspects of the construction of concrete roads and low volume roads.
- Understand the pavement management system and quality control and assurance criteria and subsequently, its application in the highway construction.

Theory Examination:-

- 1. Question paper will comprise of six questions; each carrying 20 marks.
- 2. The **first** question will be **compulsory** which will have the short questions having weightage of 4-5 marks covering the entire syllabus.
- 3. The remaining **five** questions will be based on all the modules of entire syllabus. For this, the module shall be divided proportionately further, and the weightage of the marks shall be judiciously awarded in proportion to the importance of the sub-module and contents thereof.
- 4. There can be an **internal** choice in various sub-questions/ questions in order to accommodate the questions on all the topics/ sub-topics.
- 5. The students will have to attempt any **three** questions out of remaining five questions.
- 6. Total **four** questions need to be attempted.

Oral Examination:-

The oral examination shall be based upon the entire syllabus and the term work.

Term work:

The term-work shall comprise of the neatly written assignments. The assignments shall be given covering the entire syllabus in such a way that the students would attempt at least three problems and/ or questions on each modules/ sub-modules and contents thereof, further.

Distribution of Term Work Marks:

The marks of the term-work shall be judiciously awarded depending upon its quality of the term work. The final certification and the acceptance of the term-work warrant the satisfactory and the appropriate completion of the assignments; and further, minimum passing marks to be obtained by the students.

The following weightage of marks shall be given for different components of the term work.

- Assignments : 20 Marks
- Attendance : 05 Marks

Further, while giving weightage of marks on the attendance, following guidelines shall be resorted to.

75%- 80%: 03 Marks; 81%- 90%: 04 Marks; 91% onwards: 05 Marks

Recommended Books:-

- 1. Principles and Practice of Highway Engineering: L.R.Kadiyali, Khanna publications.
- Highway Engineering: *Khanna S.K. and Justo* C.E.G. Nem Chand (Revised 10th Edition, 2014)
 Pavement design
- 4. Principles, Practice and Design of Highway Engineering (Including Airport Pavements): *Sharma, S.K.*, S. Chand Technical Publications (3rd Revised Edition, 2013) 4.Pavement Analysis and Design: *Yang H. Huang*, Prentice Hall, New Jersey, 1993
- 5. Pavement Design: Yoder and Witzech, McGraw-Hill, 1982.
- 6. The Design and Performance of Road Pavements: Croney, David et al, McGraw Hill.

	Semester VIII	
Subject Code	Subject Name	Credits
CE-C DLO8034	Bridge Engineering and Design	5

Teaching Scheme							
Co		Cre	dits Assigned				
Theory	Practical	Tutorial	Theory	Practical	Tutorials	Total	
04	02		04	01		05	

Evaluation Scheme													
Theory				Term Work/			Total						
· ·					I	Practical	/Oral						
Internal Assessment			End	Duration of									
Teat 1	Test 2	Tost 2	Test 2	Toot 2	t 1 Tost 2	Tost 2 Avon	Average	Sem	End Sem	TW	PR	OR	
Test I	Test 2	Average	Exam	Exam									
20	20	20	80	04 Hrs.	25	-	25	150					

In the age of increase in traffic load and rapid transportation, bridges are a very important part of a nation's transportation infrastructure associated with the economic growth. They allow for roads and railways to cross over otherwise impassable obstacles such as rivers, valleys or other roads etc. Bridges are being built mainly with reinforced concrete, prestressed concrete or steel depending on various factors such as environment& site conditions, nature of loads and span etc. The civil engineering profession is much concerned with proper planning, design and construction, as well as maintenance, repairs and rehabilitation of bridges which are of utmostimportance. In this subject, students will be well acquainted with the types of bridges and their selection based on the specific needs. They will learn analysis and design of superstructure of substructure (foundation, Pier, abutments) using relevant IRC. They will also understand the analysis and design of a lattice girder bridge in steel for railway loading using relevant bridge rules and IRS.

Objectives

1. To bring the students to such a levelthat they being civil engineers will be able to take the appropriate decision in respect of choice of site, type of bridge, components of bridge, superstructure, sub structure, foundation, type of bearing and launching method of girder and construction methods.

2.To make the candidate to understand the analysis and design of reinforced concrete culvert/Prestressed Concrete bridges using relevant IRCs.

3. To make the candidate to understand the analysis and design of lattice girder steel bridge for railway loading using relevant IRS code.

Detailed Syllabus				
Module	Sub module/Contents	Periods		
1	Introduction:	06		
	Types of Bridges, Selection of suitable site and type of bridge,			
	Components of a bridge, aesthetics, economic span			
2	Design Loads and their Distribution:	10		
	IRC loads:IRC-Class AA tracked and wheeled, 70R tracked and			
	wheeled, Class-A, Class-B, distribution of loads on RC culverts,			
	Prestressed Concrete deck slab and girdered bridge, IRS loads : Railway			
	loading and distribution on lattice girder bridge			

3	Design of Superstructure:	20
	Design of prestressed concrete deck slab bridge, I-girder bridge and box	
	girder bridge for roadway,	
	Design of RC Culvert, Design of balanced cantilever RC bridge for	
	roadway,	
	Design of steel lattice girder bridge for railway	
4	Substructure:	06
	Different types of foundations, their choice and methods of construction,	
	well foundation, pile foundation, piers and abutments, wing walls	
5	Bearing:	03
	Various types of bearings and their suitability	
6	Construction Methods:	03
	Various methods of erection of bridge girders, cantilever method of	
	construction of bridge	

Contribution to outcome

On successful completion of the course, the student shall be able to:

1. Select the suitable type of bridge according to the site condition.

2. Understand IRC loads, distribution of these loads on deck slab and among longitudinal beams/girders of a bridge.

3. Design of culvert, balanced cantilever reinforced concrete bridge, prestressed concrete deck slab bridge, I-girdered and box girdered bridge, lattice girder railway bridge.

4. Understand different types of foundations, piers and abutments, their methods of construction.

5. Understand various types of bearings and their suitability, erection of bridge superstructure.

Theory Examination: -

1. Question paper will comprise of six questions; each carrying 20 marks.

2. The **first** question will be **compulsory** which will have the short questions having weightage of 4-5 marks covering the entire syllabus.

3. The remaining **five** questions will be based on all the modules of entire syllabus. For this, the module shall be divided proportionately further, and the weightage of the marks shall be judiciously awarded in proportion to the importance of the sub-module and contents thereof.

4. There can be an **internal** choice in various sub-questions/ questions in order to accommodate the questions on all the topics/ sub-topics.

5. The students will have to attempt any **three** questions out of remaining five questions.

6. Total **four** questions need to be attempted.

Site Visit/ Field Visit:

The students shall visit the site where the construction of bridge structure using pre-stressed concrete is going on. The students shall prepare the detailed report thereof and submit as a part of the term work.

Oral Examination:

The oral Examination shall be based upon the entire syllabus, term work and site/field visit. **Term work:**

The termwork shall comprise of the neatly written assignments. The assignments shall be given covering the entire syllabus. There shall be minimum four problems for design of roadway bridges and one railway bridge.

Presentation on any emerging trend in bridges, its design, methods of erection and construction, types of foundations and bearings etc relevant to syllabus.

Distribution of Term Work Marks:

The marks of the term-work shall be judiciously awarded depending upon the quality of the term work. The final certification and the acceptance of the term-work warrants the satisfactory and the appropriate completion of the assignments; and further, minimum passing marks to be obtained by the students.

The following weightage of marks shall be given for different components of the term work.

Assignments: 10 Marks

Presentation: 05 Marks

A Bridge site visit report or A project on Design of superstructure of a bridge using software: 05 Marks

Attendance: 05 Marks

Further, while giving weightage of marks on the attendance, following guidelines shall be resorted to.

75% - 80%: 03 Marks; 81% - 90%: 04 Marks; 91% onwards: 05 Marks

A-Recommended Books:

- 1. Design of Bridges: Raju N. K., Oxford and IBH fifth Edition.
- 2. Bridge Engineering: Ponnuswamy S., Tata Mc Graw Hill.
- 3. Concrete Bridge Practice: Raina V. K., Tata Mc Graw Hill.
- 4. Essentials of Bridge Engineering: Victor D.J, Oxford and IBH.

5. Design of Bridge Superstructures: *T.R. Jagdeesh*and*M.A. Jayaram*, Prentice Hall India Private Ltd., New Delhi.

6. Bridge Engineering Handbook: Chen W. F. and Duan L., CRC Press, 2000.

7. Bridge Bearings and Expansion Joints: David Lee, E & FN Spon.

B-IRC Codes:

IRC: SP13- 2004, IRC: 5- 2015, IRC: 6- 2016, IRC: 18-2000, IRC: 21-2000, IRC: 24-2001, IRC: 27-2009, IRC: 45, IRC: 78-2014, IRC: 83 (i)-1999, IRC: 83 (ii)-1987, IRC: 83 (iii)-2002, IRC:112- 2011

C-IRS Codes:

IRS- 2003, Bridge rules (Railway board): Rules specifying the loads for design of superstructure and sub-structure of bridges and for assessment of the strength of existing bridges-2008.

Indian railway standard code of practice for the design of steel or wrought iron bridges carrying rail, road or pedestrian traffic (steel bridge code) adopted- 2003

Semester VIII						
Subject Code	Subject Name	Credits				
CE-DLO 8035	Appraisal & Implementation of Infrastructure	05				
	Projects					

Teaching Scheme							
Contact Hours			Credits Assigned				
Theory	Practical	Tutorial	Theory	Practical	Tutorials	Total	
04	02		04	01		05	

Evaluation Scheme								
Theory					Term Work/			Total
					I	Practical	/Oral	
Inter	Internal Assessment End Duratio			Duration of				
Test 1 Test 2 Average			Sem	End Sem	TW	PR	OR	
		Exam	Exam					
20	20	20	80	03 Hrs.	25	-	25	150

This course is intended to make students aware of the appraisal criteria for any Civil engineering project. This course will make students understand the importance of feasibility studies and acquaint them with the process of preparing a project report, both of which play a significant role in deciding the viability of a project. The professional construction engineering practice will be rendered meaningless if student do not grasp the knowledge of financial analysis. This course shall be helpful to students in studying all the economic aspects of Infrastructure projects.

Objectives

- To know the procedure of feasibility studies for any infrastructure project.
- To learn the procedure of appraisals required for deciding the worthiness of any project.
- To learn the procedure of forecasting demand and know its importance.
- To know the components and importance of technical appraisal.
- To make students acquainted with important decision making tools like Break even analysis, SWOT analysis and other ways to carry out economic analysis of a project.
- To get acquainted with different methods of implementing a project.

Detailed Syllabus					
Module		Sub-Modules/ Contents	Periods		
	Con	struction Projects and Report Preparation			
I.	1.1	Classification of construction projects.Project Formulation and phases involved in it.	04		
	1.2	Feasibility studies, SWOT analysis.Preparation of Project report.			
	Proj	ject Appraisal			
II.	2.1	Importance and phases in a project development cycle for major infrastructure projects.	08		
	2.2	Importance of Appraisal, its need and steps involved in it.			
	Mar	·ket Appraisal	10		
III.	3.1	Importance and methods of carrying out demand analysis. Sources to gather project related information and ways to carry out market			
		survey.			

	3.2	Methods to forecast demands.Uncertainities involved in demand forecasting.	
	Tec	hnical and Managerial Appraisal	
IV.	4.1	Method to study the technical appraisal/viability of a project in terms of its location, type of land and intended use of building, technology requirements of the project, Size and complexity of tools and plants, raw materials to be used and their impact on the vicinity, energy requirements, water supply and disposal of effluents if any.	08
	4.2	Study of managerial requirements of a project, Desirable organisational structure and hierarchy to manage as well as implement the project, Method of assessment of entrepreneurs.	
	Fina	ancial analysis and Economic Appraisal	
T 7	5.1	Various costs related to a project, Methods to determine the profitability of a project, Break even analysis.	10
V.	5.2	Economic appraisal: Urgency, Payback period, Avg. Rate of return, Net Present Value, Internal rate of return, Benefit cost ratio, Cost of Capital etc.	
	Pro	ject Financing and Implementation	
VI.	6.1	Types and Sources of finance in local, National and International context. Issues related to project financing.	08
	6.2	Agencies involved in the implementation of a project. Methods of implementation like Built, operate and Transfer and its other variants like B.O.O, B.O.O.T, B.L.T, etc.	00
	•	Total	48

Contribution to Outcomes

On successful completion of the course, the learners will be able to:

- **classify** the projects and **describe** the phases involved in project formulation.
- **prepare**a detailed project report on the basis of various feasibility studies and SWOT analysis.
- **devise** a project's development cycle and get acquainted with the different appraisals in the process of deciding the worthiness of a project.
- **exhibit** and **apply** the managerial skills and knowledge of financial aspects required during the implementation of projects.
- identify various sources for project finance.
- **know** the various agencies involved in project implementation as well as **select** the method of project implementation which is best suited for a particular project.

Theory Examination:

- Question paper will comprise of **six** questions; each carrying 20 marks.
- The **first** question will be **compulsory** which will have the short questions having weightage of 4-5 marks covering the entire syllabus.
- The remaining **five** questions will be based on all the modules of entire syllabus. For this, the module shall be divided proportionately further, and the weightage of the marks shall be judiciously awarded in proportion to the importance of the sub-module or contents thereof.
- There can be an **internal** choice in various sub-questions/ questions in order to accommodate the questions on all the topics/ sub-topics.
- The students will have to attempt any **three** questions out of remaining five questions.

• Total **four** questions need to be attempted.

Oral Examination:

The oral examination will be based on the entire syllabus and the term work.

Term Work:

The term work shall consist of the following:

- 4) Minimum **Six assignments** covering the entire syllabus.
- 5) **Report** on studying the SWOT Analysis of any one major infrastructure project.
- 6) **Case study Powerpoint presentation** covering the various appraisals of any one major infrastructure project.

Distribution of Term Work Marks:

The marks of the term-work shall be judiciously awarded depending upon the quality of the term work including that of the report and powerpoint presentation. The final certification and acceptance of the term-work warrants the satisfactory and the appropriate completion of the assignments; and the minimum passing marks to be obtained by the students. The following weightage of marks shall be given for different components of the term work.

Assignments:20 Marks.

<u>Attendance</u>: 05 Marks. Further, while giving weightage of marks on the attendance, guideline to be resorted to is: 75%- 80%: 03 Marks; 81%- 90%: 04 Marks; 91% onwards: 05 Marks

Recommended Books:

- 1) Project Preparation, Appraisal, Budgeting, and Implementation: Prasanna Chandra (Tata McGraw Hill).
- 2) Infrastructure Development & Financing in India N. Mani (New Century Publications).
- 3) Infrastructure & economic development Anu Kapil (Deep&Deep Publications).
- 4) Construction Management: Planning and finance Cormican D.(Construction press, London).
- 5) Engineering Economics Kumar (Wiley, India).
- 6) Real Estate, Finance and investment Bruggeman.Fishr (McGraw Hill).
- 7) The cost management toolbox; A Managers guide to controlling costs and boosting profits. Oliver, Lianabel (Tata McGraw Hill).

	Semester VIII	
Subject Code	Subject Name	Credits
CE-DLO 8036	Soil Dynamics	05

Teaching Scheme								
Co		Cre	dits Assigned					
Theory	Practical	Tutorial	Theory	Practical	Tutorials	Total		
04	02		04 01 05					

	Evaluation Scheme											
Theory					Т	Total						
				1	Tactical		_					
Inter	nal Asses	ssment	End	Duration of								
Tost 1	Tost 2	Avorago	Sem	End Sem	TW	PR	OR					
1651 1	1 cot 2	Average	Exam	Exam								
20	20	20	80	03 Hrs.	25	-	25	150				

In basic geotechnical engineering course generally various static loads are considered in the theories and analysis of soil. But practically many geotechnical applications require the knowledge of the behaviour and properties/response of soil as a material which is subjected to various types of dynamic or cyclic time-dependent loadings. Some of the structures which are subjected to dynamic loadings are machine foundations, shallow and deep foundations, retaining structures, slopes, sub grade soil below railway, pavement, runway etc. This course provides the fundamental theoretical and computational aspects of dynamics for some important geotechnical problems andstructures.

Object	ives
--------	------

• To study fundamental concepts of vibrations, degrees of freedom and damping systems.

- To study phenomena like liquefaction and their effects.
- To study principals of machine foundation design and dynamic earth pressure theories on retainingwall.
- To learn test methods of evaluating dynamic properties of soil.

Detailed Syllabus					
Module	Sub- Modules/Contents	Periods			
I.	Scope and objective; Nature and types of dynamic loading; Importance of soil dynamics. Vibration of elementary system, degree of freedom, analysis of system with one degree of freedom, spring-mass system, harmonic vibration, uniform circular motion natural frequency, free and forced vibrations with and without damping, type of damping	10			
II.	Wave propagation in elastic rods, in an elastic infinite medium and in semi elastic half space, wave generated by surface footing.	05			

III.	Liquefaction of soils, criterion and factors affecting liquefaction of soil, laboratory and field studies on liquefaction, liquefaction studies in oscillatory simple shear, evaluation of liquefactionpotentials, liquefaction of clay.	10
IV.	Principles of machine foundation design, criteria for satisfactory machine foundation, degree of freedom of a block foundation analysis of vertical and sliding vibration of a machine foundation, mass ofsoil participating in vibration. Practical design considerations and codal provisions.	06
V.	Vibration isolation and screening methods, improvement of distressed machine foundation.	07
VI.	Field and laboratory tests for evaluation of dynamic properties of soil under vertical vibration coefficient of elastic uniform shear, spring constant damping modulus of elasticity typical values of soils.	07
VII.	Basics of dynamic earth pressure on retaining walls: conventional gravity type, reinforced soils, distribution of pressure, point of application of the resultant, simple examples.	07

Course Outcome

On successful completion of the course, the students are expected to:

- Acquire the knowledge of concepts, principles and applications of soil under dynamic loading.
- Develop an ability to design with reference to code provisions and solve the practical soil problems subjected tovibrations.
- Provide an impetus to new developments in related dynamictopics.

Theory Examination:-

Question paper will comprise of six questions; each carrying 20marks.

The **first** question will be **compulsory** which will have the short questions having weightage of 4-5 marks covering the entiresyllabus.

The remaining **five** questions will be based on all the modules of entire syllabus. For this, the module shall be divided proportionately further, and the weightage of the marks shall be judiciously awarded in proportion to the importance of the sub-module and contentsthereof.

There can be an **internal** choice in various sub-questions/ questions in order to accommodate the questions on all the topics/sub-topics.

The students will have to attempt any **three** questions out of remaining fivequestions. Total **four** questions need to be attempted.

Laboratory Test

It is recommended to conduct block foundation tests.

Oral Examination:-

The oral examination will be based on the entire syllabus.

Term Work:

Each student shall prepare a project report covering the selection of design parameters, design analysis including drawing on any aspect of soil dynamics included in the syllabus. The project report referred above along with the assignments will form a part of the term work. The assignments shall be given covering the entire syllabus in such a way that hestudents would attempt at least four problems and/or questions on each modules/ sub- modules and contents

thereof, further. The report on the block vibration tests, if conducted, shall also form a part of the term work.

Distribution of Term Work Marks:

The marks of the term-work shall be judiciously awarded for various components of the term work depending upon its quality. The final certification and the acceptance of the term-work warrant the satisfactory and the appropriate completion of the assignments, proper compilation of the project report and that of experiments/ practical, if conducted; and further, minimum passing marks to be obtained by the students.

The following weightage of marks shall be given for different components of the term work.

- Assignments : 20Marks
- Attendance : 05Marks

Further, while giving weightage of marks on the attendance, following guidelines shall be resorted to.

75% - 80%: 03 Marks; 81% - 90%: 04 Marks; 91% onwards: 05 Marks

Recommended books:

- 1. Soil Dynamics: Shamsher Prakash, McGraw-Hill bookcompany
- 2. Principles of Soil Dynamics: *Braja, M. Das*, PWS-Kent PublishingCompany
- 3. Dynamics of Bases and Foundations: *Barkan, D. D.*, McGraw-Hill Bookcompany
- 4. Steven L. Kramer, "Geotechnical Earthquake Engineering", Prentice Hall Inc.
- 5. E. E. Richart et al. "Vibrations of Soils and Foundations", Prentice Hall Inc.
- 6. Relevant IScodes

Semester VIII							
Subject Code	Subject Name	Credits					
CE-DLO 8037	Applied Hydrology & Flood Control	05					

Teaching Scheme									
Contact Hours Credits Assigned									
Theory	Practical	Tutorial	Theory	Practical	Tutorials	Total			
04	04 02 04 01 05								

	Evaluation Scheme											
Theory						Total						
				I	Practical	/Oral						
Internal Assessment		End	Duration of									
Teat 1	Test 2	Avorago	Sem	End Sem	TW	PR	OR					
Test I	Test 2	12 Average	Exam	Exam								
20	20	20	80	03 Hrs.	25	-	25	150				

This subject deals with the various processes involved in hydrological cycle and provides in depth understanding of the theories and concepts of surface, subsurface and ground water hydrology. It focuses on types and forms of precipitations. It also explains the application of hydrographs, unit hydrographs and further describes various techniques of estimating stream flows. It further describes the various techniques of estimating streamline flows. It also describes the importance of floods, flood routing and ground water hydrology.

Objectives

- To understand the various processes involved in the hydrological cycle.
- To measure rainfall, computation of average rainfall, various water losses etc.
- To study the hydrograph and unit hydrographs, applications of unit hydrograph concept.
- To study various flood control methods, estimate design flood, and flood routing
- To study the concepts of ground water movement, steady and unsteady flow towards fully penetrating wells and well yields.

	Detailed Syllabus	
Module	Sub-Modules/ Contents	Periods
Ι	 Introduction: Hydrological cycle, scope of hydrology, water budget equation, sources of data. Precipitation: Measurement of precipitation, network of rain gauges and their adequacy in a catchment, methods of computing average rainfall, hyetograph and mass curve of rainfall, adjustment of missing data, station year method and double mass curve analysis, Depth-Area -Duration relationship, Intensity-Duration -Frequency relationship, Probable Maximum Precipitation. 	7
П	Abstractions from Precipitation: Evaporation and transpiration, evapo-transpiration, interception, epression storage, infiltration and infiltration indices, determination of water losses. Stream Flow Measurement: Measurement stream-flow by direct and indirect methods, measurement of stage and velocity, area-velocity method, stage-discharge relationships, current meter method, pitot tube method, slope-area method, rating curve method, dilution technique, electro-magnetic method, ultrasonic method.	7
III.	Runoff: Catchment, watershed and drainage basins, Factors affecting runoff, rainfall-runoff relationship, runoff estimation, droughts.	6
IV.	Hydrograph Analysis: Characteristics, base <i>flow</i> separation, unit hydrograph, S-hydrograph, complex hydrograph, synthetic hydrograph, dimensionless unit hydrograph, Instantaneous unit hydrograph.	7
V.	Floods: Estimation, envelope curves, flood frequency studies, probability and stochastic methods, estimation of design flood, flood control methods, Limitations, risk-reliability and safety factor.	6
VI.	Ground Water Hydrology: Yield , transmissibility, Darcy's law, DuPont's theory of unconfined flow, steady flow towards fully penetrating wells(confined and unconfined).Unsteady flow towards wells: Jacob's curve and other methods, use of well Function, pumping tests for aquifer characteristics, methods of recharge.	6

Contribution to Outcomes

On successful completion of the course, the students are expected to:

- Explain hydrologic cycle and various methods of Measurement of rainfall.
- Calculate optimum number of rain gauge station, average rainfall and missing rainfall over catchment
- Describe various methods of measurement of stream flow and to calculate obstraction losses over the catchment
- Develop rainfall runoff relationship and calculating runoff over catchment
- Perform hydrologic and hydraulic routing

• Derive the equation for the discharge of well for confined and unconfined aquifer **Theory examination:**

- Question paper will comprise of **six** questions; each carrying 20 marks.
- The **first** question will be **compulsory** which will have the short questions having weightage of 4-5 marks covering the entire syllabus.
- The **remaining five** questions will be based on all the modules of entire syllabus. For this, the module shall be divided proportionately further, and the weightage of the marks shall be judiciously awarded in proportion to the importance of the sub-module and contents thereof.
- The students will have to attempt any **three** questions out of remaining five questions.
- Total **four** questions need to be attempted.

Oral Examination:

The oral Examination shall be based upon the entire syllabus and the term work.

Term Work:

The term work shall comprise of the neatly written report of the assignments. The assignments shall be given covering the entire syllabus in such a way that the students would attempt at least four problems and / or questions on each sub-modules and contents thereof further.

Distribution of Term Work Marks:

The marks of term-work shall be judiciously awarded depending upon the quality of the term work. The final certification and acceptance of term-work warrants the satisfactory and the appropriate completion of the assignments; and the minimum passing marks to be obtained by the students. The following weightage of marks shall be given for different components of the term work.

Assignments : 20 Marks Attendance : 05 Marks

Further, while giving weightage of marks on the attendance, following guidelines shall be resorted to.75% - 80%: 03 Marks; 81% - 90%: 04 Marks; 91% onwards: 05 Marks

Recommended Books:

- Engineering Hydrology: K. Subramanya, Tata McGraw Hill Publishing Co. Ltd. New Delhi.
- Irrigation Engineering and Hydraulic Structures: *S. K. Ukarande*, Ane's Books Pvt. Ltd. (Abridged Edition 2015), ISBN 9789383656899
- Hydrology: H. M. Raghunath, New Age International Publishers, New Delhi
- Irrigation and Water Power Engineering: Dr. B.C. Punmia and Dr. Pande, B.B.Lal, Laxmi Publications Pvt. Ltd. New Delhi.
- Irrigation Engineering and Hydraulics Structures: S. K. Garg, Khanna Publishers. Delhi
- Irrigation Water Resources and Water Power Engineering: Dr. P.N. Modi, Standard BookHouse. Delhi.
- Elementary Hydrology: V. P. Singh, Prentice Hall
- Engineering Hydrology: Principles and practice: V. M. Ponce, Prentice Hall

UNIVERSITY OF MUMBAI No. UG/43 of 2018-19

CIRCULAR:-

Attention of the Principals of the affiliated Colleges and Directors of the recognized Institutions in Science & Technology Faculty is invited to this office Circular No. UG/243 of 2010, dated 12th August, 2010 relating to syllabus of the Bachelor of Engineering (B.E.) degree course.

They are hereby informed that the recommendations made by the Ad-hoc Board of Studies in Electronics Engineering at its meeting held on 9th April, 2018 have been accepted by the Academic Council at its meeting held on 5th May, 2018 vide item No. 4.54 and that in accordance therewith, the revised syllabus as per the (CBCS) for the T.E. & B.E. in Electronics Engineering (Sem - V to VIII) has been brought into force with effect from the academic year 2018-19 and 2019-2020, accordingly. (The same is available on the University's website www.mu.ac.in).

merande (Dr. Dinesh Kamble) I/c REGISTRAR

MUMBAI - 400 032 25th June, 2018 To

The Principals of the affiliated Colleges & Directors of the recognized Institutions in Science & Technology Faculty. (Circular No. UG/334 of 2017-18 dated 9th January, 2018.)

A.C/4.54/05/05/2018

No. UG/ 43 -A of 2018

MUMBAI-400 032 25 June, 2018

Copy forwarded with Compliments for information to:-

- 1) The I/c Dean, Faculty of Science & Technology,
- 2) The Chairman, Ad-hoc Board of Studies in Electronics Engineering,
- 3) The Director, Board of Examinations and Evaluation,
- 4) The Director, Board of Students Development,
- 5) The Co-Ordinator, University Computerization Centre,

Ille and

(Dr. Dinesh Kamble) I/c REGISTRAR

UNIVERSITYOFMUMBAI

Revised syllabus (Rev- 2016) from Academic Year 2016 -17 Under

FACULTY OF TECHNOLOGY

Electronics Engineering

Second Year with Effect from AY 2017-18 Third Year with Effect from AY 2018-19 Final Year with Effect from AY 2019-20

As per **Choice Based Credit and Grading System** with effect from the AY 2016–17

Co-ordinator, Faculty of Technology's Preamble:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's). It is also resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education.

Choice based Credit and Grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 2-3 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

Choice based Credit and grading system is implemented from the academic year 2016-17 through optional courses at department and institute level. This will be effective for SE, TE and BE from academic year 2017-18, 2018-19 and 2019-20 respectively.

Dr. S. K. Ukarande Co-ordinator, Faculty of Technology, Member - Academic Council University of Mumbai, Mumbai

University of Mumbai, B. E. (Electronics Engineering), Rev 2016

Chairman's Preamble:

Engineering education in India is expanding and is set to increase manifold. Themajor challenge in the current scenario is to ensure quality to the stakeholders along with expansion. To meet this challenge, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education and reflects the fact that in achieving recognition, the institution or program of study is committed and open to external review to meet certain minimum specified standards. The major emphasis of this accreditation process is to measure the outcomes of the program that is being accredited. Program outcomes are essentially a range of skills and knowledge that a student will have at the time of graduation from the program. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating the philosophy of outcome based education in the process of curriculum development.

As the Chairman, Board of Studies in Electronics Engineering of the University of Mumbai, I am happy to state here that, the Program Educational Objectives for Undergraduate Program were finalized in a brain storming session, which was attended by more than 40 members from different affiliated Institutes of the University. They are either Heads of Departments or their senior representatives from the Department of Electronics Engineering. The Program Educational Objectives finalized for the undergraduate program in Electronics Engineering are listed below;

- 1. To prepare the Learner with a sound foundation in the mathematical, scientific and engineering fundamentals
- 2. To motivate the Learner in the art of self-learning and to use modern tools for solving real life problems
- 3. To inculcate a professional and ethical attitude, good leadership qualities and commitment to social responsibilities in the Learner's thought process
- 4. To prepare the Learner for a successful career in Indian and Multinational Organisations

In addition to Program Educational Objectives, for each course of the program, objectives and expected outcomes from a learner's point of view are also included in the curriculum to support the philosophy of outcome based education. I strongly believe that even a small step taken in the right direction will definitely help in providing quality education to the major stakeholders.

Dr.Sudhakar S. Mande

Chairman, Board of Studies in Electronics Engineering, University of Mumbai

Course	Course Name	T (eaching Sche Contact Hou	me rs)	Credits Assigned				
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELX301	Applied Mathematics III	04		01@	04		01	05	
ELX302	Electronic Devices and Circuits I	04			04			04	
ELX303	Digital Circuit Design	04			04			04	
ELX304	Electrical Network Analysis and Synthesis	04			04			04	
ELX305	Object Oriented Programming Methodology	04			04			04	
ELXL301	Electronic Devices and Circuits I Lab		02			01		01	
ELXL302	Digital Circuit Design Lab.		02			01		01	
ELXL303	Electrical Network Analysis and Synthesis Lab		02			01		01	
ELXL304	Object Oriented Programming Methodology Lab.		02+02#			02		02	
	Total	20	08	02	20	04	01	26	

S.E. (Electronics Engineering) – Semester III

@1 hour tutorial class-wise

#02 hours class-wise and 02 hours batch-wise

		Examination Scheme – Semester III								
				Theo						
Course	Course Name	Internal Assessment			End	Exam	Term	Oral		
Code			(IA)		Sem	Duration	Work	/Prac	Total	
		Test	Test	AVG.	Exam	(Hours)				
		I	II		Marks					
ELX301	Applied Mathematics III	20	20	20	80	03	25		125	
ELX302	Electronic Devices and Circuits I	20	20	20	80	03			100	
ELX303	Digital Circuit Design	20	20	20	80	03			100	
ELX304	Electrical Network Analysis and	20	20	20	80	03			100	
	Synthesis	20	20	20	80	05			100	
ELX305	Object Oriented Programming	20	20	20	80	03			100	
	Methodology	20	20	20	00	05			100	
ELXL301	Electronic Devices and Circuits I						25	25	50	
	Lab						25	25	50	
ELXL302	Digital Circuit Design Lab.						25	25	50	
ELXL303	Object Oriented Programming						25	25	50	
	Methodology Lab.						25	25	50	
ELXL304	Electrical Network Analysis and						25		25	
	Synthesis Lab						23		23	
	Total	100	100	100	400	15	125	75	700	

Course Code	Course Name	T(()	eaching Sche Contact Hour	me :s)	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELX501	Microcontrollers and Applications	04			04			04
ELX 502	Digital Communication	04	-		04			04
ELX 503	Engineering Electromagnetics	04	-	@01	04		01	05
ELX 504	Design with Linear Integrated Circuits	04	02		04			04
ELX 505	Business Communication & Ethics	02	02#			02		02
ELXDLO501X	Department Level optional courses I	04	02		04			04
ELXL501	Microcontrollers and Applications Lab.					01		01
ELXL502	Digital Communication Lab.					01		01
ELXL503	Design with Linear Integrated Circuits Lab.					01		01
ELX DLOI50X	Department Level optional course-I Lab					01		01
	TOTAL	20	08	04	20	06	01	27

T.E. (Electronics Engineering) – Semester V

1 hour tutorial class-wise #02 hours batch-wise

		Examination Scheme – Semester V								
				Theory						
		Interna	l Assessme	ent (IA)	End	Exam	Term	Oral		
Course Code	Course Name	Test I	Test II	AVG.	Sem	Durati	Work	/Prac	Total	
					Exam	on				
					Marks	(Hours				
)				
ELX501	Micro-controllers and Applications	20	20	20	80	03			100	
ELX 502	Digital Communication	20	20	20	80	03			100	
ELX 503	Engineering Electromagnetics	20	20	20	80	03	25		125	
FI X 504	Design with Linear Integrated	20	20	20	80	03			100	
ELA 304	Circuits	20	20	20	80	05			100	
ELX 505	Business Communication & Ethics						50		50	
ELX DLO501X	Department Level Elective-I	20	20	20	80	03			100	
FL XI 501	Micro-controllers and Applications						25	25	50	
ELALSUI	Lab.						25	23	50	
ELXL 502	Digital Communication Lab.						25		25	
FI VI 503	Design with Linear Integrated						25	25	50	
ELAL 505	Circuits Lab.						23	23	50	
ELXL	Department Elective Llab						25	25	50	
DLO501X	Department Elective Flab						23	25	50	
	Total	100	100	100	400	15	175	75	750	

Course Code	Department Level Optional Course I						
ELXDLO5011	Database and Management System						
ELXDLO5012	Digital Control system						
ELXDLO5013	ASIC Verification						
ELXDLO5014	Biomedical Instrumentation						

University of Mumbai, B. E. (Electronics Engineering), Rev 2016

Course Code	Course Name Transhing Scheme Cuedite Assigned							
Course Coue	Course Ivanie	(Contact Hours)			Creuits Assigned			
		Theory Practical Tutorial		5) Tutorial	Theory Practical Tutorial To			
		Theory	Tractical	Tutoriai	Theory	1 I actical	Tutoriai	Totai
ELX601	Embedded System and RTOS	04			04			04
ELX 602	Computer Communication Network	04			04			04
ELX 603	VLSI Design	04			04			04
ELX 604	Signals and systems	04		@01	04		01	05
ELXDLO502X	Department Level Optional courses II	04			04			04
ELXL601	Embedded System and RTOS Lab.		02			01		01
ELXL 602	Computer Communication Network Lab.		02			01		01
ELXL 603	VLSI Design Lab.		02			01		01
ELXLDLO601 X	Department Level Optional courses IILab.		02			01		01
TOTAL		20	08	01	20	04	01	25

T.E. (Electronics Engineering) – Semester VI

		Examination Scheme – Semester VI								
Course Code	Course Name			Theor						
		Interna	l Assessm	ent (IA)	End	Exam	Term	Oral		
		Test I	Test II	AVG.	Sem	Duration	Work	/Prac	Total	
					Exam	(Hours)				
					Marks					
ELX601	Embedded System and RTOS	20	20	20	80	03			100	
	Computer Communication									
ELX 602	ELX 602 Computer Communication		20	20	80	03			100	
ELX 603	VLSI Design	20	20	20	80	03			100	
		•	•	•					100	
ELX 604	Signals and systems	20	20	20	80	03	25	25	100	
	Department Level Ontional									
ELXDLO602X	courses II*	20	20	20	80	03			100	
ELXL601	Embedded System and RTOS Lab.						25	25	50	
ELXL 602	Computer Communication						25	25	50	
	Network Euo.									
ELXL 603	VLSI Design Lab.						25	25	50	
	_									
ELXLDLO602	Department Level Optional						25	25	50	
Λ	Courses II Lab.									
	Total	100	100	100	400	15	125	125	750	
	Total	100	100	100	400	15	123	123	/30	
	Course Code		Departme	nt Level	Optional (Course II	1	1	1	
	ELXDLO6021	Microwave Engineering								
		Electronics Product Design								
	ELADLO6022	Electronics Product Design								
	ELXDLO6023	ELXDLO6023 Wireless Communication								

Computer Organization and Architecture

University of Mumbai, B. E. (Electronics Engineering), Rev 2016

ELXDLO6024
Course Code	Course Name	T (eaching Sche Contact Hour	me rs)		Credits As	ssigned	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELX701	Instrumentation System Design	04			04			04
ELX702	Power Electronics	04			04			04
ELX703	Digital signal processing	04			04			04
ELXDLO703X	Department Level Optional course III	04			04			04
ILO701X	Institute Level Optional Course I#	03			03			03
ELXL701	Instrumentation System Design Lab.		02			01		01
ELXL702	Power Electronics Lab.		02			01		01
ELXL703	Digital signal processing Lab.		02			01		01
ELXL704	Project-I		06			03		03
ELXLDLO703 X	Dept. Level Optional course III Lab.		02			01		01
	TOTAL	19	14		19	07		26

B.E.	(Electronics	Engineering)	– Semester	VII
D.L.	(Electronics)	Engineering	Schester	V 11

				Exam	ination Sc	heme – Ser	nester VII	-	
				Theory					
~ ~ ~ ~	~	Interna	l Assessme	ent (IA)	End	Exam	Term	Oral	
Course Code	Course Name	Test I	Test II	AVG.	Sem	Durati	Work	/Prac	Total
					Exam	on			
					Marks	(Hours			
FLX701	Instrumentation System Design	20	20	20	80)			100
ELATOI	instrumentation System Design	20	20	20	80	05			100
ELX 702	Power Electronics	20	20	20	80	03			100
				• •					1.0.0
ELX 703	Digital signal processing	20	20	20	80	03			100
ELXDLO703X	Department Level Optional	20	20	20	0.0	0.2			100
	courses III*	20	20	20	80	03			100
		•	•	•					100
ILO701X	Institute Level Optional Subject	20	20	20	80	03			100
ELXL701	Instrumentation System Design						2.5	25	50
	Lab.						25	25	50
EL VI 703							25	25	50
ELXL702	Power Electronics Lab.						25	25	50
ELXL703	Digital signal processing Lab.						25	25	50
	5						-	-	
ELXL704	Project-I						50	50	100
FLVI DI O703	Dent Level Ontional courses III								
X	Lab.						25	25	50
		100		100	10.0			1.50	
	Total	100	100	100	400	15	150	150	800

Course Code	Course Name	To (eaching Sche Contact Hour	me ·s)		Credits As	signed	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELX801	Internet of Things	04			04			04
ELX 802	Analog and Mixed VLSI Design	04			04			04
ELXDLO804X	Department Level Optional course IV	04			04			04
ILO802X	Institute Level Optional course II#	03			03			03
ELXL801	Internet of Things Lab.		02			01		01
ELXL802	Analog and Mixed VLSI Design Lab.		02			01		01
ELXL803	Project-II		12			06		06
ELXLDLO804 X	Department Level Optional Courses IV Lab.		02			01		01
	TOTAL	15	18		15	9		24

B.E. (Electronics Engineering) – Semester VI
--

Examination Scheme – Semester VIII										
				Theory						
		Interna	l Assessme	ent (IA)	End	Exam	Term	Oral		
Course Code	Course Name	Test I	Test II	AVG.	Sem	Durati	Work	/Prac	Total	
					Exam	on				
					Marks	(Hours				
)				
ELX801	Internet of Things	20	20	20	80	03			100	
ELX 802	Analog and Mixed VLSI Design	20	20	20	80	03			100	
	Department Level Optional course	20	20	20	0.0	0.2			100	
ELXDLO804X	IV	20	20	20	80	03			100	
IL0802X	Institute Level Optional course II	20	20	20	80	03			100	
ELXL801	Internet of Things Lab.						25	25	50	
	3							-		
	Analog and Mixed VLSI Design									
ELXL802	Lab						25	25	50	
	Bub.									
ELXL803	Project-II						100	50	150	
LEALOUS							100	50	150	
ELXLDLO804	Department Level Optional									
x	Courses IV Lab						25	25	50	
	Courses I Plus.									
	Total	80	80	80	320	15	150	150	700	
		20		20		-0				
		1			1			1	1	

Course Code	Department Level Optional Course III	Course Code	Institute Level Optional Course I
ELXDLO7031	Neural Network and Fuzzy Logic	ILO7011	Product Lifecycle Management
ELXDL 07032	Advance Networking Technologies	IL 07012	Reliability Engineering
LLADLO/052	Advance Networking Teenhologies	1107012	Rendonity Engineering
EL VEL OFAAA		II. 07010	
ELXDLO/033	Robotics	ILO/013	Management Information System
ELXDLO7034	Integrated Circuit Technology	ILO7014	Design of Experiments
		IL 07015	Operation Research
			operation research
		ILO/016	Cyber Security and Laws
		ILO7017	Disaster Management and Mitigation Measures
		ILO7018	Energy Audit and Management
		120,010	
		1	

Course Code	Department Level Elective Course IV	Course Code	Institute Level Elective Course II [#]
ELXDLO8041	Advanced Power Electronics	ILO8021	Project Management
ELXDLO8042	MEMS Technology	ILO8022	Finance Management
ELXDLO8043	Virtual Instrumentation	ILO8023	Entrepreneurship Development and Management
ELXDLO8044	Digital Image Processing	ILO8024	Human Resource Management
		ILO8025	Professional Ethics and CSR
		ILO8026	Research Methodology
		ILO8027	IPR and Patenting
		ILO8028	Digital Business Management
		ILO8029	Environmental Management

Course Code	(Course	e Name Teaching scheme Credit assign						ned					
FLV	Mias		allana	and	Theory	Pra	ct.	Tut.	T	heory	Pract.	Tu	t. '	Fotal
ELX 501	A	Applica	tions	anu	04					04			,	04
								Exam	ina	tion Sc	heme			
						Theor	у							
Course	Cou	Course Name			Interna	ıl		Dur	a-	Term			Pract.	
Code				A	ssessme	ent	End	tion (hrs	\mathbf{v}	work	Pract.	Oral	/ Oral	Total
				Test 1	Test 2	Avg.	sem		,					
ELX 501	Micro &Ap	ocontro plicatio	ollers	20	20	20	80	03				-		100
Cour	se Coo	Code Course Name								Cre	dits			
EL	X 501		Micro	oconti	ollers a	nd App	olicati	ons					0	4
Course	Course ObjectivesTo study 8-bit microcontroller architecture for system design along with exposure to advanced 32-bit architecture.										posure			
Course Outcomes1. Explain 8051 microcontroller architecture.2. Develop assembly language programmes for 8051 microcontrol3. Design and implement 8051 based systems.4. Explain advanced features of Cortex-M3 architecture.								ntroller.						
Module							Cont	ents						Time
		8051	Micro	contr	oller Ar	chitect	ure							
	1.1	Introd	duction to microcontroller.											
1.	1.2	Overv	view of	f MCS	51 fami	ly.								04
	1.3	8051	archite	ectural	features	5.								
	1.4	Memo	ory org	ganisa	tion.					•				
	2.1	8051	Micro	contr	oller ass	sembly	langu	lage pi	rogi	rammir	ng			
2.	2.1	Instru		Sot: D	$\frac{501003}{2}$	1. for Ari	thmat	ia Loo	ricol	1 Branc	hing			10
	2.2	Asser	nhly I	$\frac{1}{2}$	$\frac{1}{9}$	rammin	a	ic, Log	gica	I, DIalic	.mng.			
	2.5	8051	Intern	al Ha	rdware	& Pro	gram	ming						
	3.1	I/O po	ort stru	cture	and pros	grammi	ng.							
3.	3.2	Interr	upts ar	nd pro	grammi	ng.	0.							10
	3.3	Timer	r/Coun	ter an	d progra	mming								-
	3.4	Serial	l port a	nd pro	ogrammi	ing.								
4		8051	Interf	acing	- & Appl	ication	S							10
4.	4.1	Displa	ay inte	rfacin	g: 7-seg	ment L	ED di	splay,	16x	2 gener	ic alphan	umeric		12

		LCD display.					
	4.2	Keyboard interfacing: 4x4 matrix keyboard.					
	4.3	Analog devices interfacing: 8-bit ADC/DAC, temperature sensor (LM35).					
	4.4	Motor interfacing: Relay, dc motor, stepper motor and servo motor.					
		ARM CORTEX-M3 Architecture					
	5.1 Comparison of CISC & RISC architectures, overview of ARM family.						
	ARM Cortex-M3 architecture, Programmer's model: Operation Modes and						
5.	5.2	States, registers, special registers, Application Program Status Register-	12				
		Integer status flags, Q status flag, GE bits.					
	5.3	Memory system: Features and memory map					
	5.4	Exceptions and Interrupts-Nested vectored interrupt controller					
	•	Total	48				

Text books:

1.M. A. Mazidi, J. C. Mazidi, Rolin D. McKinlay,"The 8051 Microcontroller and Embedded Systems Using Assembly and C", Pearson Education, 2ndEdition.

2.Joseph Yiu,"The Definitive guide to ARM CORTEX-M3 & CORTEX-M4 Processors", Elsevier, 2014, 3rd Edition.

Reference Books:

1.Kenneth J. Ayala,"The 8051 Microcontroller", Cengage Learning India Pvt. Ltd, 3rdEdition.

2. David Seal, "ARM Architecture", Reference Manual (2nd Edition), Publisher Addison Wesley.

3.Andrew Sloss, Dominic Symes, Chris Wright, "ARMSystem Developers Guide: Designing and Optimising System Software", Publisher Elsevier Inc. 2004.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total of 4 questions.
- 3. Question No.1 will be compulsory and based on the entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be set from all the modules.
- 5. Weightage of marks, commensurate with the time allocated to the respective module.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELX 502	Digital	4			4			04	
	Communication								

Subject	Subject Name				Examinatio	on Scheme					
Code		Theory Marks				Term	Practical	Oral	Total		
		Internal assessment End Sem.			Work						
		Test 1	Test	Ave. Of	Exam						
			2	Test 1 and							
				Test 2							
ELX 502	Digital	20	20	20	80	-			100		
	Communication										

Course Pre-requisite: ELX405 Principles of Communication Engineering

Course Objectives:

The objectives of this course are to:

- 1. Understand the typical subsystems of a digital communication system
- 2. Understand the significance of the trade-off between SNR and Bandwidth
- 3. Understand the effect of ISI in Baseband transmission of a digital signal.
- 4. Analyze various Digital modulation techniques
- 5. Identify the necessity of Source encoding and Channel encoding in Digital communication

Course Outcomes:

On successful completion of the course the students will be able to:

- 1. Comprehend the advantages of digital communication over analog communication and explain need for various subsystems in Digital communication systems
- 2. Realize the implications of Shannon-Hartley Capacity theorem while designing the efficient Source encoding technique.
- 3. Understand the impact of Inter Symbol Interference in Baseband transmission and methods to mitigate its effect
- 4. Analyze various Digital modulation methods and assess them based on parameters such as spectral efficiency, Power efficiency, Probability of error in detection
- 5. Explain the concept and need for designing efficient Forward Error Correcting codes.
- 6. Realize the areas of application of Digital communication.

Module	Unit	Topics	Hrs.
N0.	No.		
		Introduction to Digital communication system:	
		A typical Digital communication system Advantages and disadvantages of Digital	
	1.1	transmission significance of digitization: PCM encoding of voice and image signals	
		transmission, significance of digitization. I Civi cheoding of voice and image signals.	
		Concept of Probability Theory in Communication Systems: Random variables,	06
1.	1.2	Mean and Variance of Random variables and sum of random variables , Definition with	
	1.2	examples,	
		Useful PDFs & CDFs :Gaussian, Rayleigh pdf & Rician Distribution, Binomial	
	1.3	Distribution, Poisson Distribution, Central-Limit Theorem, Binary Synchronous	
	1.0	Channel(BSC), development of Optimal receiver	
		Information Theory and Source Coding	
		Information Theory and Source Coung	
2.	• •	Measure of Information, Entropy, Information rate, Channel capacity, Shannon –	06
	2.1	Hartley Capacity Theorem and its Implications.	
	2.2	Shannon-Fano encoding, Huffman encoding, Code Efficiency & Redundancy.	
		Pulse Shaping for Optimum Transmission:	
3.		Line codes and their desirable properties PSD of digital data	
	3.1	Diffe codes and their desirable properties, 15D of digital data	
		Baseband PAM transmission: Concept of Inter symbol interference(ISI), Raised Cosine	08
	3.2	filter, Nyquist Bandwidth. Concept of equalizer to overcome ISI	
		Correlative adding: Due hinery encoding and modified due hinery encoding	-
	3.3	Correlative coding. Duo-binary encoding and modified duo-binary encoding	
		Digital Modulation Techniques	
2.		Concept of Binary and M-ary transmission, Coherent and Non-Coherent reception,	
	4.1	Power spectral density of Pass-band signal, Signal space Representation and Euclidian	
		distance	
4.0		Pass Band Amplitude modulation & Demodulation: BASK, M-ary PAM, Digital	
3.		Phase Modulation & Demodulation BPSK OOPSK OPSK M-ary PSK OAM	14
	4.2	Digital Frequency Modulation & Demodulation BESK MSK Mary FSK	17
		Comparison of all techniques based on Spectral efficiency, Power efficiency,	
	4.3	Probability of error in detection	
		Optimal Reception of Digital Data: A baseband signal receiver and its Probability of	
	4.4	error, The Optimum receiver, Matched filter, & its properties.	
		Ennon Control coder	
5.0		Error Control codes:	10
0.0	5.1	Need for channel encoding, Concept of Error detection and correction, Forward Error	10
		· · ·	

		correction	
	5.2	Linear block codes : Hamming Distance, Hamming Weight, Systematic codes ,Syndrome Testing	
	5.3	Cyclic codes ; Generator polynomial for Cyclic codes, Systematic cyclic codes, Feedback shift register for Polynomial division	
	5.4	Convolution codes : Convolution encoder, Impulse response of encoder, State diagram, trellis diagram Representations	
		Applications of Digital communication	
	6.1	Satellite communication system : Satellite communication System model, Transponder ,Satellite Orbits : LEO, MEO, GEO , Link analysis	0.5
6.0	6.2	Optical Communication system : Advantages of Optical communication ,Signal transmission in Optical fibres, Optical sources and Optical Detectors, Optical Digital Communication system.	06
		Total	48

Recommended Text Books:

- 1. Simon Haykin, "Communication System", John Wiley And Sons, 4th Ed
- 2. Taub Schilling & Saha, "Principles Of Communication Systems", Tata Mc-Graw Hill, Third Ed
- 3. B P Lathi & Zhi Ding, "Modern Digital and Analog communication systems" -4E, Oxford University Press, Indian Ed.
- 4. R N Mutagi, "Digital Communication", Oxford University Press, 2nd Ed.

Reference Books:

- 1. Bernad Sklar,- "Digital communication", Pearson Education, 2nd Ed.
- 2. Simon Havkin, "Digital communication", John wiley and sons
- PROAKIS & SALEHI, "Communication system Engineering", Pearson Education.
 Anil K.Maini & Varsha Agarwal, "Satellite communications", Wiley publication.
- 5. Amitabha Bhattacharya, "Digital Communication", Tata Mcgraw Hill

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4: Remaining question will be selected from all the modules.

Subject	Subject Name	Examination Scheme								
Code			Т	heory Marks		Term	Practical	Oral	Total	
		Inte	rnal as	ssessment	End Sem.	Work				
		Test 1	Test	Ave. Of	Exam					
			2	Test 1 and						
				Test 2						
ELX503	Electromagnetic	20	20	20	80				100	
	Engineering									
Subject	Subject Name				Examination	amination Scheme				
Code			Т	heory Marks		Term	Practical	Oral	Total	
		Inte	rnal as	ssessment	End Sem.	Work				
		Test 1	Test	Ave. Of	Exam					
			2	Test 1 and						
				Test 2						
ELX503	Electromagnetic	20	20	20	80				100	
	Engineering									

Course Objectives:

- 1. To study correlation between electrostatics, steady magnetic field and time varying fields using Maxwell's equations for different media.
- 2. To calculate energy transported by means of electromagnetic waves from one point to another and to study polarization of waves.
- 3. To solve electromagnetic problems using different numerical methods.
- 4. To extend the students' understanding about the propagation of the waves of different types.
- 5. To understand the radiation concepts.

Course Outcomes:

After successful completion of the course, students will be able to:

- 1. Analyze the behaviour of electromagnetic waves in different media.
- 2. Evaluate various parameters of transmission lines and radiating systems.
- 3. Apply computational techniques to analyze electromagnetic field distribution.
- 4. Understand different mechanisms of radio wave propagation.

Module No.	Unit No.	Topics	Hrs.
		Basic Laws of Electromagnetic and Maxwell's Equations	
1.0	1.1	Coulomb's law, Gauss's law, Bio-Savart's law, Ampere's law, Poisson's and Laplace equations	10
1.0	1.2	Maxwell's Equations: Integral and differential form for static and time varying fields and its interpretations	
	1.3	Boundary conditions for Static electric and magnetic fields	
		Electromagnetic Waves	
	2.1	Wave Equation and its solution in partially conducting media(lossy dielectric), perfect dielectrics, free space and good conductors, Skin Effect and concept of Skin depth	
2.0	2.2	Polarization of wave: Linear, Circular and Elliptical	10
2.0	2.3	Electromagnetic Power: Poynting Vector and Power Flow in free space, dielectric and conducting media	12
-	2.4	Propagation in different media: Behavior of waves for normal and oblique incidence in dielectrics and conducting media, propagation in dispersive media	

		Computational Electromagnetics	
3.0	2.1	Finite Difference Method (FDM): Neumann type and mixed boundary conditions,	
	3.1	Iterative solution of finite difference equations, solutions using band matrix method	
		Finite Element Method (FEM): triangular mesh configuration, finite element	06
	3.2	discretization, element governing equations, assembling all equations and solving	••
		resulting equations	
	3.3	Method of Moment (MOM): Field calculations of conducting wire	
		Fundamentals of Radiating Systems	
	4.1	Concept of retarded potentials, Lorentz Condition	
	4.0	Radiation from an alternating current element, half-wave dipole and quarter-wave	
4.0	4.2	monopole	06
	4.3	Antenna Parameters: Radiation Patterns, beam-width, Radiation intensity, directivity,	
		power gain, band-width, radiation resistance and efficiency, effective length and	
		effective area	
		Radio wave propagation	
	5.1	Types of wave propagation: Ground, space, and surface wave propagation	
	5.2	Space wave propagation: Effect of imperfection of earth, curvature of earth, effect of	
5.0	5.2	interference zone, Line of sight propagation, troposphere propagation and fading	06
5.0	5.3	Sky wave propagation: Reflection and refraction of waves, structure of Ionosphere	00
		Measures of ionosphere propagation: Critical frequency Angle of incidence	
	5.4	Maximum usable frequency Skin distance Virtual height	
		Transmission Lines	
6.0	6.1	I ransmission Line parameters and equivalent circuit	00
6.0		I ransmission line equation and solution	08
	6.2 Secondary Parameters: Propagation constant, characteristic impedance, ref		
		transmission coefficient, Input Impedance, SWR, introduction to Smith chart	- 10
		Total	48

Recommended Books:

- 1. W.H. Hayt, and J.A. Buck, "Engineering Electromagnetics", McGraw Hill Publications, 7th Edition, 2006
- 2. R.K. Shevgaonkar, "Electromagnetic Waves", TATA McGraw Hill Companies, 3rd Edition, 2009
- 3. Edward C. Jordan and Keth G. Balmin, "*Electromagnetic Waves and Radiating Systems*", Pearson Publications, 2nd Edition, 2006
- 4. Matthew N.D. Sadiku, "Principles of Electromagnetics", Oxford International Student 4th Edition, 2007
- 5. J.D. Kraus, R.J. Marhefka, and A.S. Khan, "Antennas & Wave Propagation", McGraw Hill Publications, 4th Edition, 2011

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4: Remaining question will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme			Credits Assigned					
		Theory	Practi	ical T	torial	Theory	TW/Pr	act T	utorial	Total
ELX504	Design with Linear Integrated Circuits	04				04				04
			Examination Scheme							
		Theory Marks								
		Inte	rnal asse	rnal assessment						
Subject Code	Subject Name	Test 1	Test 2	Avg. Test and Test	f Er	nd Sem. Exam	Term Work	Prac.	Oral	Total
ELX504	Design with Linear Integrated Circuits	20	20	20		80				100

Course Pre-requisite:

• Electronic Devices and Circuits I and II

Course Objectives:

- 1. To teach fundamental principles of standard linear integrated circuits.
- 2. To develop a overall approach for students from selection of integrated circuit, study its specification, the functionality, design and practical applications

Course Outcomes:

After successful completion of the course student will be able to

- 1. demonstrate an understanding of fundamentals of integrated circuits.
- 2. analyze the various applications and circuits based on particular linear integrated circuit.
- 3. select and use an appropriate integrated circuit to build a given application.
- 4. design an application with the use of integrated circuit

Module	Unit	Topics	Hrs.								
No.	No.										
1	Fundan	nentals of Operational Amplifier	04								
	1.1	Ideal Op Amp, characteristics of op-amp, op-amp parameters, high frequency									
		ects on op-amp gain and phase, slew rate limitation, practical determination of									
		np parameters, single supply versus dual supply op-amp									
	1.2	Operational amplifier open loop and closed loop configurations, Inverting and									
		non-inverting amplifier									
2	Applica	ns of Operational Amplifier									
	2.1	Amplifiers: Adder, subtractor, integrator, differentiator, current amplifier,									
		difference amplifier, instrumentation amplifier and application of Op-Amp in									
		Transducer Measurement System with detail design Procedure. Single supply dc									
		biasing techniques for inverting, non inverting and differential amplifiers.									
	2.2	Converters: Current to voltage converters, voltage to current converters,									
		generalized impedance converter									
	2.3	Active Filters: First order filters, Second order active finite and infinite gain low									
		pass, high pass, band pass and band reject filters.									
	2.4	Sine Wave Oscillators: RC phase shift oscillator, Wien bridge oscillator,									

		Quadrature oscillator.									
3	Non-Li	Non-Linear Applications of Operational Amplifier									
	3.1	Comparators: Inverting comparator, non-inverting comparator, zero crossing									
		detector, window detector and level detector.									
	3.2	Schmitt Triggers: Inverting Schmitt trigger, non-inverting Schmitt trigger with									
		adjustable threshold levels.									
	3.3	Waveform Generators: Square wave generator and triangular wave generator									
		with duty cycle modulation.									
	3.4	Precision Rectifiers: Half wave and full wave precision rectifiers and their									
		applications.									
	3.5	Peak Detectors, Sample & Hold Circuits, voltage to frequency converter,									
		frequency to voltage converter, logarithmic converters and antilog converters									
4	Data C	onverters	06								
	4.1	Analog to Digital: Performance parameters of ADC, Single Ramp ADC, ADC									
		using DAC, Dual Slope ADC, Successive Approximation ADC, Flash ADC,									
		ADC0808/0809 and its interfacing									
	4.2	Digital to Analog: Performance parameters of DAC, Binary weighted register									
		DAC, R/2R ladder DAC, Inverted R/2R ladder DAC, DAC0808 and its interfacing									
5	Special	Purpose Integrated Circuits	08								
	5.1	Functional block diagram, working, design and applications of Timer 555.									
	5.2	Functional block diagram, working and applications of VCO 566, PLL 565,									
		multiplier 534, waveform generator XR 2206, power amplifier LM380.									
6	Voltage	Regulators	08								
	6.1	Functional block diagram, working and design of three terminal fixed (78XX,									
		79XX series) and three terminal adjustable (LM 317, LM 337) voltage regulators.									
	6.2	Functional block diagram, working and design of general purpose 723 (LVLC,									
		LVHC, HVLC and HVHC) with current limit and current fold-back protection,									
		Switching regulator topologies, Functional block diagram and working of LT1070									
		monolithic switching regulator.									
		Total	48								

Recommended Books:

- 1. Sergio Franco, "Design with operational amplifiers and analog integrated circuits", Tata McGraw Hill, 3rd Edition.
- 2. William D. Stanley, "Operational Amplifiers with Linear Integrated Circuits", Pearson, 4th Edition
- 3. D. Roy Choudhury and S. B. Jain, "Linear Integrated Circuits", New Age International Publishers, 4th Edition.
- 4. David A. Bell, "Operation Amplifiers and Linear Integrated Circuits", Oxford University Press, Indian Edition.
- 5. Ramakant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", Pearson Prentice Hall, 4th Edition.
- 6. R. P. Jain, "Modern Digital Electronics," Tata McGraw Hill, 3rd Edition.
- 7. Ron Mancini, "Op Amps for Everyone", Newnes, 2nd Edition.
- 8. J. Millman and A. Grabel, "*Microelectronics*", Tata McGraw Hill, 2nd Edition.
- 9. R. F. Coughlin and F. F. Driscoll, "Operation Amplifiers and Linear Integrated Circuits", Prentice Hall, 6th Edition.
- J. G. Graeme, G. E. Tobey and L. P. Huelsman, "Operational Amplifiers- Design & Applications", NewYork: McGraw-Hill, Burr-Brown Research Corporation. Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final internal assessment.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory preferably objective type and based on entire syllabus.
- 4. Remaining questions (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Nam	e	Teacl	ning sche	me	Credit assigned				
FIV	Database		heory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
DLO5011	Managemen System	t	04			04			04	
		Examination Scheme								
			Theory Marks							
Subject	Subject	Int	Internal assessment		t		Torm			
Code	Name	Test 1	Test 2	Avg. Test 1 : Test	of 1 and 2	End Sem. Exam	Work	Practical	Oral	Total
ELX DLO5011	Database Management System	20	20	20		80				100

Prerequisite:

Basic knowledge of Data structure.

Course objectives:

- 1. Learn and practice data modelling using the entity-relationship and developing database designs.
- 2. Understand the use of Structured Query Language (SQL) and learn SQL syntax.
- 3. Apply normalization techniques to normalize the database
- 4. Understand the needs of database processing and learn techniques for controlling the consequences of concurrent data access.

Course outcomes: On successful completion of course learner will be able to:

- 1. Understand the fundamentals of a database systems
- 2. Design and draw ER and EER diagram for the real life problem.
- 3. Convert conceptual model to relational model and formulate relational algebra queries.
- 4. Design and querying database using SQL.
- 5. Analyze and apply concepts of normalization to relational database design.
- 6. Understand the concept of transaction, concurrency and recovery.

Module No.	Unit No.	Topics	Hrs.
		Introduction Database Concepts:	4
1.0		Introduction, Characteristics of databases	
1.0	1.1	File system v/s Database system	4
		Users of Database system	

		Data Independence	
	1.2	DBMS system architecture	
		Database Administrator	
		Entity-Relationship Data Model	
2.0	2.1	The Entity-Relationship (ER) Model: Entity types : Weak and strong entity sets, Entity sets, Types of Attributes, Keys, Relationship constraints : Cardinality and Participation, Extended Entity-Relationship (EER) Model : Generalization, Specialization and Aggregation	8
		Relational Model and relational Algebra	
3.0	3.1	Introduction to the Relational Model, relational schema and concept of keys. Mapping the ER and EER Model to the Relational Model	8
	3.2	Relational Algebra – unary and set operations, Relational Algebra Queries.	-
		Structured Query Language (SQL)	
		Overview of SQL	-
4.0	4.1	Data Definition Commands, Data Manipulation commands, Data Control commands, Transaction Control Commands.	12
	4.2	Set and string operations, aggregate function - group by, having.Views in SQL, joins, Nested and complex queries, Integrity constraints :- key constraints, Domain Constraints, Referential integrity, check constraints	-
	4.3	Triggers	-
5.0		Relational–Database Design	
		Pitfalls in Relational-Database designs, Concept of normalization	8
	5.1 Function Dependencies, First Normal Form, 2nd, 3rd, BCNF, mult dependencies, 4NF.		
6.0		Transactions Management and Concurrency	
		Transaction concept, Transaction states, ACID properties	
	6.1	Concurrent Executions, Serializability – Conflict and View,	12
		Concurrency Control: Lock-based, Timestamp-based protocols.	

6.2	Recovery System: Failure Classification, Log based recovery, ARIES, Checkpoint, Shadow paging. Deadlock handling	
	Total	52

Text Books:

- 1. G. K. Gupta "Database Management Systems", McGraw Hill.
- 2. Korth, Slberchatz, Sudarshan, "Database System Concepts", 6th Edition, McGraw Hill
- 3. Elmasri and Navathe, "Fundamentals of Database Systems", 5th Edition, Pearson education.
- 4. Peter Rob and Carlos Coronel, "Database Systems Design, Implementation and Management", Thomson Learning, 5th Edition.

Reference Books:

- 1. Dr. P.S. Deshpande, SQL and PL/SQL for Oracle 10g, Black Book, Dreamtech Press.
- 2. Gillenson, Paulraj Ponniah, "Introduction to Database Management", Wiley Publication.
- 3. Sharaman Shah, "Oracle for Professional", SPD.
- 4. Raghu Ramkrishnan and Johannes Gehrke, "Database Management Systems", TMH.

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Nam	ie	Teach		Credit assigned								
ELX DLO5012	Digital Control Systems		Theory Pract. Tut.		. The	ory	Pract.		Tut.	Total			
			04			04	4				04		
	Course Name	Examination Scheme											
Course				Theory									
Code		Inter	nal Asses	sment	End	Dura	Teri	m , Pi	·act.	Oral	Total		
		Test 1	Test 2	Avg	sem	tion (hrs)	wor	K					
ELX DLO5012	Digital Control Systems	20	20	20	80	03					100		

Course Pre-requisite: ELX301: Mathematics III, ELX401: Mathematics IV, ELX406: Linear Control Systems

Course Objectives:

- 1. To introduce the discrete-time systems theory.
- 2. To introduce Z-transform methods in digital systems design.
- 3. To introduce modern state-space methods in digital systems design.

Course Outcomes : At the end of the course, the learner will have the ability to

- 1. Justify the need for digital control systems as well as understand sampling and reconstruction of analog signals.
- 2. Model the digital systems using various discretization methods and understand the concept of Pulse Transfer Function.
- 3. Analyze the digital control systems using classical techniques.
- 4. Analyze the digital control systems using modern state-space techniques.
- 5. Understand the concept of controllability and design the state feedback controllers.
- 6. Understand the concept of observability and design the state observers.

Module		Contents	Time						
		Basics of discrete-time signals and discretization							
		Why digital control system? Advantages and limitations, comparison of							
	1.1	continuous and discrete data control, block diagram of digital control							
1.		system.							
1.	12	Impulse sampling. Nyquist-Shannon sampling theorem, reconstruction of							
	1.2	discrete-time signals (ideal filter)							
	1.3	Realizable reconstruction methods (ZOH and FOH). Transfer function of							
		ZOH and FOH.							
		Modelling of Digital Control System							
	2.1	Discretization Approaches: Impulse invariance, step invariance, bilinear							
2.	2.1	transformation, finite difference approximation of derivative.	10						
	2.2	Z-transform revision and its equivalence with starred Laplace transform.							
	2.3	The pulse transfer function (PTF) and general procedures to obtain PTF.							
3		Stability Analysis and Controller Design via Conventional Methods	12						
5.	3.1	Mapping between s-plane and z-plane, stability analysis of digital systems	12						

	1		
		in z-plane. Effects of sampling frequency on stability.	
	2.2	Transient and steady-state analysis of time response, digital controller	
	5.2	design using root-locus method.	
	3.3	Digital controller design using bode plots, digital PID controller.	
		Realization of digital controllers: direct programming, standard	
	3.4	programming, series programming, parallel programming, ladder	
		programming,	
		State Space Analysis of Discrete-time Systems	
		Revision of continuous-time state-space models. Solution of continuous-	
	4.1	time state-space equation. Discretization of continuous-time state-space	
		solution and discrete-time state-space model.	00
4.	4.2	Various canonical state-space forms for discrete-time systems and	08
	4.2	transformations between state-space representations.	
	1 2	Solution of discrete-time state-space equation. Computation of state-	
	4.5	transition matrix (z-transforms, Caley-Hamilton theorem, Diagonalization).	
		Controllability and State Feedback Controller Design	
	5 1	Concept of controllability. Distinction between reachability and	
5.	5.1	controllability in discrete-time systems.	06
	5.2	Digital controller design using pole-placement methods. (Similarity	
	5.2	transforms, Ackerman's formula).	
		Observability and Observer Design	
6.	6.1	Concept of observability. Distinction between detectability and	
	0.1	observability in discrete-time systems.	06
	60	Observer design (prediction observer and current observer). Output	
	0.2	feedback controller design. Introduction to separation principle.	
	6.3	Dead-beat controller design, dead-beat observer design.	
Total			48

Text books:

- 1. **Ogata Katsuhiko**, "Discrete-time Control Systems", Pearson, 2nd Edition, 1995.
- 2. **M. Gopal**, "Digital Control and State Variable Methods", Tata McGrow-Hill, 3rd Edition, 2003. **Reference Books:**

1. Gene Franklin, J. David Powell, Michael Workman, "Digital Control of Dynamic Systems", Addison Wesley, 3rd Edition, 1998.

- 2. B. C. Kuo, "Digital Control Systems", Oxford University press, 2nd edition, 2007.
- 3. Chi-Tsong Chen, "Linear System Theory and Design", Oxford University Press, USA, 1998.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus.

4. Remaining questions will be selected from all the modules.

Course Code	Course Name		Teaching scheme Credit assigned										
FIV	ASIC	The	eory F	Pract.	Tut.	Theo	ory	Pract.		Tut.			Total
DLO5013	Verification	0	4			04	04						04
	Course Name	Examination Scheme											
		Theory											
Course Code		Internal Assessment			End	Dura tion	Term	erm	Pract.	act.	Oral		Total
Couc		Test 1	Test 2	Avg	sem	(hrs)	wo	ргк					
ELX DLO5013	ASIC Verification	20	20	20	80	03			-	-		•	100

Course Pre-requisite: EXC303: Digital Circuits and Design, ELXL304: Object Oriented Programming Methodology Laboratory, ELX 404: Digital System Design

Course Objectives

1. To introduce the learner System Verilog concepts for verification.

2. To introduce the learner advanced verification features such as practical use of classes, randomization, checking and coverage.

3. To highlight the significance of verification in VLSI industry.

Course Outcomes

At the end of the course, the learner will have the ability to

- 1. Demonstrate an understanding of programmable devices and verification methodologies.
- 2. Exploit new constructs in SV and advanced ASIC verification techniques.
- 3. Create test benches for digital designs in system verilog.
- 4. Carry out verification of design successfully using simulators

Module		Contents	Time			
		Programmable Devices and Verilog				
1.	1.1	Programmable Devices: Architecture of FPGA, CPLD with an example of Virtex- 7 and Spartan -6 family devices	08			
	1.2	Verilog HDL: Data types, expressions, assignments, behavioural, gate and switch level modelling, tasks and functions				
		Verification Basics and Data Types				
		Verification Basics: Technology challenges, Verification methodology options,				
	2.1	Test bench creation, test bench migration, Verification languages, Verification IP				
2.		reuse, Verification approaches, Layered Testbench, Verification plans	12			
	2.2	Data Types: Built in, Fixed size array, dynamic array, queues, associative array, linked list, array methods, choosing a storage type, creating new types with typedef, creating user defined structures, type conversion, enumerated types, constants,				
		strings, expression width				
		Procedural statements, test bench and Basic OOP	12			
3.	3.1	Procedural Statements and Routines: Procedural statements, tasks, functions and void functions, task and function overview, routine arguments, returning from a	12			

		routine, local data storage, time values Connecting the Test bench and Design: Separating the test bench and design, the interface construct, stimulus timing, interface driving and sampling, connecting it all together top level scope program-module interactions	
	3.2	Basic OOP: Class, Creating new objects, Object deal location, using objects, variables, class methods, defining methods outside class, scoping rules, using one class inside another, understanding dynamic objects, copying objects, public vs. local, building a test bench	
		Randomization and IPC	
4.	4.1	Randomization: Randomization in system Verilog, constraint details, solution probabilities, controlling multiple constraint blocks, valid constraints, In-line constraints, The pre-randomize and post-randomize functions, Random number functions, Constraints tips and techniques	10
	4.2	Threads and Inter process Communication: working with threads, disabling threads, inter process communication, events, semaphores, mailboxes, building a test bench with threads and IPC	
		Assertions and Functional Coverage	
5	5.1	System Verilog Assertions: Assertions in verification methodology, Understanding sequences and properties	06
5.	5.2	Functional Coverage: Coverage types, strategies, examples, anatomy of a cover group, triggering a cover group, data sampling, cross coverage, generic cover groups, coverage options	
		Total	48

Text books:

- 1. **Chris Spear**, "System Verilog for Verification: A guide to learning the testbench language features", Springer, 3rd Edition.
- 2. Janick Bergeron, "Writing Testbenches Using System Verilog", Springer 2006.
- 3. Stuart Sutherland, Simon Davidmann, and Peter Flake, "System Verilog for Design:

A guide to using system verilog for hardware design and modeling", Springer, 2nd Edition.

Reference Books:

- 1. Ben Cohen, Srinivasan Venkataramanan, Ajeetha Kumari and Lisa Piper, "SystemVerilog Assertions Handbook", VhdlCohen Publishing, 3rd edition
- 2. S Prakash Rashinkar, Peter Paterson and Leena Singh, "System on Chip Verification Methodologies and Techniques", Kluwer Academic, 1st Edition.
- 3. System Verilog Language Reference manual
- 4. Samir Palnitkar, "Verilog HDL: A guide to Digital Design and Synthesis" second edition, Pearson IEEE 1364-2001 compliant.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining questions will be selected from all the modules.

Course Code	Course Name		Teaching scheme				Credit assigned						
ELX	ELX Biomedical DLO5014 Instrumentation		Theory Pra		ict.	Tut.	Theory	Pract	. Τι	ıt.	Total		
DLO5014			04 02		2		04		-	-	04		
		Examination Scheme											
		Theory											
Course	Course Name	Internal				Dura	Term			Pract			
Code	Course Maine	Assessment			End	End tion	work	Pract.	Oral	/ Oral	Total		
		Test 1	Test 2	Avg	sem	(hrs)	WOLK						
ELX DL O5014	Biomedical	20	20	20	80	03					100		
DL03014	insti umentation					1	1						

Course Objectives

1. Introduce the learners to basic physiology and function of various systems in human body.

2. Introduce the learners to Diagnostic, Pathology, Life supportive equipment and latest imaging modalities in hospitals and healthcare industry.

3. Motivate learners to take up live projects with medical applications which will benefit the society at large.

Course Outcomes

- · Have basic knowledge about the basic structure and functions of parts of cell, generation of action potential and various bioelectric potentials.
- Builds foundation of knowledge of physiological processes such as respiratory, cardiovascular, nervous and muscular systems in human body.
- Compare various methods used for measurement of various cardiac parameters such as blood pressure, blood flow, blood volume, cardiac output and heart sounds.
- Know the basic principle of analytical instruments and will have an over view of pathology laboratory equipments such as colorimeter, spectrophotometer, blood cell counter and auto-analyser.
- Have knowledge of life support equipments such as pacemaker, defibrillator, Heart lung machine, Haemodialysis machine and baby incubator along with safety limits of micro and macro shocks and understand the importance of electrical safety in hospital equipments.

Module		Contents	Time
		Bio-Potential measurements	
	1 1	Human Cell	0.6
1.	1.1	Structure of Cell, Origin of Bio-potentials, Generation of Action Potentials,.	06
	1.2	Electrodes	
	1.2	Electrode-Electrolyte interface and types of bio-potential electrodes	
		Physiological Systems and Related Measurement	
		Cardiovascular system	12
2.	2.1	Structure of Heart, Electrical and Mechanical activity of Heart, ECG	
	2.1	measurements and Cardiac arrhythmias, Design of ECG amplifier, Heart	
		sounds measurement.	
Univers	ity of I	Mumbai, B. E. (Electronics Engineering), Rev 2016 2'	7

Have knowledge of imaging modalities such as X-ray, CT, MRI and Ultrasound.

	2.2	Nervous system CNS and PNS: Nerve cell, Neuronal Communication, Generation of EEG and its measurement. Normal and abnormal EEG, Evoked potential. Electroencephalography: EEG measurements, Electrode-placement and Block diagram of EEG machine	
	2.3	Respiratory systemPhysiology of respiration and measurements of respiratory related parameterslike respiration rate, Lung Volumes and capacities	
	2.4	Muscular system Typical Muscle fibre Action potential Electromyography: EMG measurement and block diagram.	
		Cardio-Vascular measurements	
	3.1	Blood Pressure- Direct and Indirect types.	
3	3.2	Blood Flow- Electromagnetic and Ultrasonic type.	08
5.	3.3	Blood Volume- Plethysmography: Impedance, Capacitive and Photoelectric type	
	3.4	Cardiac Output- Fick's method, Dye-dilution and Thermo-dilution type.	
		Analytical equipment	
	4.1	Beer Lambert's law, Principle of photometry.	
1	4.2	Photo-colorimeter : Optical diagram	05
4.	4.3	Spectrophotometer : Optical diagram	
	4.5	Blood cell counter : Coulter's counter	
	4.6	Auto-analyser : Schematic diagram	
		Life-saving and Support equipment	
	5.1	Pacemaker- Types of Pacemaker, Modes of pacing and its applications.	
	5.2	Defibrillator-Types of fibrillations, Modes of operation, DC Defibrillators and their applications.	
5.	5.3	Heart-Lung machine: System-flow diagram and its Application during surgery.	09
	5.4	Haemodialysis machine: Principle of operation and System-flow diagram.	
	5.5	Baby Incubator and its applications	
		Patient safety	
	5.6	Physiological effects of electrical current, Shock Hazards from electrical	
		equipments and methods of accident prevention	
		Imaging techniques	
	6.1	X-Ray- Generation, X-ray tube and its control, X-ray machine and its	
6.		applications	08
	6.2	CT Scan- CT Number, Block Diagram, scanning system and applications.	
	6.3	MRI- Concepts and image generation, block diagram and its applications	
	6.4	Ultrasound Imaging- Modes of scanning and their applications	
		Total	48

Text books:

- 1. Handbook of Biomedical Instrumentation: R S. Khandpur. (PH Pub)
- 2. Medical Instrumentation, Application and Design: J G. Webster. (John Wiley)
- 3. Introduction to Biomedical Equipment Technology: Carr –Brown. (PH Pub)

Reference Books:

- 1. Encyclopedia of Medical Devices and Instrumentation: J G. Webster. Vol I- IV (PH Pub)
- 2. Various Instruments Manuals.
- 3. Various internet resources.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks. The Learners need to solve total 4 questions. Question No.1 will be compulsory and based on entire syllabus. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Name		Teac	hing sc	heme		Credit assigned						
ELXL 501	Microcontrollers	Theory Pract		et.	Tut.	Theory	Pract.	Τι	ıt.	Total			
	& Applications Laboratory	02					01	_	-	01			
	Course Name	Examination Scheme											
		Theory											
Course Code		Internal Assessment			End	Dura tion	Term	Pract.	Oral	Pract.	Total		
		Test 1	Test 2	Avg.	sem	(hrs)	WUIK						
ELXL501	Microcontrollers &Applications Laboratory						25			25	50		

Assessment:

Term Work:

At least SIX experiments based on the entire syllabus of ELX 501 (Microcontrollers and Applications) should be set to have well predefined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. Term work must include a mini project in addition to the number of experiments. The course mini-project is to be undertaken in a group of two to three students.

The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work, mini project and minimum passing marks in term work. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed students well in advanced. Practical and Oral exam will be based on the entire syllabus.

Suggested experiments:

- Maximum three experiments in X 51 assembly programming involving arithmetic, logical, Boolean, code-conversion etc operations.
- Minimum three experiments on interfacing of X 51 based system with peripheral IC's (ADCs, DACs etc) peripheral actuators (relays, motors etc.) sensors (temperature, pressure etc.).

Suggested mini projects:

- Interfacing single LED/seven-segment display(SSD)/multiple-SSD with refreshing along-with some additional functional feature.
- Interfacing dot matrix LED for message display/ rolling message display.

- Interfacing IR emitter/receiver pair for time-period/speed calculations.
- Interfacing single key/4 key/4 X 4 matrix keyboard with some additional functional feature.
- Motors continuous, stepper, servo interfacing with speed(RPM) indication.
- Multi-function alarm clock using buzzer and LCD.
- Interfacing DAC and generating various waveforms.
- Ambient temperature indicator using LM 35 and 8-bit ADC 0808.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned						
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total			
ELXL 502	Digital	-	2		-	01		01			
	Communication										
	Laboratory										

Subject	Subject Name				Examinatio	on Scheme						
Code			Tl	neory Marks		Term	Practical	Oral	Total			
		Internal assessment			End Sem.	Work						
		Test 1	Test	Ave. Of	Exam							
			2	Test 1 and								
				Test 2								
ELXL 502	Digital	-	-	-	-	25		25	50			
	Communication											
	Laboratory											

Laboratory Experiments:

Lab session includes Seven experiments and a Case study(Power point Presentation) on any one of the suggested topics.

- 1. The experiments will be based on the syllabus contents.
- 2. Minimum Seven experiments need to be conducted, out of which at least THREE should be software-based

(Scilab, MATLAB, LabVIEW, etc).

3. Each student (in groups of 3/4) has to present a Case study (Power point Presentation) as a part of the laboratory work.

The topics for Presentation / Case-study may be chosen to be any relevant topic on emerging technology.

("Beyond the scope of the syllabus".) Power point presentation should contain minimum of 15 slides and students should submit a report, (PPT+REPORT carry minimum of 10 marks

The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed students well in advanced.

Suggested experiments based on Laboratory setups:

- 1. Line codes
- 2. Binary modulation techniques: BASK, BPSK, BFSK
- 3. M-ary modulation techniques: QPSK ,QAM
- 4. MSK

Suggested experiments based on software:

- 1. Simulation of PDF& CDF of Raleigh / Normal/ Binomial Distributions
- 2. Simulation of Eye pattern for PAM signal
- 3. Source encoding: Huffman coding for Binary symbols

- 4. Simulation of Shannon-Hartley equation to find the upper limit on the Channel Capacity
- 5. Channel Encoding: Linear Block code : code generation, Syndrome
- 6. Cyclic code-code generation, Syndrome
- 7. Channel encoding: Convolutional code-code generation from generator sequences
- 8. Simulation of BPSK/QPSK/BFSK Modulation
- 9. Simulation of Duo-binary encoder-decoder
- 10. Plot and compare BER curves for Binary/ M-ary modulation schemes
- 11. Simulation of error performance of a QPSK/BPSK/MSK Modulator

Suggested topics for presentation:

- 1. DTH
- 2. Digital Multiplexing
- 3. Satellite Launching vehicles: PSLV, GSLV
- 4. Digital TV
- 5. Digital Satellite system: VSAT
- 6. RFID

Any other related and advanced topics.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ELXL504	Design With	-	2		-	01		01
	Linear							
	Integrated							
	Circuits							
	Laboratory							

Course	Course		Examination Scheme											
Code	Name			Theory Mar	·ks	Term	Practical	Oral	Total					
		Int	ernal as	ssessment	End Sem.	Work	and Oral							
		Test	Test	Avg. of	Exam									
		1	2	Test 1 and										
				Test 2										
ELXL504	Design With					25	25		50					
	Linear													
	Integrated													
	Circuits													
	Laboratory													

Term Work:

At least Six experiments based on the entire syllabus of Course ELX504 (Design with Linear Integrated Circuits) should be set to have well predefined inference and conclusion. Few computation/simulation based experiments are encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme.

A mini project based on the following topic or additional real time applications are encouraged. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed students well in advanced. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus.

Suggested List of Experiments:

- 1. Experiment on op amp parameters
- 2. Experiment on design of application using op amp (Linear)
- 3. Experiment on implementation of op amp application e.g. oscillator
- 4. Experiment on non linear application (e.g. comparator) of op amp
- 5. Experiment on non linear application (e.g. peak detector) of op amp
- 6. Experiment on ADC interfacing
- 7. Experiment on DAC interfacing
- 8. Experiment on IC 555

- 9. Experiment on voltage regulator (Design)
- 10. Experiment on implementation of instrumentation system (e.g. data acquisition). The topic for the mini project in the course based on the syllabus of ELX505(Design with Linear Integrated Circuits)need to be application oriented.

Course Code	Course Name		Teaching scheme				Credit assigned					
	Database	The	ory P	ract.	Tut.	Theory	Pract	Pract. Tut. Tot			al	
ELXL DLO5011	Management Systems Laboratory	-	-	02			01	-			01	
	Course Name	Examination Scheme										
Course		Theory Internal Assessment			End	Term	Pract	Oral	Prac	act. Total	ntal	
Cout		Test 1	Test 2	Avg	sem	work	I I act.	Ulai	/ Or	al	<i>r</i> ta1	
ELXL DLO5011	Database Management Systems Laboratory					25		25		5	50	

At least **eight experiments** based on the entire syllabus of **ELXDLO5011 (Data Base Management System)** should be set to have well-defined inference and conclusion. The experiments should be student-centric, and attempt should be made to make experiments more meaningful, interesting and innovative. Experiment must be graded from time to time. Additionally, each student (in group of 2/3) must perform a Mini Project as a part of the laboratory and report of mini project should present in laboratory journal. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Oral exam will be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed students well in advanced.

Suggested List of Experiments

Expt. No	Title of the Experiments
1	To analyse the sampling and reconstruction of analog signal.
2	To study various discretization approaches (Impulse Invariance, Step Invariance, Bilinear Transformation)
3	Study of time domain transient and steady-state performance and performance specifications.
4	Digital controller design using Root-locus method.
5	Modelling of discrete-time systems in state-space and conversion to various canonical forms.
6	Discrete-time system simulation in Simulink.
7	Study digital PID controller and its implementation in MATLAB and Simulink.
8	Controllability and Observability of discrete-time systems.

9	Pole placement controller design for discrete-time systems.
10	Design of deadbeat controller and observer.

Course Code	Course Name		Teachin	ig schei	me	Credit assigned						
ELXL DLO5013	ASIC	The	Theory Pract.		Tut.	Theory	Pract	. T	ut.	Total		
	Verification			02			01	-	-	01		
	Course Name	Examination Scheme										
Course			The	ory								
Code		Intern	Internal Assessment			Term	Pract.	Oral	Pract.	Total		
		Test 1	Test 2	Avg	sem	work		Orar	/ Oral			
ELXL DLO5013	ASIC Verification					25		25		50		

At least **eight** experiments based on the entire syllabus of **ELXDLO5013** (**ASIC Verification**) should be set to have well-defined inference and conclusion. The experiments should be student-centric and attempt should be made to make experiments more meaningful, interesting and innovative. Experiment must be graded from time to time. Additionally, each student (in group of 2/3) has to perform a Mini Project as a part of the laboratory and report of mini project should present in laboratory journal. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Oral exam will be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed students well in advanced.

List of Experiments:

- 1. Implementation of 4:1 Multiplexer in Verilog with
 - a. Gate level Modeling
 - b. Structural/ Dataflow Modeling
 - c. Behavioral Modeling
- 2. Implementation of D flip flop (Asynchronous/ Synchronous/latch) using Verilog.
- 3. Experiment to practice creating dynamic arrays, associative arrays, and queues (Test a synchronous 8bit x64K (512kBit) RAM).
- 4. Write a test plan and test bench for ALU Design.
- 5. Experiment to practice Procedural Statements and Routines using tasks, functions and do-while loops.
- 6. Create Interfaces to connect the Test bench and Design.
- 7. Threads & IPC: Implement the following counters
 - i. UP counter
 - ii. DOWN counter
 - iii. Divide by 2 count As threads. Use Fork join, fork join_none, fork_joinany.
- 8. Threads & IPC create dynamic processes (threads) and get familiar with interprocess communication using events, semaphore and mailb
- 9. Functional Coverage write cover groups and get familiar with the coverage repor Verification of FIFO

Course Code	Course Name		Teachir	ıg schei	cheme Credit assigned							
ELXL DLO5013	Biomodical	The	ory P	ract.	Tut.	Theory	Theory Pract. Tut.		ut.	t. Total		
	Instrumentation		-	02			01	-	-	01		
	Course Name	Examination Scheme										
Course		Theory										
Code		Intern	Internal Assessment			Term	Pract	Oral	Pract.	Total		
Couc		Test	Test	Ανσ	sem	work	1 I act.	Ulai	/ Oral	I Utai		
		1	2	Avg								
ELXL	Biomedical					25		25		50		
DLO5013	Instrumentation					25		25		50		

At least **eight** experiments based on the entire syllabus of **ELXDLO5014** (Biomedical Instrumentation) should be set to have well-defined inference and conclusion. The experiments should be student-centric and attempt should be made to make experiments more meaningful, interesting and innovative. Experiment must be graded from time to time. Additionally, each student (in group of 2/3) has to perform a Mini Project as a part of the laboratory and report of mini project should present in laboratory journal. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Oral exam will be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed students well in advanced.

Expt. No.	Title of the Experiments
1	Study of X-ray Tubes
2	Design of active notch filter for line frequency
3	Design of general purpose amplifier for Bio potential measurement.
4	Design of Pacemaker using 555 timer.
5	Demonstration of Blood pressure measurement.
6	Demonstration of Electrocardiogram recording.
7	Demonstration of Electroencephalogram recording.
8	Demonstration of Electromyogram recording.
9	Demonstration of Photo-Colorimeter.
10	Demonstration of Spectrophotometer.

Suggested List of Experiments

11	Demonstration of Auto-analyser.
12	Demonstration of Blood Cell counter.
13	Demonstration of D C Defibrillator (proto type).
14	Demonstration of Baby Incubator.
15	Demonstration of X Ray machine.
16	Demonstration of CT scanner.
17	Demonstration of MRI machine.
18	Demonstration of Ultrasound machine.

Course Code	Course Name	Tea	ching sche	me	Credit assigned				
ELX 601	Embedded	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	Systems& Real Time Operating System	04			04			04	

	Course Name				Ex	amina	tion Sch	eme			
			Theory								
Course Code		Internal Assessment			Du						
		Test 1	Test 2	Avg	End sem	ra tio n (hr s)	Term work	Pract.	Oral	Pract. / Oral	Total
ELX 601	Embedded Systems& Real Time Operating System	20	20	20	80	03					100

Course Objectives

To study concepts involved in embedded hardware and software for systems realisation.

Course Outcomes At the end of the course, the learner will have the ability to

- 1. Identify and describe various characteristic features and applications of embedded systems.
- 2. Analyse and identify hardware for embedded systems implementation.
- 3. Analyse and identify various software issues involved in Embedded systems for real time requirements.
- 4. Analyse and explain the design life-cycle for embedded system implementation.

Module		Contents	Time						
		Introduction to Embedded Systems	04						
	1.1	Characteristics and Design metrics of Embedded system.							
1.	1.2	Real time systems:Need for Real-time systems, Hard-Soft Real-time systems.							
	1.3	Challenges in Embedded system Design: Power, Speed and Code density.							
		Embedded Hardware	12						
	2.1	Embedded cores, Types of memories, Sensors (Optical encoders, Resistive) and Actuators (Solenoid valves, Relay/switch, Opto-couplers)							
2	2.2	Power supply considerations in Embedded systems: Low power features- Idle & Power down mode, Sleep mode, Brown-out detection.							
	2.3	Communication Interfaces: Comparative study of serial communication nterfaces (RS-232, RS-485), I2C, CAN, USB (v2.0), Bluetooth, Zig-Bee. Selection criteria of above interfaces. Frame formats of above protocols are not expected)							
		Embedded Software	14						
	3.1	Program Modelling concepts: DFG,FSM,UML							
	3.2	Embedded C-programming concepts (from Embedded system point of view): Data types, Modifiers, Qualifiers, Functions, Macros, Interrupt service routine. Device drivers							
3.	3.3	Real-time Operating system: Need of RTOS in Embedded system software and comparison with GPOS, Foreground/Background processes, Interrupt latency, Task, Task states, Multi-tasking, Context switching, Task scheduling, Scheduling algorithms-Rate Monotonic Scheduling, Earliest Deadline First (with numericals), Inter-process communication: Semaphore, Mailbox, Message queues, Event timers, Task synchronisation- Shared data, Priority inversion, Deadlock. Memory Management							
	3.4	Introduction to μ COS II RTOS: Study of Kernel structure of μ COS II, μ COS II functions for Initialisation, Task creation, Inter-task communication and Resource management, Memory management	08						
		System Integration, Testing and Debugging Methodology	04						
	4.1	Embedded Product Design Life-Cycle (EDLC)							
4.	4.2	Hardware-Software Co-design							
	4.3	Testing & Debugging: Boundary-scan/JTAG interface concepts, Black-Box testing, White-Box testing, Hardware emulation, Logic analyser.							
		Case Studies	06						
5.	5.1	Soft Real-time: Automatic Chocolate Vending machine using $\mu \overline{COS}$ II RTOS- Requirements study, Specification study using UML, Hardware architecture, Software architecture							
	5.2	Hard Real-time: Car Cruise-Control using μ COS II RTOS- Requirements study, specification study using UML, Hardware architecture, Software Architecture							
Text books:

1.Dr. K.V. K. K. Prasad, "Embedded Real Time System: Concepts, Design and Programming", Dreamtech, New Delhi, Edition 2014.

2.Jean J. Labrosse, "MicroC / OS-II The Real-Time Kernel", CMP Books, 2011, Edition 2nd.

3. Rajkamal, "Embedded Systems: Architecture, Programming and Design", McGraw Hill Education (India) Private Limited, New Delhi, 2015, Edition 3rd.

4. SriramIyer, Pankaj Gupta, "Embedded Real Time Systems Programming", Tata McGraw Hill Publishing Company ltd., 2003.

Reference Books:

1. DavidSimon, "An Embedded Software Primer", Pearson, 2009.

2.Jonathan W. Valvano, "Embedded Microcomputer Systems – Real Time Interfacing", Publisher - Cengage Learning, 2012 Edition 3rd.

3.AndrewSloss, DomnicSymes, Chris Wright, "ARM System Developers Guide Designing and Optimising System Software", Elsevier, 2004

4.FrankVahid, Tony Givargis, "Embedded System Design – A Unified Hardware/Software Introduction", John Wiley & Sons Inc., 2002.

5.Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education Private Limited, New Delhi, 2009.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total of 4 questions.
- 3. Question No.1 will be compulsory and based on the entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be set from all the modules.
- 5. Weightage of marks, commensurate with the time allocated to the respective module.

Programme Structure for Bachelor of Engineering (B.E.) – Electronics Engineering (Rev. 2016)

Subject Code	Subject Name	Teaching Scheme (Hrs.)				Credits Ass	signed	
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ELX 602	Computer	4	2		4			04
	Communication							
	and Networks							

Subject	Subject Name				Examinatio	n Scheme				
Code		Theory Marks				Term	Practical	Oral	Total	
		Internal assessment			End Sem.	Work				
		Test 1	Test	Ave. Of	Exam					
			2	Test 1 and						
				Test 2						
ELX 602	Computer	20	20	20	80	-			100	
	Communication									
	and Networks									

Course Pre-requisite: ELX405 Principles of Communication Engineering ELX502 Digital Communication

Course Objectives:

The objectives of this course are to:

- 1. Introduce networking architecture and protocols
- 2. Understand the various layers and protocols in the TCP/IP model
- 3. Recognize different addressing schemes, connecting devices and routing protocols
- 4. Select the required protocol from the application layer protocols

Course Outcomes:

On successful completion of the course the students will be able to:

1.Demonstrate understanding of networking concepts and required protocols

2. Analyze the various layers and protocols of the layered architecture

3. Evaluate different addressing schemes, connecting devices and routing protocols

4. Appreciate the application layer protocols

Module	Unit	Topics	Hrs.
No.	No.		
1.		Introduction to Network Architectures, Protocol Layers, and Service models	06
	1.1	Uses of computer networks. Topologies, LAN, MAN, WAN, Network topologies,	
		Addressing : Physical / Logical /Port addressing, Protocols and Standards.	
	1.2	Protocol Architecture: Need of layered protocol architecture, Layers details of OSI, , Protocol Layers and Their Service Models	
	1.3	TCP/IP Model: Protocol suite, Comparison of OSI and TCP/IP	
2.		Physical Laver	08
	2.1	Transmission Media: Guided media like Coaxial, fiber, twisted pair, and Wireless media, Transmission Impairments. Interconnecting Devices: Hub, Bridges, Switches, Router, Gateway	
	2.2	Data communication model : DTE, DCE, RS-232D Interface , Null Modem , Multiplexing : FDM , Synchronous TDM , Statistical TDM, ADSL , xDSL, Cable Modem	
3.		Data Link Control	08
	3.1	Data link services: Framing, Flow control, Error control, ARQ methods,	
		Piggybacking	
	3.2	High Level Data Link Control (HDLC): HDLC configurations, Frame formats, Typical frame exchanges.	_
	3.3	Medium Access Control Protocols: ALOHA, Slotted ALOHA, CSMA, CSMA/CD	
4.		Network Layer	14
	4.1	Switching : Switched Communication networks, Circuit switching Networks, , Circuit switching Concepts, Packet switching Principles: Virtual circuit switching and Datagram switching	
	4.2	Routing in Packet Switching Networks: Characteristics, Routing strategies, Link state Routing versus Distance vector Routing. Least-Cost Routing Algorithms: Dijkstra's Algorithm, Bellman Ford Algorithm.	
	4.3	Internet Protocol: Principles of Internetworking: Requirements, Connectionless Operation Internet Protocol Operation: IP packet, IP addressing, subnet addressing, IPv4, ICMP, ARP, RARP IPv6 (IPv6 Datagram format, comparison with IPv4, and transition from IPv4 to IPv6)	
5.		Transport Layer & Application Layer	08
	5.1	Connection –oriented Transport Protocol Mechanisms: Transmission Control Protocol (TCP): TCP Services, TCP Header format, TCP three way handshake, TCP state transition diagram.	

		User datagram Protocol (UDP)	
	5.2	Congestion: Effects of congestion, Congestion control methods, Traffic management, Congestion control in Packet switching Networks	
	5.3	Application layer Protocols : HTTP, FTP, DNS,SMTP, SSH	
6.		LANs. High speed Ethernet	04
	6.1	LAN Protocol architecture, LAN topologies, Hub, Bridges, Virtual LANs	
		Traditional Ethernet and IEEE 802.3 LAN Standard : Ethernet protocol, Frame structure, Physical layers,	
	6.2	High Speed Ethernet : Fast Ethernet, Gigabit Ethernet & 10- Gigabit Ethernet	
	•	Total	48

Recommended Text Books

- 1. William Stallings, "Data and Computer communications", Pearson Education, 10th Edition.
- 2. Behrouz A. Forouzan, "Data communication and networking ", McGraw Hill Education, Fourth Edition.
- 3. Alberto Leon Garcia, "Communication Networks", McGraw Hill Education, Second Edition

Reference books :

- 1. S. Tanenbaum, "Computer Networks", Pearson Education, Fourth Edition.
- 2. J. F. Kurose and K. W. Ross ,"Computer Networking: A Top-Down Approach", Addison Wesley, 5th Edition.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4: Remaining question will be selected from all the modules.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ELX 603	VLSI Design	4	2		4			04

Subject	Subject Name	Examination Scheme							
Code			Theory Marks				Practical	Oral	Total
		Internal assessment End Sem.			Work				
		Test 1	Test	Ave. Of	Exam				
			2	Test 1 and					
				Test 2					
ELX 603	VLSI Design	20	20	20	80	-			100

Prerequisite Subject:

- ELX302: Electronics Devices and Circuits- I
- ELX304: Digital Circuit Design
- ELX404: Digital System Design
- ELX504: Design with Linear Integrated Circuits

Course Objectives:

- 1. To study MOS based circuit realization using different design styles
- 2. To highlight the fundamental issues in data path and system level design

Course Outcomes: After successful completion of the course student will be able to ...

- 1. Demonstrate a clear understanding of choice of technology, scaling, MOS models and system level design issues.
- 2. Design and analyze MOS based inverters.
- 3. Design MOS based circuits with different design styles.
- 4. Design semiconductor memories, adders and multipliers.

Unit No.	Details	Teaching Hours
1	Technology Trend : 1.1 Technology Comparison: Comparison of BJT and MOS technology 1.2 MOSFET Scaling: Types of scaling, Level 1 and Level 2 MOSFET Models, MOSFET capacitances	06
2	 MOSFET Inverters: 2.1 Types of MOS inverters: Active and passive load and their comparison. 2.2 Circuit Analysis of MOS Inverters: Static Analysis resistive and CMOS inverter: Calculation of all critical voltages and noise margins. Design of symmetric CMOS inverter. Dynamic Analysis of CMOS inverter: Calculation of rise time, fall time and propagation delay 2.3Logic Circuit Design: Analysis and design of 2-I/P NAND,NOR and complex Boolean function using equivalent CMOS inverter for simultaneous switching. 	10
3	MOS Circuit Design Styles:	10

University of Mumbai, B. E. (Electronics Engineering), Rev 2016

	3.1 Design Styles: Static CMOS, pass transistor logic, transmission gate, Pseudo	
	NMOS, C ² MOS, Dynamic, Domino, NORA and Zipper.	
	3.2Circuit Realization: Basic gates, SR Latch, JK FF, D FF, 1 Bit Shift Register,	
	MUX using above design styles.	
4	Semiconductor Memories:	
	4.1 SRAM: 6T SRAM, operation, design strategy, leakage currents, read/write circuits,	
	sense amplifier.	
	4.2DRAM: 1T_DRAM, operation modes, leakage currents, refresh operation, physical	08
	design.	
	4.3 ROM Array: NAND and NOR PROM, Nonvolatile read/write memories-	
	classification and programming techniques	
5	Data Path Design:	
	5.1 Adder: CLA adder, MODL, Manchester carry chainand high speed adders like	04
	carryskip, carry select and carry save.	04
	5.2 Multipliers and shifter: Array multiplier and barrel shifter	
6	VLSI Clocking and System Design:	
	6.1Clocking: CMOS clocking styles, Clock generation, stabilization and distribution	
	6.2Low Power CMOS Circuits: Various components of power dissipation in CMOS,	
	Limits on low power design, low power design through voltage scaling	10
	6.3I/O pads and Power Distribution: ESD protection, input circuits, output circuits,	
	simultaneous switching noise, power distribution scheme	
	6.4Interconnect: Interconnect delay model, interconnect scaling and crosstalk.	

Text and Reference Books

1.Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design", Tata McGraw Hill, 3rd Edition.

2. John P. Uyemura, "Introduction to VLSI CIRCUITS AND SYSTEMS", Wiley India Pvt. Ltd.

3. Jan M. Rabaey, Anantha Chandrakasan and BorivojeNikolic, "*Digital Integrated Circuits: A Design Perspective*", Pearson Education, 2nd Edition.

4. Etienne Sicard and Sonia Delmas Bendhia, "Basics of CMOS Cell Design", Tata McGraw Hill, First Edition.

5. Neil H. E. Weste, David Harris and Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems Perspective", Pearson Education, 3rd Edition.

6. Debaprasad Das, "VLSI Design", Oxford, 1st Edition.

7. Kaushik Roy and Sharat C. Prasad, "Low-Power CMOS VLSI Circuit Design", Wiley, Student Edition.

8. David A Hodges, Horace G Jackson and Resve A Saleh, "Analysis and Design of Digital Integrated Cicuits", TMH, 3rd Edition

Additional Study Material & e-Books

1.Douglas A Pucknell, Kamran Eshraghian, "Basic VLSI Design", Prentice Hall of India Private Ltd.

2.Samir Palnitkar, "A Guide to Digital Design and Synthesis", Pearson Education

Subject Code	Subject Name	Te	eaching Sch	eme	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELX604	Signals and Systems	04		#01	04		01	05

Subject	Subject			J	on Schem	e			
Code	Name		T	heory Marks		Term	Practical	Oral	Total
		In	ternal a	ssessment	End	Work			
		Test	Test	Ave. Of	Sem.				
		1	2	Test 1 and	Exam				
				Test 2					
ELX604	Signals and	20	20	20	80	25	-	-	125
	Systems								

#Class wise

Course Objectives:

- 1. To provide a comprehensive coverage of continuous time and discrete time Signals and Systems.
- 2. To introduce various time domain and frequency domain methods for analysis of Signals and systems.

Course Outcomes:

After successful completion of this course student will be able to

- 1. Differentiate between continuous time and discrete time Signals and Systems.
- 2. Understand various transforms for time domain to frequency domain conversion
- 3. Apply frequency domain techniques for analysis of LTI systems
- 4. Apply frequency domain techniques for analysis of continuous and discrete signals

Module	Module Unit Topics						
No.	No.						
1.		Continuous and Discrete Time Signals	8				
	1.1	Mathematical Representation and Classification of CT and DT signals, Orthogonality of signals					
	1.2	Arithmetic operations on the signals, Time Shifting, Time scaling, Time Reversal of signals					
	1.3	Sampling and Reconstruction, Aliasing effect	1				
2		Continuous and Discrete Systems	8				
	2.1	Mathematical Representation and classification of CT and DT systems	1				
	2.2	Properties of LTI systems, impulse and step response.					
	2.3	Use of convolution integral, convolution sum and correlation for analysis of LTI systems					
	2.4	Properties of convolution integral and convolution sum					
3		Frequency Domain Analysis of Continuous Time System using Laplace Transform	6				
	3.1	Concept of Complex frequency, Region of Convergence for Causal, Non-causal and Anti-causal systems, Poles and Zero of transfer function					
	3.2	Unilateral Laplace Transform					
	3.3	Analysis and characterization of LTI system using Laplace Transform: Impulse and Step Response, Causality, Stability, Stability of Causal system					
4		Frequency Domain Analysis of Discrete Time System using Z Transform	12				
	4.1	Need for Z transform, definition, properties of unilateral and bilateral Z Transform, mapping with s plane, relationship with Laplace transform					
	4.2	Z transform of standard signals, ROC, poles and zeros of transfer function, Inverse Z transform					
	4.3	Analysis and characterization of LTI system using Z transform: impulse and step response, causality, stability, stability of causal system					
	4.4	System realization-Direct, Direct Canonic, Cascade and Parallel forms					
5		Frequency Domainc Analysis of Continuous Signals	6				
	5.1	Frequency Domain Analysis of periodic non-sinusoidal signals					
	5.2	Frequency Domain Analysis of aperiodic Signals-Introduction, Properties of Fourier Transform, Fourier Transform based amplitude and phase response of standard signals, Relationship with Laplace and Z transform, Energy Spectral					
6		Frequency Domain Analysis of Discrete Signals	8				
	6.1	Discrete Time Fourier Series, Evaluation of DTFS coefficients, Magnitude and	l				
		Phase Spectrum of Discrete time periodic signals, Power Spectral Density					
	6.2	Discrete Time Fourier Transform – Concept of discrete time signal in frequency domain, definition of DTFT, determination of magnitude and phase functions using DTFT	7 2				
			40				
		l otal	48				

Text Books:

- 1. Tarun Kumar Rawat, "Signals and Systems", Oxford UniversityPress 2016.
- 2. A. NagoorKani, "Signals and Systems", Tata McGraw-Hill Education

Reference Books:

1. John Proakis and DimitrisMonolakis, "Digital Signal Processing", Pearson Publication, 4th Edition

- 2. Alan V. Oppenheim, AlanS. Willsky, and S.Hamid Nawab, "Signals and Systems", 2nd Edition, PHIlearning,2010.
- 3. B. P. Lathi, "Linear Systems and Signals", Oxford University Press,

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4: Remaining question will be selected from all the modules.

Subject Code	Subject Name	T	eaching Sch	eme	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELX	Microwave	04		#01	04		01	05
DLO6021	Engineering							

Subject	Subject		Examination Scheme										
Code	Name		T]	heory Marks		Term	Practical	Oral	Total				
		In	ternal a	ssessment	End	Work							
		Test	Test	Ave. Of	Sem.								
		1	2	Test 1 and	Exam								
				Test 2									
ELX6021	Microwave	20	20	20	80	25	-	-	125				
	Engineering												

Prerequisites: Knowledge of basic Engineering Electromagnetics

Course Objectives:

- 1. To introduce the students to various concepts of Microwave Engineering.
- 2. To teach the students the working principles and applications of different microwave devices.

Course Outcomes (CO):

After successful completion of the course, students will be able to:

- 1. Understand the importance and applications of microwaves.
- 2. Explain the process of generation and amplification of microwaves.
- 3. Analyse the electromagnetic field distribution in various microwave components.
- 4. Measure various microwave parameters.

Module	Contents	Hours
1	Introduction to microwave communication	4
	1.1 Microwave spectrum and bands	
	1.2 Limitations of conventional circuit theory concepts at microwave	
	frequencies	
	1.3 Applications of microwaves	
	1.4 Limitations of conventional vacuum tubes at microwave frequencies	
2	Generation and amplification of microwaves	12
	2.1 Two cavity Klystron amplifiers: Construction, Process of velocity	
	modulation and bunching , Apple gate diagram	
	Output power and efficiency. Applications	
	2.2 Reflex Klystron:	
	Construction ,Process of velocity modulation and bunching	

	Apple gate diagram, Output power and efficiency	
	2.3 Cylindrical Magnetron Construction and working principle	
	Hull cut-off magnetic equation , Cyclotron angular frequency	
	Applications	
	2.4 Traveling wave tube : construction and working principle	
	applications	
3	Vaveguides:	10
5	() a c galación	10
	3.1 Rectangular and circular waveguides	
	3.2 solution of Maxwell's equation for distribution of fields in the	
	3.3 characteristic equation	
	3.4 Dominant and degenerate modes	
	3.5 group and phase velocities	
	3.6 cut-off frequency	
	3.7 numerical examples based on the above topics	
4	Waveguide components and analysis:	12
	4.1 Definition and significance of s-narameters	
	4.2 Properties of s-parameters	
	4.3 Construction, working principle and s-matrix representation of cavity	
	resonators, waveguide attenuators, waveguide phase shifters,	
	waveguide multiport junctions, E-plane and H-plane Tees, Magic Tee,	
	4.4 Microwave ferrite components:	
	Faraday rotation isolator. Circulator. Gyrator	
	Numerical examples based on the above topics	
5	Microwave solid state devices:	5
	5.1Principle of operation and characteristics of:	
	Gunn Diode, TRAPATT and IMPATT diodes, Microwave	
	Transistors	
	5.2 Introduction to Strip Lines	
6	Microwave Measurement:	5
	Measurement of	
	6.1 Power	
	6.2 Attenuation	
	6.3 Frequency	
	0.4 VSWK 65 Cavity O	
	6.6 Impedance	
1	or impedance	1

Text Books:

- 1. "Microwave Devices and Circuits" by Samuel Liao, PHI
- 2. "Microwave circuits and Passive Devices" by M L Sisodia, G S Raghuvanshi, New Age International(P) Ltd

Reference Books:

- 1. "Electronic Communication Systems" by Kennedy, Davis, 4e TMH
- 2. "Microwave Engineering: Passive Circuits" by Peter Rizzi, PHI
- 3. "Foundations for Microwave Engineering" by Robert E Collin, 2e, John Wiley
- 4. "Basic Microwave Techniques & Laboratory Manual" by M L Sisodia, G S Raghuvanshi, 2001 New Age International(P) Ltd
- 5. Microwave Engineering, Annapurna Das, TMH

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4: Remaining question will be selected from all the modules.

	Course Name	Teaching Scheme			Credits Assigned				
Course Code		Theory	Practical	Tutoria l	Theory	TW/Practic al	Tutorial	Total	
ELX DLO6022	Electronic Product Design	04			04			04	

Course		Examination Scheme								
	Course Name		Th	eory Marks	Tour	Oral &				
Code		Interna	ll Assessm	ent (IA)	End Semester	Work	Practical	Total		
		Test I	Test II	Average	Examination					
ELX DLO6022	Electronic Product Design (EPD)	20	20	20	80			100		

<u>Rationale</u> :- The aim of this course is to enable students to gain practical experience & nurture their creativity in electronic product design & the objective is to provide students with a clear understanding of the practical design problems of the electronic products at an introductory level. With this course, students are expected to become familiar with the concept of designing a product as per the requirements (non-technical) & given specifications (technical), component tolerances, production constraints, safety requirements & EMC standards.

Course Objectives:-

- 1. To understand the stages of product (hardware / software) design & development
- 2. To learn different considerations of analog, digital & mixed circuit design
- 3. To be acquainted with methods of PCB design & different tools used for the same
- 4. To be aware of the importance of testing in product design cycle
- 5. To gain knowledge about various processes & importance of documentation

Course Outcomes :-

At the end of the course, students should gain the ability to :-

- **CO-1** :- Design electronic products using user-centered designing processes
- CO-2 :- Identify & recognize essential design & production procedures of electronic products
- CO-3 :- Implement a prototype for meeting a particular requirement / specification
- CO-4 :- Demonstrate problem solving & troubleshooting skills in electronic product design
- CO-5 :- Prepare the relevant set of design documentation & present it as a case study

Modul e No.	Topics	Hour s
1	INTRODUCTION TO ELECTRONIC PRODUCT DESIGN Man-machine dialog & industrial design, user-centered design, elements of successful design, cognition, ergonomics, packaging & factors; design for manufacture, assembly & disassembly wiring, temperature, vibration & shock; safety, noise, energy coupling, grounding, earthing, filtering & shielding	06
2	HARDWARE DESIGN & TESTING METHODS Design process, identifying the requirements, formulating specifications, design specifications, system partitioning, functional design, architectural design, functional model v/s architectural model, prototyping, performance & efficiency measures, formulating a test plan, writing all the specifications, test procedures & test cases, design reviews, module debug & testing – black box testing, white box testing, grey box testing	10
3	SOFTWARE DESIGN & TESTING METHODS Types of software, the waterfall model of software development, models, metrics & software limitations, risk abatement & failure prevention, software bugs & testing, good programming practice, user interface, embedded & real-time software	10
4	PRINTED CIRCUIT BOARD (PCB) DESIGNING Fundamental definitions, standards, routing topology configuration, layer stack up assignment, grounding methodologies, aspect ratio, image planes, functional partitioning, critical frequency & bypassing, decoupling; design techniques for ESD protection, guard- band & guard-rings	08
5	PRODUCT DEBUGGING & TESTING Steps of debugging, the techniques for troubleshooting, characterization, electromechanical components, passive components, active components, active devices, operational amplifier, analog-to-digital conversion, digital components, inspection & testing of components, process of simulation, prototyping & testing, integration, validation & verification, EMI & EMC issues	08
6	THE DOCUMENTATION PROCESS Definition, needs & types of documentation, records, accountability & liability, audience, steps in preparation, presentation & preservation of documents, methods of documentation, visual techniques, layout of documentation, bills of materials, manuals – instructional or operating manual, service and maintenance manual, fault finding tree, software documentation practices	06
1 – 6	TOTAL	48

Recommended Books :-

- 1. R. G. Kaduskar & V. B. Baru, Electronic Product Design, 3rd edition, Wiley India
- 2. Kim Fowler, Electronic Instrument Design, 2nd edition, Oxford University Press
- 3. Robert J. Herrick, PCB Design Techniques for EMC Compliance, 2nd edition, IEEE Press

4. G. C. Loveday, Electronic Testing & Fault Diagnosis, 4th edition, A. H. Wheeler Publishing

- 5. James K. Peckol, Embedded Systems A Contemporary Design Tool, 1st edition, Wiley Publication
- 6. J. C. Whitaker, The Electronics Handbook, CRC Press

Internal Assessment (IA) :-

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination :-

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Q.1 will be compulsory and based on entire syllabus.
- 4. Remaining questions (Q.2 to Q.6) will be set from all modules.

5. Weightage of each module in question paper will be proportional to the number of respective lecture hours mentioned in the syllabus

Subject Code	Subject Name	Teach	ing Schemo	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELX	Wireless	4	2		4			04	
DLO6023	Communication								

Subject	Subject Name		Examination Scheme								
Code			T	heory Marks		Term	Practical	Oral	Total		
		Internal assessment End			End Sem.	Work					
		Test 1	Test	Ave. Of	Exam						
			2	Test 1 and							
				Test 2							
ELX	Wireless	20	20	20	80	-			100		
DLO6023	Communication										

Course Objectives:

The objectives of this course are to:

- 1. To introduce the Concepts of basic Cellular communication systems, mobile Radio propagation
- 2. To understand the various Cellular processes such as handoff strategies, interference, Trunking theory
- 3. To study the features and services of 2G cellular technologies: GSM and CDMA
- 4. To study the features of evolving technological advances in 2G, 3G & 4G Cellular systems.

Course Outcomes:

After successful completion of the course, students will be able to:

- 1. Understand the concepts of basic cellular system, frequency reuse, channel assignment
- 2. Understand the fundamentals radio propagation, Path loss and comprehend the effect of Fading.
- 3. Acquire the Knowledge about multiple access technologies and different of different spread spectrum techniques.
- 4. Acquire the Knowledge about overall GSM cellular concept and analyse its services and features
- 5. Comprehend the features of CDMA technology
- 6. Analyse the evolution of cellular technology from 2G to 4G Cellular systems .

Module	Unit	Topics	Hrs.
No.	No.		
1.		Concept of Cellular Communication	08
	1.1	Introduction to cellular communications, Frequency reuse, Channel assignment	
		strategies	
	1.2	Cellular Processes: Call setup, Handoff strategies, interference and system capacity,	
		Co-channel Interference reduction with the use of Directional Antenna	
	1.3	Traffic Theory: Trunking and Grade of service, Improving Coverage and capacity in	
		Cellular systems: Cell splitting, Sectoring, Micro-cell Zone concept	
2.		Mobile Radio Propagation	08

	2.1	Introduction to Radio wave propagation, Free space propagation model, the three basic	
		Propagation mechanisms, The Ground Reflection (two-ray) model, Practical Link	
		budget design using Path-Loss models:Log-distance Path -loss model.	
	2.2	Small scale Multipath Propagation: Factors influencing small scale fading, Doppler	
		shift, Parameters of mobile multipath channels,	
	2.3	Types of small scale fading, Fading effects due to Doppler spread, Fading effects due	
		to Multipath Time delay spread, Raleigh and Rician distributions	
3.0		Multiple access techniques & Spread spectrum Modulation	08
	3.1	Multiplexing and Multiple Access: Time Division Multiple Access, Frequency Division	
		Multiple Access, Spread-spectrum multiple-access:Code Division Multiple Access	
	3.2	Spread spectrum Modulation :Need for and concept of spread spectrum modulation,	
		PN-sequence generation, properties of PN-sequence, Gold sequence generation, Direct-	
		sequence SS, Frequency-hopping SS,	
4.0		GSM	12
	41	GSM network architecture Signalling protocol architecture Identifiers Physical and	
	7.1	Logical Channels, Frame structure, Speech coding, Authentication and security Call	
		procedure Hand-off procedure Services and features	
		procedure, mand-on procedure, services and reatures	
5.0		IS-95	06
	5.1	Frequency and channel specifications of IS-95, Forward and Reverse CDMA channel,	
		Packet and Frame formats, Mobility and Resource management	
6.0		Evolution from 2G to 4G	06
	6.1	GPRS, EDGE technologies, 2.5G CDMA-One cellular network, W-CDMA (UMTS),	
		CDMA2000, LTE, Introduction to 5G Networks	
		Total	48

Recommended Books:

- 6. Theodore Rappaport, "Wireless Communications: Principles and Practice, 2nd Edition, Pearson Publication
- 7. ITI Saha Misra, "Wireless Communication and Networks: 3G and Beyond", Publication
- 8. Vijay Garg, "IS-95 CDMA and cdma 2000: Cellular/PCS System Implementation", Pearson Publication.

Reference Books:

- 1. T.L Singal, "Wireless Communication", Tata McGraw Hill, 2010
- 2. Upena Dalal, "Wireless Communication", Oxford University Press, 2009
- 3. Andreas F Molisch, "Wireless Communication", John Wiley, India 2006.
- 4. Vijay Garg, "Wireless communication and Networking", Pearson Publication

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4: Remaining question will be selected from all the modules.

Course Code	Course Name	Tea	ching sche	me	Credit assigned				
ELX DLO6024	Computer	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
	Organization and Architecture	04			04			04	

	Course Name		Examination Scheme										
Course		Theory								Dreat			
Code		Internal Assessment			En Dura		Term	Pract	Oral		Total		
Cour		Test 1	Test 1 Test 2	Av	d	tion	work	•	Orai	/ Oral	TUTAL		
				g	sem	(nrs)				Orai			
ELX DLO602 4	Computer Organizatio n and Architecture	20	20	20	80	03					100		

Course Objectives	 To introduce the learner to the design aspects which can lead to maximized performance of a Computer. To introduce the learner to various concepts related to Parallel Processing 3.To highlight the various architectural enhancements in modern processors.
Course Outcomes	At the end of the course, the learner will have the ability to
	 Define the performance metrics of a Computer Explain the design considerations of Processor, Memory and I/O in Computer systems Explain the advantages and limitations of Parallelism in systems Explain the various architectural enhancements in modern processors

Module		Contents	Time
		Introduction to Computer Organization	[06]
	1.1	Fundamental Units of a Computer	01
1.	1.2	Introduction to Buses	01
	13	Number Representation methods- Integer and Floating-point, Booth's	03
	1.5	Multiplier, Restoring and Non-Restoring Division	05
	14	Basic Measures of Computer Performance - Clock Speed, CPI, MIPs and	01
	1.1	MFlops	01
		Processor Organization and Architecture	10
	21	CPU Architecture, Register Organization, Instruction cycle, Instruction	04
2	2.1	Formats	01
2.	22	Control Unit Design- Hardwired and Micro-programmed Control: Vertical	04
		and Horizontal Micro-Instructions, Nano-programming	0.
	2.3	Comparison between CISC and RISC architectures	02
		Memory Organization	12
		Classification of Memories-Primary and Secondary Memories, RAM	
	3.1	(SRAM and DRAM) and ROM (EPROM, EEPROM), Memory Inter-	02
		leaving	
3.		Memory Hierarchy, Cache Memory Concepts, Mapping Techniques, Write	
	3.2	Policies, Cache Coherency	06
		(* Numerical Problems expected)	
	3.3	Virtual Memory Management-Concept, Segmentation, Paging, Page	04
		Replacement policies	
		Input/Output Organization	06
4.	4.1	Types of I/O devices and Access methods, Types of Buses, Bus	03
		Arbitration	
	4.2	Expansion Bus Concept, PCI Bus	03
		Parallelism	06
	5.1	Introduction to Parallel Processing Concepts, Flynn's classification,	02
5.		Amdahl's law	-
		Pipelining - Concept, Speedup, Efficiency, Throughput, Types of Pipeline	
	5.2	hazards and solutions	04
		(* Numerical Problems expected)	
		Architectural Enhancements	08
6.		Superscalar Architectures, Out-of-Order Execution, Multi-core processors,	0.5
- *		Clusters, Non-Uniform Memory Access (NUMA) systems, Vector	08
		Computation, GPU	

Text books:

1. William Stallings, "*Computer Organization and Architecture: Designing for Performance*", Eighth Edition, Pearson.

2. C. Hamacher, Z. Vranesic and S. Zaky, "Computer Organization", McGraw Hill, 2002.

Reference Books:

1. J.P. Hayes, "Computer Architecture and Organization", McGraw-Hill, 1998.

2. B. Govindarajulu, "*Computer Architecture and Organization: Design Principles and Applications*", Second Edition, Tata McGraw-Hill.

3. D. A. Patterson and J. L. Hennessy, "Computer Organization and Design - The Hardware/Software Interface", Morgan Kaufmann, 1998.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks.

The Learner need to solve total 4 questions.

Question No.1 will be compulsory and based on entire syllabus. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Name		Teach	ing	schen	ne	Credit assigned					
	Embedded	Theory Prac		ct.	Tut.	Theory	Pract.	Т	ut.	,	Total	
ELXL 601 Systems& Re Time Operat System Laboratory	Systems& Real Time Operating System Laboratory		. 02		2			01	-	-		01
					-	Exar	nination S	Scheme				
	Course Name		r	Гhee	ory							
Course Code		Internal Assessment			Fnd	Dura tion	Term	Pract	Oral	Prac	et.	Total
Couc		Test 1	Tes t 2	A v g	sem	(hrs)	work	TTACL.	Orai	/ O r:	al	I Utal
ELXL 601	Embedded Systems& Real Time Operating System Laboratory						25			25		50

Assessment:

Term Work:

At least SIX experiments based on the entire syllabus of ELX 601 (Embedded System & Real Time Operating System) should be set to have well predefined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. Term work must include a mini project in addition to the number of experiments. The course mini-project is to be undertaken in a group of two to three students. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work, mini project and minimum passing marks in term work.

Practical and Oral exam will be based on the entire syllabus. Suggested Experiments:

- Simulation experiments using KeilC–cross complier to: evaluate basic C program for X-51 assembly; evaluating various C data types; evaluating and understanding iterative C constructs translated into x51's assembly; evaluating and understanding interrupt implementation.
- Simulate and understand working of μ COS-II functions using example programs from recommended text, "MicroC / OS-II The Real-Time Kernel", by Jean J. Labrosse.
- Porting of µCOS-II on X-51/AVR/CORTEX M3 platform.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELXL 602	Computer Communication and Networks Laboratory	-	2		-	01		01	

Subject	Subject Name		Examination Scheme									
Code	-		Tł	neory Marks		Term	Practical	Oral	Total			
		Inter	rnal as	sessment	End Sem.	Work						
		Test 1 Test Ave. Of		Exam								
			2	Test 1 and								
				Test 2								
ELXL 602	Computer	-	-	-	-	25		25	50			
	Communication											
	and Networks											
	Laboratory											

Laboratory Experiments:

Lab session includes Seven experiments and a Case study(Power point Presentation) on any one of the suggested topics.

- 1. The experiments will be based on the syllabus contents.
- 2. Minimum **Seven experiments** need to be conducted, out of which **at least Four Experiments** should be softwarebased (C/C++, Scilab, MATLAB, LabVIEW, etc).
- 3. Each student (in groups of 3/4) has to present a Case study (Power point Presentation) as a part of the laboratory work. The topics for Presentation / Case-study may be chosen to be any relevant topic on emerging technology. ("Beyond the scope of the syllabus".)

Power point presentation should contain minimum of 15 slides and students should submit a report (PPT+Report)carry minimum of 10 marks. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Suggested List of experiments:

- 1. Study of transmission media and interconnecting devices of communication networks.
- 2. Implementation of serial transmission using RS232
- 3. Implementing bit stuffing algorithm of HDLC using C/C++
- 4. Implementation of Routing protocols using C/C++
- 5. Study of NS2 simulation software
- 6. Implementation of TCP/UDP session using NS2
- 7. Implementation of ARQ methods using NS2
- 8. Study of WIRESHARK and analyzing Packet using WIRESHARK
- 9. Study and implementation of IP commands
- 10. Study of GNS software and implementation of routing protocols using GNS

Course Code	Course Name	Tea	ching sche	me	Credit assigned			
		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ELXL 603	VLSI Design Laboratory		02			01		01

		Examination Scheme										
			Theory									
Course Code	Course	Internal Assessment				Dur				Dup of		
	Name	Test 1	Test 2	Av g	End sem	a tion (hrs)	l erm work	Pract.	Oral	/ Oral	Total	
ELXL 603	VLSI Design Laboratory						25			25	50	

Assessment:

Term Work:

At least SIX experiments based on the entire syllabus of ELX 603 (VLSI Design) should be set to have well predefined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. Term work must include a mini project in addition to the number of experiments. The course mini-project is to be undertaken in a group of two to three students. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work, mini project and minimum passing marks in term work.

Practical and Oral exam will be based on the entire syllabus.

Suggested Experiments:

MOSFET Scaling using circuit simulation software like Ngspice Static and transient performance analysis of various inverter circuits Implementation of NAND and NOR gate using various logic design styles Design and verification of CMOS Inverter for given static and transient performance Implementation of ROM, SRAM, DRAM Interconnect analysis

Course Code	Course Name	Tea	ching sche	me		Credi	t assigned	
		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
ELXL DLO6021	Microwave Engineering Laboratory		02			01		01

					Ε	xamina	tion Sch	eme			
			T	heory		-					
Course	Course Name	Internal Assessment				Dur	Town			Pract	
Code		Test 1	Test 2	Av g	End sem	a tion (hrs)	work	Pract.	Oral	/ Oral	Total
ELXL DLO6 021	Microwave Engineering Laboratory						25			25	50

Assessment:

Term Work:

At least SIX experiments based on the entire syllabus of ELXDLO 6021 (Microwave Engineering) should be set to have well predefined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. Term work must include a mini project in addition to the number of experiments. The course mini-project is to be undertaken in a group of two to three students. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work, mini project and minimum passing marks in term work.

Practical and Oral exam will be based on the entire syllabus.

Course Code	Course N	ame	Tea	aching	schen	ne	Credit assigned					
			Theory Prac		Pract. Tu		Theory	Pract	. T	ut.	Total	
ELXL DLO6022	Electronic Product De	esign		02	2			01	-	-	01	
	Course Name		The			Theory						
Course Code		A	Internal Assessment		End	Dura tion	a Term	Pract.	Oral	Pract.	t. Total	
		Test 1	Test 2	Avg	sem	(hrs)	WUIK			/ 017	11	
ELXL DLO6022	Electronic Product Design						25			25	50	

At least **Six** experiments based on the entire syllabus of **ELXDLO6022** (Electronic Product Design) should be set to have well-defined inference and conclusion. The experiments should be student-centric and attempt should be made to make experiments more meaningful, interesting and innovative. Experiment must be graded from time to time. Additionally, each student (in group of 2/3) has to perform a Mini Project as a part of the laboratory and report of mini project should present in laboratory journal. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Oral exam will be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Lab session includes six experiments plus one presentation on case study.

Suggested Experiments:

- 1. Experiment based on Ground and Supply bounce
- 2. PCB design steps involved in product design
- 3. Simulation based on use of Simulator software
- 4. Working of an Emulator in Design step
- 5. Role of Pattern Generator in Design step
- 6. Debugging of the digital circuit based on Logic Analyzer
- 7. Application of the Spectrum analyzer
- 8. Demonstration of usefulness of the Arbitrary waveform generator
- 9. Setup for EMI and EMC test
- 10. Experiment based on calibration of the product.

Suggested topics for Case Study:

Faculty members can suggest topics pertaining above syllabus and ask students to submit complete report covering design issues, hardware and software details and applications.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELXL	Wireless	-	2		-	01		01	
DLO6023	Communication								
	Laboratory								

Subject	Subject Name		Examination Scheme									
Code			Tł	neory Marks		Term	Practical	Oral	Total			
		Inter	rnal as	sessment	End Sem.	Work						
		Test 1 Test Ave. Of		Exam								
			2	Test 1 and								
				Test 2								
ELXL	Wireless	-	-	-	-	25		25	50			
DLO6023	Communication											
	Laboratory											

Laboratory Experiments:

Lab session includes seven experiments and a Case study(Power point Presentation)on any one of the suggested topics.

Note:

1. The experiments will be based on the syllabus contents.

2. Minimum seven experiments need to be conducted.(Scilab, MATLAB, LabVIEW, NS2/NS3 etc can be used for simulation).

3. Each student (in groups of 3/4) has to present a Case study (Power point Presentation) as a part of the laboratory work.

The topics for Presentation / Case-study may be chosen to be any relevant topic on emerging technology.

("Beyond the scope of the syllabus".)

Power point presentation should contain minimum of 15 slides and students should submit a report, (PPT+Report) carry minimum of 10 marks The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Course Code	Course Name	Teaching scheme Credit assigned						
ELVI	Computer	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
DLO6024	Organization and Architecture		02			01		01

	Course Name		Examination Scheme												
		Theory													
Course		Internal Assessment				Dur	m			D					
Code		Test 1	Test 2	Av g	End sem	a tion (hrs)	work	Pract.	Oral	/ Oral	Total				
ELXL DLO60 24	Computer Organization and Architecture						25			25	50				

At least six experiments based on the entire syllabus of ELX DLO6024 (Computer Organization and Architecture) should be set to have well-defined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be student-centric and attempt should be made to make experiments more meaningful, interesting and innovative. Additionally, a Seminar on IEEE/ACM paper focussing on key areas of research in Computer Architecture/Organization to be part of the term-work which is duly graded. Suggested List of Experiments:

Expt. No.	Title of the Experiments
1	Implementation of Booth's Algorithm (using VHDL)
2	To create a control store for micro-programmed control unit (using VHDL)
3	Using a cache simulator, calculate the cache miss-rate for various mapping schemes
4	Implement various page replacement policies (LRU, FIFO, LFU)
5	Program to detect the type of hazard (RAW,WAR,WAW)for a set of instructions
6	Using a performance analyzer tool, extract various performance metrics

B.E. (Electronics Engineering)

Course Code	Course Name	T (eaching Sche Contact Hour	me ·s)		Credits As	ssigned	
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELX701	Instrumentation System Design	04			04			04
ELX702	Power Electronics	04			04			04
ELX703	Digital signal processing	04			04			04
ELXDLO703X	Department Level Optional course	04			04			04
ILO701X	Institute Level Optional Course I#	03			03			03
ELXL701	Instrumentation System Design Lab.		02			01		01
ELXL702	Power Electronics Lab.		02			01		01
ELXL703	Digital signal processing Lab.		02			01		01
ELXL704	Project-I		06			03		03
ELXLDLO703 X	Dept. Level Optional course III Lab.		02			01		01
	TOTAL	19	14		19	07		26

Course Code	Course Name	Т. (0	eaching Scher Contact Hour	me ·s)	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELX801	Internet of Things	04			04			04
ELX 802	Analog and Mixed VLSI Design	04			04			04
ELXDLO804X	Department Level Optional course IV	04			04			04
ILO802X	Institute Level Optional course II#	03			03			03
ELX801	Internet of Things Lab.		02			01		01
ELXL802	Analog and Mixed VLSI Design Lab.		02			01		01
ELXL803	Project-II		12			06		06
ELXLDLO804 X	Department Level Optional Courses IV Lab.		02			01		01
	TOTAL	15	18		15	9		24

Course Code	Course Name	Те	aching Sche	me	Credits Assigned				
		Theory	Practical	Tutoria l	Theory	TW/Practica l	Tutorial	Total	
ELX 701	Instrumentation System Design	04			04			04	

Course Code	Course Name	Examination Scheme									
			Th	eory Marks	Towm	Oral &					
		Interna	l Assessm	ent (IA)	End Semester	Work	Practical	Total			
		Test I	Test II	Average	Examination						
ELX 701	Instrumentation System Design (ISD)	20	20	20	80			100			

Rationale :- For optimum operation & satisfactory performance of any industrial process control system, it is necessary to have a reliably engineered system with a thorough knowledge of the process conditions & requirements as per the system or design specifications. This subject introduces various nuances in the design of instrumentation systems, which is itself a synergy of sensors, transducers, actuators, process control & electronic systems to achieve the desired operation of a plant or the proper control of an industrial process. Students are exposed to principles of designing which enable them to design, build & implement such electronically controlled systems for measurement, signal conditioning & final control.

Course Objectives :-

- 1. To learn basic functions & working of pneumatic, hydraulic & electrical components used in process control
- 2. To understand principles of process parameter conversion & transmission in various forms
- 3. To gain familiarity with control system components & their applications in process control
- 4. To study various types of controllers used in process control & their tuning for different applications
- 5. To be aware of recent advances & technological developments in industrial instrumentation & process control

Course Outcomes :-

At the end of the course, students should gain the ability to :-

- ELX 701.1 :- Demonstrate the needs of advancement in instrumentation systems
- ELX 701.2 :- Select the proper components for pneumatic & hydraulic systems
- ELX 701.3 :- Choose the transmitter / controller for given process application
- ELX 701.4 :- Analyze the controller parameters for discrete or continuous type
- ELX 701.5 :- Design the controller (electronic) for a given process or application

Modul e No.	Topics	Hour s
1	ACTUATORS & PROCESS CONTROL VALVES	
1.1	Electrical actuators – relays, solenoids & electrical motors (DC, AC & stepper motor)	
1.2	Pneumatic actuators – basic pneumatic system, pneumatic compressors (piston, vane, screw) flapper nozzle, single & double acting cylinder, rotary actuator, filter-regulator-lubricator (FRL)	08
1.3	Hydraulic actuator – hydraulic pumps, control valves types (globe, ball, needle, butterfly, gate, diaphragm & pinch), cavitation & flashing with their remedies, pressure drop across valve & leakage, valve noise, flow characteristics on load changes, control valves parameters, control valves sizing, valve calibration, digital control valves, selecting control valves & applications	
2	DESIGN OF SIGNAL CONDITIONING CIRCUITS	
2.1	Principles of analog & digital signal conditioning – signal level & bias change, linearization, conversion, filtering & impedance matching, concept of loading, comparators & converters	
2.2	Design of operational amplifier based circuits in instrumentation – analysis of voltage divider circuits, bridge circuits, RC filters, inverting & non-inverting amplifier, instrumentation amplifier, V to I & I to V converter, integrator, differentiator & linearization (with numerical examples)	08
2.3	Transmitters – Introduction to telemetry & its basic block diagram, 2 wire, 3 wire & 4 wire transmitters, 4 mA to 20 mA current transmitter, electronic transmitters for temperature, level, pressure & flow, current to pressure (I to P) & pressure to current (P to I) converters	
3	PROCESS CONTROLLER PRINCIPLES	
3.1	Discontinuous controller – two position mode, multi-position mode & floating mode	
3.2	Continuous controller – single mode (P, I & D) & composite mode (PD, PI & PID), split range, auto select, ratio & cascaded controllers, selection criterion of controller for a process mode	08
3.3	Tuning of PID controller – process loop tuning, open loop transient response method, Ziegler – Nichols tuning method, frequency response methods (numerical examples on PID tuning)	
4	PROGRAMMABLE LOGIC CONTROLLERS (PLC)	
4.1	Discrete state process controller – discrete state variables, process specifications & event sequence description	10
4.2	Relay controller & ladder diagram – introduction to relay ladder diagram logic, ladder diagram elements & ladder diagram programming examples	

4.3	PLC – relay sequencers, programmable logic controller design, PLC operation, programming the PLC, PLC software functions (application examples on relay ladder logic programming)	
5	DIGITAL BASED PROCESS CONTROL	
5.1	Data acquisition system (DAS) – objectives, signal conditioning of inputs, single channel DAS, multi-channel DAS, computer based DAS, data logger, difference between DAS & data logger	
5.2	Computer aided process control – architecture, human machine interface (HMI), supervisory control & data acquisition (SCADA), standard interfaces (RS-232C, RS-422A & RS-485)	08
5.3	Supervisory control system (SCS), introduction to the Fieldbus & Profibus process controlled networks, overview of distributed control system (DCS), features & advantages of DCS	
6	CALIBRATION STANDARDS & ADVANCES IN INSTRUMENTATION	
6.1	PC & microcomputer based instrumentation, virtual instrumentation & LabVIEW introduction	
6.2	Calibration of instrumentation systems, representation of instrumentation control process with SAMA & ISA symbols, ISO/IEC 17025 General requirements for calibration standards	06
6.3	Instrumentation standards, ISA S82.01 – Safety Standard for Electrical and Electronic Test, Measuring, Controlling Related Equipment, ISA S84.01 – Application of Safety Instrumented Systems for the Process Industries, ANSI/NEMA 250 – Enclosures for Electrical Equipment	
1 – 6	TOTAL	48

Recommended Books :-

- 1. Curtis D. Johnson, Process Control Instrumentation Technology, 7th edition, PHI
- 2. S. K. Singh, Industrial Instrumentation & Control, 3rd edition, McGraw Hill
- 3. B.C. Nakra & K. K. Chaudhary, Instrumentation Measurement & Analysis, 3rd edition, McGraw Hill
- 4. Andrew Parr, Pneumatics & Hydraulics, 2nd edition, Jaico Publishing Co.
- 5. B. G. Liptak, Handbook of Process Control & Instrumentation, 4th edition, CRC Press
- 6. William C. Dunn, Fundamentals of Industrial Instrumentation & Process Control, 1st edition, McGraw Hill

Internal Assessment (IA) :- Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination :-

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Q.1 will be compulsory and based on entire syllabus.
- 4. Remaining questions (Q.2 to Q.6) will be set from all modules.

5. Weightage of each module in question paper will be proportional to the number of respective lecture hours mentioned in the syllabus.

		Te	aching Sch	eme	Credits Assigned				
Subject Code	Subject Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELX702	Power Electronics	04	02		04			04	

Subject Code	Subject Name	ExaminationScheme												
			Т	Theory Ma	arks									
		Internal assessment			E J	-	Term	Duratical	Oral	Total				
		Test 1	Test 2	Avg of Test 1 and Test 2	End Sem. Exam	Exam duration Hours	Work	Fractical	Orai	Total				
ELX702	Power Electronics	20	20	20	80	03				100				

\Course Pre-requisite:

- 1. ENAS
- 2. EDC-1
- **3.** EDC-2

Course Objectives:

- 1. To teach power electronic devices and their characteristics.
- 2. To highlight power electronics based rectifiers, inverters and choppers.

Course Outcomes:

After successful completion of the course students will be able to:

- 1. Discuss trade-offs involved in power semiconductor devices.
- 2. Design of triggering, commutation and protection circuits for SCRs.
- 3. Analyse different types of single-phase rectifiers and DC-DC converters.
- 4. Analyse different types of DC-AC converters (inverters).
- 5. Analyse different types of AC Voltage Controllers and Cycloconvertors.

Module	Unit	Contents	Hrs.
No.	No.		
		Power semiconductor devices	
1	1.1	Principle of operation of SCR, static and dynamic characteristics, gate Characteristics,	8
I		Principle of operation, characteristics, ratings and applications of:	
	1.2	TRIAC, DIAC, MOSFET and power BJT. IGBT: basic structure, principle of operation, equivalent circuit, latch-up in IGBT's and V-I characteristics.	
		SCR: Triggering, commutation and Protection Circuits	
2	2.1	Methods of turning ON SCR (types of gate signal), firing circuits (using R, RC, UJT, Ramp and pedestal, inverse cosine),	8
	2.2	Design of commutation circuits,	-
	2.3	Protection of SCR	-
		Single-phase Controlled Rectifiers	
	3.1	Introduction to uncontrolled rectifiers, Half wave controlled rectifiers with R, RL load, effect of free-wheeling diode	-
3	3.2	Full wave fully controlled rectifiers (centre-tapped, bridge configurations), full-wave half controlled (semi-converters) with R, RL load, effect of freewheeling diode and effect of source inductance.	8
	3.3	Calculation of performance parameters, input performance parameters (input power factor, input displacement factor (DF), input current distortion factors (CDF), input current harmonic factor (HF/THD), Crest Factor (CF)), output performance parameters.	-
		Inverters	
	4.1	Introduction to basic and improved series/parallel inverters, limitations.	-
4	4.2	Introduction, principle of operation, performance parameters of Single phase half / full bridge voltage source inverters with R and R-L load,	10
	4.3	Voltage control of single phase inverters using PWM techniques, harmonic neutralization of inverters, applications	-
		DC-DC converters	
5	5.1	Basic principle of step up and step down DC-DC converters, DC-DC switching mode regulators: Buck, Boost, Buck-Boost, Cuk Regulators (CCM mode only)	8
	5.2	Voltage commutated, current commutated and load commutated DC-DC	-

		converters				
	5.3	Applications in SMPS, Battery charging systems.				
		AC Voltage Controllers and Cycloconvertors				
6	6.1	Principle of On-Off control, principle of phase control, single phase bidirectional control with R and RL load	6			
	6.2	Introduction, single phase and three phase Cyclo-converters, applications				
		Total	48			

Recommended Books:

- 1. M. H. Rashid, "Power Electronics", Prentice-Hall of India
- 2. Ned Mohan, "Power Electronics", Undeland, Robbins, John Wiley Publication
- 3. P. S. Bhimbra, "Power Electronics", Khanna Publishers, 2012
- 4. M.D. Singh and K. B. Khanchandani, "Power Electronics", Tata McGraw Hill
- 5. Ramamurthy, "Thyristors and Their Applications"
- 6. P. C. Sen, "Modern Power Electronics", Wheeler Publication
- 7. S. Shrivastava, "Power Electronics", Nandu Publication, Mumbai.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject	Subject Name	Examination Scheme							
Code		Theory Marks				Term	Practical	Oral	Total
		Internal Assessment			End	Work			
		Test 1	Test	Ave. of	Sem.				
			2	Test 1 and	Exam				
				Test 2					
EXC703	Digital Signal	20	20	20	80				100
	Processing								

Prerequisite Courses: Signals and Systems

Course Objectives:

- 1. To teach the design techniques and performance analysis techniques of digital filters
- 2. To introduce the students to advanced signal processing techniques, digital signal processors and applications

Course Outcomes:

After successful completion of this course students will be able to

- 1. Demonstrate an understanding of the discrete-time Fourier transform and the concept of digital frequency.
- 2. Design FIR and IIR digital filters to meet arbitrary specifications and Develop algorithms for implementation
- 3. Understand the effect of hardware limitations on performance of digital filters
- 4. Use advanced signal processing techniques and digital signal processors in various applications

Module No.	Unit No.	Topics	Hrs.			
1.0		Discrete Fourier Transform and Fast Fourier Transform				
	1.1	Definition and Properties of DFT,IDFT, circular convolution of sequences using DFT and IDFT, Relation between Z-transform and DFT Filtering of long data sequences: Overlap Save and Overlap Add Method Computation of DFT	10			
	1.2	Fast Fourier transforms(FFT),Radix-2decimationintime and decimation in frequency FFT algorithms, inverse FFT, and Introduction to composite FFT				
2.0		IIR Digital Filters				
	2.1	Types of IIR Filters (Low Pass, High Pass, Band Pass, Band stop and All Pass) Analog filter approximations: Butterworth, Chebyshev I and II				
	2.2	MappingofS-planetoZ-plane, impulse invariance method, bilinear transformation method, Design of IIR digital filters from analog filters with examples	10			
	2.3	Analog and digital frequency transformations with design examples				
3.0		FIR Digital Filters				
	3.1	Characteristics of FIR digital filters, Minimum Phase, Maximum Phase, Mixed Phase and Linear Phase Filters Frequency response, location of the zero sof linear phase FIR filters	10			

	3.2	Design of FIR filter susing window techniques (Rectangular, Hamming, Hanning,Blackmann, Barlet) Design of FIR filter susing Frequency Sampling technique Comparison of IIR and FIR filters					
4.0		Finite Word Length Effects in Digital Filters					
	4.1	Quantization, truncation and rounding, Effects due to truncation and rounding, Input quantization error, Product quantization error, Co-efficient quantization error, Zero-input limit cycle oscillations, Overflow limit cycle oscillations, Scaling	06				
	4.2	Quantization in Floating Point realization of IIR digital filtersFinite word length effects in FIR digital filters					
5.0		Multirate DSPand FilterBanks					
	5.1	Introduction and concept of Multirate Processing, Block Diagram of Decimator and Interpolator, Decimation and Interpolation by Integer numbers Multistage Approach to Sampling rate converters	06				
	5.2	Sample rate conversion using Polyphase filter structure, Type I and Type II Polyphase Decomposition					
6.0		DSP Processors and Applications					
	6.1	Introduction to General Purpose and Special Purpose DSP processors, fixed point and floating point DSP processor, Computer architecture for signal processing, Harvard Architecture, Pipelining, multiplier and accumulator(MAC), Special Instructions, Replication, On-chip memory, Extended Parallelism	06				
	6.2	General purpose digital signal processors, Selecting digital signal processors, Special purpose DSP hardware					
	6.3	Applications of DSP: Radar Signal Processing and Speech Processing					
	1	Total	48				

Text Books:

1. Emmanuel C. Ifeachor, Barrie W. Jervis, "*Digital Signal Processing*", A Practical Approach by, Pearson Education

2. Tarun Kumar Rawat, "Digital Signal Processing", Oxford University Press, 2015

Reference Books:

- 1. ProakisJ., Manolakis D., "Digital Signal Processing", 4th Edition, Pearson Education
- 2. Sanjit K. Mitra, Digital Signal Processing A Computer Based Approach edition 4e
- 3. McGraw Hill Education (India) Private Limited
- 4. OppenheimA., SchaferR., BuckJ., "DiscreteTimeSignalProcessing", 2ndEdition, Pearson Education...
- 5. B. VenkataRamaniand, M. Bhaskar, "*Digital Signal Processors, Architecture, Programming and Applications*", Tata McGraw Hill, 2004.
- 6. L.R.RabinerandB.Gold,"*TheoryandApplicationsofDigitalSignalProcessing*", Prentice-HallofIndia, 2006.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5markswill be asked.
- 4: Remaining questions will be selected from all the modules.
| Subject Code | Subject Name | Teach | ing Scheme | e (Hrs.) | | Credits Assigned | | | |
|--------------|--------------|--------|------------|----------|--------|------------------|----------|-------|--|
| | | Theory | Practical | Tutorial | Theory | TW/Practical | Tutorial | Total | |
| ELXDLO7031 | NEURAL | 4 | 2 | | 4 | | | 04 | |
| | NETWORKS | | | | | | | | |
| | & FUZZY | | | | | | | | |
| | LOGIC | | | | | | | | |

Subject Code	Subject Name		Examination Scheme							
			Th	eory Marks		Term	Practical	Oral	Total	
		Internal assessment End			End	Work				
		Test	Test	Ave. Of	Sem.					
		1	2	Test 1	Exam					
				and Test						
				2						
ELXDLO7031	NEURAL	20	20	20	80	-			100	
	NETWORKS									
	& FUZZY									
	LOGIC									

Pre-requisite

- Knowledge of linear algebra, multivariate calculus, and probability theory
- Knowledge of a programming language (MATLAB /C/C ++ recommended)

Course Objectives:

- To study basics of biological Neural Network.
- To understand the different types of Artificial Neural Networks
- To know the applications of ANN .
- To study fuzzy logic and fuzzy systems.

Course outcomes:

At the end of completing the course of Neural Networks & Fuzzy Logic, a student will be able to:

- 1. Choose between different types of neural networks
- 2. Design a neural network for a particular application
- **3.** Understand the applications of neural networks
- 4. Appreciate the need for fuzzy logic and control

Module	Contents	Hours					
	Introduction: 1.1 Biological neurons, McCulloch and Pitts models <i>of</i> neuron, Types of activation function, Network architectures, Knowledge representation, Hebb net						
1	1.2 Learning processes: Supervised learning, Unsupervised learning and Reinforcement learning						
1	1.3 Learning Rules : Hebbian Learning Rule, Perceptron Learning Rule, Delta Learning Rule, Widrow-Hoff Learning Rule, Correlation Learning Rule, Winner-Take-All Learning Rule	10					
	1.4 Applications and scope of Neural Networks						
	Supervised Learning Networks :						
	2.1 Perception Networks – continuous & discrete, Perceptron convergence theorem,						
2	Adaline, Madaline, Method of steepest descent, - least mean square algorithm,						
2	Linear & non-linear separable classes & Pattern classes,	12					
	2.2 Back Propagation Network,						
	2.3 Radial Basis Function Network.						
	Unsupervised learning network:						
2	3.1 Fixed weights competitive nets,	06					
3	3.2 Kohonen Self-organizing Feature Maps, Learning Vector Quantization,	00					
	3.3 Adaptive Resonance Theory – 1						
	Associative memory networks:						
	4.1 Introduction, Training algorithms for Pattern Association,						
4	4.2 Auto-associative Memory Network, Hetero-associative Memory Network, Bidirectional Associative Memory,	08					
	 2.1 Perception Networks – continuous & discrete, Perceptron convergence theorem, Adaline, Madaline, Method of steepest descent, – least mean square algorithm, Linear & non-linear separable classes & Pattern classes, 2.2 Back Propagation Network, 2.3 Radial Basis Function Network. Unsupervised learning network: 3.1 Fixed weights competitive nets, 3.2 Kohonen Self-organizing Feature Maps, Learning Vector Quantization, 3.3 Adaptive Resonance Theory – 1 Associative memory networks: 4.1 Introduction, Training algorithms for Pattern Association, 4.2 Auto-associative Memory, Network, Hetero-associative Memory Network, Bidirectional Associative Memory, 4.3 Discrete Hopfield Networks. Fuzzy Logic: 5.1 Fuzzy Sets, Fuzzy Relations and Tolerance and Equivalence 5.2 Fuzzification and Defuzzification 						
	Fuzzy Logic:						
5	5.1 Fuzzy Sets, Fuzzy Relations and Tolerance and Equivalence	12					
5	5.2 Fuzzification and Defuzzification	14					
	5.3 Fuzzy Controllers						

TOTAL	48	

Text- Books:

- Dr. S. N. Sivanandam, Mrs S.N. Deepa, "Principles of Soft computing", Wiley Publication.
- Jacek M. Zurada, "Introduction to Artificial Neural Systems, Jaico publishing house.

Reference books :

- Simon Haykin, "Neural Network a Comprehensive Foundation", Pearson Education.
- S. Rajsekaran, Vijaylakshmi Pai, "Neural Networks, Fuzzy Logic, and Genetic Algorithms", PHI.
- Thimothy J. Ross, "Fuzzy Logic with Engineering Applications", Wiley Publication.
- Christopher M Bishop, "Neural Networks For Pattern Recognition", Oxford Publication

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of total 6 questions, each of 20 marks.
- 2. Only 4 questions need to be solved.
- 3. Question number 1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.
- 5. No question should be asked from pre-requisite module

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ELXDLO7032	Advanced	4	2		4			04
	Networking							
	Technologies							

Subject Code	Subject Name	Examination Scheme								
			Th	eory Marks		Term	Practical	Oral	Total	
		Internal assessment End			End	Work				
		Test	Test	Ave. Of	Sem.					
		1	2	Test 1	Exam					
				and Test						
				2						
ELXDLO7032	Advanced	20	20	20	80	-			100	
	Networking									
	Technologies									

Course Pre-requisite: ELX405 Principles of Communication Engineering ELX602 Computer Communication Network ELXDLO-2 Wireless Communication

Course Objectives:

The objectives of this course are to:

- 1. Understand the characteristic features of Various Wireless networks
- 2. Understand Optical networking and significance of DWDM.
- 3. Introduce the need for network security and safeguards
- 4. Understand the principles of network management

Course Outcomes:

On successful completion of the course the students will be able to:

- 1. Appreciate the need for Wireless networks and study the IEEE 802.11 Standards
- 2. Comprehend the significance of Asynchronous Transfer Mode(ATM)
- 3. Understand the features of emerging wireless Networks: Bluetooth Networks, ZIGBEE, WSN
- 4. Analyze the importance of Optical networking
- 5. Demonstrate knowledge of network design and security and management
- 6. Understand the concept of Cloud Computing and its applications.

Module	Unit	Topics	Hrs.
No.	No.		
1.		Wireless LAN and WAN technologies	08
	1.1	Introduction to Wireless networks : Infrastructure networks, Ad-hoc networks,	
		IEEE 802.11 architecture and services, Medium Access Control sub-layers, CSMA/CA	
		Physical Layer, 802.11 Security considerations.	
	1.2	Asynchronous Transfer Mode (ATM): Architecture, ATM logical connections, ATM	

		cells, ATM Functional Layers, Congestion control and Quality of service	
2.		Emerging Wireless Technologies	10
	21	Window Dansonnal Ange Natural (WDAN), WDAN 902 15 1 architecture Divets oth	
	2.1	wireless rersonnel Area Network (wPAN): wPAN 802.15.1 arcmeeture, Bluetooth	
		Protocol Stack, Bluetooth Link Types, Bluetooth Security, Network Connection	
		Establishment in Bluetooth, Network Topology in Bluetooth, Bluetooth Usage	
		Models	
		002 15 2 11/ W 1 D 1 002 15 4 7 1 DED	
	2.2	802.15.3- Ultra Wide Band, 802.15.4- Zigbee, RFID	
	2.3	Wireless Sensor Networks: Introduction and Applications, Wireless Sensor Network	
		Model, Sensor Network Protocol Stack,	
3.0		Optical Networking	08
	- 2.1		
	3.1	SONET : SONET/SDH, Architecture, Signal, SONET devices, connections, SONET	
		layers, SONET frames, STS Multiplexing, SONET Networks	
	3.2	DWDM: Frame format, DWDM architecture, Optical Amplifier, Optical cross connect	
		Performance and design considerations	
4.0		Network Design, Security and Management	10
	4.1	3 tier Network design layers: Application layer, Access layer, Backbone layers,	
		Ubiquitous computing and Hierarchical computing	
	4.2	Network Security: Security goal, Security threats, security safeguards, firewall types and design.	
	4.3	Network management definitions, functional areas (FCAPS), SNMP, RMON	
5.0		Routing in the Internet:	06
	5.1	Intra and inter domain Routing, Unicast Routing Protocols: RIP, OSPF, BGP	
	5.2	Multicast Routing Protocols ,Drawbacks of traditional Routing methods	
6.0		Cloud computing:	06
	6.1	Cloud Computing Evolution, Definition, SPI framework of Cloud Computing, Cloud service delivery models,	
	6.2	Cloud deployment models, key drivers to adoption of cloud, impact of cloud computing on	
		users, examples of cloud service providers: Amazon, Google, Microsoft, Salesforce etc.	
		Total	48

Recommended Text Books:

- 1. Behrouz A. Forouzan, "Data communication and networking ", McGraw Hill Education, Fourth Edition.
- 2. Darren L. Spohn, "Data Network Design", McGraw Hill Education, Third edition
- 3. William Stallings, "Data and Computer communications", Pearson Education, 10th Edition.
- 4. Tim Mather , Subra Kumaraswamy & Shahed Latif, "Cloud security & Privacy: an enterprise Perspective", O'Reilly Media Inc.Publishers

Reference Books:

1. William Stallings, "Wireless Communications and Networks", Pearson Ed., 2nd Edition.

- 2. Vijay Garg ,"Wireless Communication and networking", Morgan Kaufmann Publishers
- 3. Carr and Snyder, "Data communication and network security", McGraw Hill ,1ST edition.
- 4. Upena Dalal & Manoj Shukla, "Wireless Communication and Networks", Oxford Press
- Deven Shah , Ambavade, "Advanced Communication Networking"
 Beherouz A Forouzan , "TCP /IP Protocol Suite" , Tata McGraw Hill Education ,4th edition.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of the syllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining questions will be selected from all the modules.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ELXDLO7033	Robotics	4	2		4			04

Subject Code	Subject Name		Examination Scheme								
			Th	eory Marks		Term	Practical	Oral	Total		
		Internal assessment End			Work						
		Test	Test	Ave. Of	Sem.						
		1	2	Test 1	Exam						
				and Test							
				2							
ELXDLO7033	Robotics	20	20	20	80	-			100		

Pre-requisite: Applied Mathematics III, Applied Mathematics IV, Linear Control Systems

Course Objectives:

- 1. To study basics of robotics
- 2. To familiarize students with kinematics & dynamics of robots
- 3 To familiarize students with Trajectory & task planning of robots.
- 4 To familiarize students with robot vision

Course outcomes:

At the end of completing the course of Robotics, a student will be able to:

- 1. understand the basic concepts of robotics
- 2. perform the kinematic and the dynamic analysis of robots
- 3. perform trajectory and task planning of robots
- 4. describe importance of visionary system in robotic manipulation

Module	Contents	Hours
1	Fundamentals of Robotics: 1.1 Robot Classification, Robot Components, Robot Specification, Joints, Coordinates, Coordinate frames, Workspace, Languages, Applications.	04
2	 Kinematics of Robots: 2.1 Homogeneous transformation matrices, Inverse transformation matrices, Forward and inverse kinematic equations – position and orientation 2.2 Denavit-Hatenberg representation of forward kinematics, Forward and inverse kinematic solutions of three and four axis robot 	10
3	 Velocity Kinematics & Dynamics: 3.1 Differential motions and velocities : Differential relationship, Jacobian, Differential motion of a frame and robot, Inverse Jacobian, Singularities, 3.2 Dynamic Analysis of Forces : Lagrangian mechanics, Newton Euler formulation, Dynamic equations of two axis robot 	10
4	Trajectory planning: 4.1 Basics of Trajectory planning, Joint-space trajectory planning, Cartesian-space trajectories	08
5	Robot Vision: 5.1 Image representation, Template matching, Polyhedral objects, Shape analysis, Segmentation, Iterative processing, Perspective transform, Camera Calibration	08
6	Task Planning: 6.1 Task level programming, Uncertainty, Configuration Space, Gross motion Planning; Grasp planning, Fine-motion Planning, Simulation of Planer motion, Source and goal scenes, Task planner simulation.	08
	TOTAL	48

Text- Books :

- Robert Shilling, "Fundamentals of Robotics Analysis and contro"l, Prentice Hall of India, 2009
- Saeed Benjamin Niku, "Introduction to Robotics Analysis, Control, Applications", Wiley India Pvt. Ltd., Second Edition, 2011

Reference books :

- John J. Craig, "Introduction to Robotics Mechanics & Control", Third Edition, Pearson Education, India, 2009
- Mark W. Spong , Seth Hutchinson, M. Vidyasagar, "Robot Modeling & Control ", Wiley India Pvt. Ltd., 2006
- Mikell P. Groover et.al, "Industrial Robots-Technology, Programming & applications", McGraw Hill, New York, 2008

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of the syllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining questions will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme						
		Theor y	Practica I	Tutoria l	Theor y	TW/Practical	Tutoria l	Tota l
ELXDLO70 34	IC Technology	04			04			04

Subject	Subject				Examination Scheme	1		
Code	Name	Theory Marks Term Practical Oral Tota				Total		
		In as	ternal sessme	ent	End Sem.	Wor k		
		Test 1	Test 2	Avg. of Test 1 and Test 2	Exam			
ELXDL	IC Technology	20	20	20	80		 	100
O7034								

Course Pre-requisite:

- □ ELX302:Electronic Devices and Circuits I
- □ ELX303:Digital Circuit Design
- □ ELX603:VLSI Design

Course Objectives:

- 1. To provide knowledge of IC fabrication processes and advanced IC technologies.
- 2. To disseminate knowledge about novel VLSI devices and materials.

Course Outcomes:

After successful completion of the course student will be able to

- 1. Demonstrate a clear understanding of various MOS fabrication processes & CMOS fabrication flow.
- 2. Design layout of MOS based Circuits.
- 3. Demonstrate a clear understanding of Semiconductor Measurements & Testing.
- 4. Understand advanced technologies, Novel Devices and materials in Modern VLSI Technology.

Module No.	Unit No.	Topics	Hrs.
1.0		Crystal Growth, Wafer preparation and fabrication for VLSI Technology	8
	1.1	Semiconductor Manufacturing: Semiconductor technology trend, Clean rooms, Wafer cleaning and Gettering.	
	1.2	Semiconductor Substrate:	1
		Crystal structure, Crystal defects, Czochralski growth, Float Zone growth, Bridgman growth of GaAs, Wafer Preparation and specifications	
2.0		Fabrication Processes Part 1	12
	2.1	Epitaxy: Classification, Molecular Beam Epitaxy	
	2.2	Silicon Oxidation: Thermal oxidation process, Kinetics of growth, Properties of	1
		Silicon Dioxide, Oxide Quality.	-
	2.3	Device Isolation: LOCOS, Shallow Trench Isolation (STI).	-
		Deposition: Physical Vapor Deposition-Evaporation and Sputtering,	
	2.4	Chemical Vapor Deposition: APCVD, LPCVD, PECVD	
	2.4	Diffusion: Nature of diffusion, Diffusion in a concentration gradient, diffusion	1
		Equation, diffusion systems, problems in diffusion.	
	2.5	Ion Implantation: Penetration range-Nuclear& Electronic stopping and Range, implantation damage, Annealing-Rapid thermal annealing, ion implantation systems.	
3.0		Fabrication Process Part 2	12
	3.1	Etching &Lithography:	1
		Etching: Basic concepts and Classification	
		Lithography: Introduction to Lithography process, Types of Photoresist,	
		Types of Lithography: Electron beam, Ion beam and X-ray lithography	
	3.2	Metallization and Contacts: Introduction to Metallization, Schottky contacts and Ohmic contacts.	
	3.3	CMOS Process Flow: N well, P-well and Twin tub, CMOS Latch Up	1
	3.4	Design rules, Layout of MOS based circuits (gates and combinational logic). Buried	1

		and Butting Contact	
4.0		Measurement and Testing	06
	4.1	Semiconductor Measurements: Conductivity type, Resistivity, Hall Effect	
		Measurements, Drift Mobility,	
	4.2	Testing: Technology trends affecting testing, VLSI testing process and test	
		equipment, test economics and product quality	
		VLSI Technologies	05
	5.1	SOI Technology: SOI fabrication using SIMOX, Bonded SOI and Smart Cut ,PD	
		SOI and FD SOI Device structure and their features	
	5.2	Advanced Technologies: low κ and high κ , BiCMOS, H κ MG Stack, Strained Silicon.	
	5.3	GaAs Technologies: MESFET Technology, MMIC technologies, MODFET	
		Novel Devices and Materials	
	6.1	Multigate Devices: Various multigate device configurations-double gate, triple gate (FinFET) and Gate All Around (Nanowire).	05
		Nanowire: Concept, VLS method of fabrication, Nanowire FET, Types: Horizontal and Vertical Nanowires, III-V compound Materials in Nanowires.	
	6.2	2-D Materials and FET: Graphene& CNT FET, MOS2 and Black Phosphorous.	
			40
		Total	48

Recommended Books:

- 1. James D. Plummer, Michael D. Deal and Peter B. Griffin, "*Silicon VLSI Technology*", Pearson, Indian Edition.
- 2. Stephen A. Campbell, "*The Science and Engineering of Microelectronic Fabrication*", Oxford University Press, 2nd Edition.
- 3. Sorab K. Gandhi, "VLSI Fabrication Principles", Wiley, Student Edition.
- 4. G. S. May and S. M. Sze, "Fundamentals of Semiconductor Fabrication", Wiley, First Edition.
- 5. Kerry Bernstein and N. J. Rohrer, "SOI Circuit Design Concepts", Kluwer Academic Publishers, 1st edition.

- 6. Jean-Pierre Colinge, "FinFETs and Other Multigate Transistors", Springer, 1st edition
- 7. M. S. Tyagi, "Introduction to Semiconductor Materials and Devices", John Wiley and Sons, 1st edition.
- 8. James E. Morris and KrzysztolIniewski, "Nanoelectronic Device ApplicationsHandbook", CRC Press
- 9. Glenn R. Blackwell, "The electronic packaging", CRC Press
- 10. Michael L. Bushnell and Vishwani D. Agrawal, "Essentials of Electronic Testing fordigital, memory and mixed-signal VLSI circuits", Springer

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of the syllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining questions will be selected from all the modules.

Course Code	Course Name	Credits
ILO7011	Product Life Cycle Management	03

- 1. To familiarize the students with the need, benefits and components of PLM
- 2. To acquaint students with Product Data Management & PLM strategies
- 3. To give insights into new product development program and guidelines for designing and developing a product
- 4. To familiarize the students with Virtual Product Development

- 1. Gain knowledge about phases of PLM, PLM strategies and methodology for PLM feasibility study and PDM implementation.
- 2. Illustrate various approaches and techniques for designing and developing products.
- 3. Apply product engineering guidelines / thumb rules in designing products for moulding, machining, sheet metal working etc.
- 4. Acquire knowledge in applying virtual product development tools for components, machining and manufacturing plant

Module	Detailed Contents	Hrs
	Introduction to Product Lifecycle Management (PLM):Product Lifecycle	10
	Management (PLM), Need for PLM, Product Lifecycle Phases, Opportunities of	
	Globalization, Pre-PLM Environment, PLM Paradigm, Importance & Benefits of PLM,	
01	Widespread Impact of PLM, Focus and Application, A PLM Project, Starting the PLM	
	Initiative, PLM Applications	
	PLM Strategies: Industrial strategies, Strategy elements, its identification, selection and implementation, Developing PLM Vision and PLM Strategy, Change management for PLM	
	ProductDesign:Product Design and Development Process, Engineering Design,	09
	Organization and Decomposition in Product Design, Typologies of Design Process	
	Models, Reference Model, Product Design in the Context of the Product Development	
	Process, Relation with the Development Process Planning Phase, Relation with the Post	
0.2	design Planning Phase, Methodological Evolution in Product Design, Concurrent	
02	Engineering, Characteristic Features of Concurrent Engineering, Concurrent	
	Engineering and Life Cycle Approach, New Product Development (NPD) and	
	Strategies, Product Configuration and Variant Management, The Design for X System,	
	Objective Properties and Design for X Tools, Choice of Design for X Tools and Their	
	Use in the Design Process	

03	Product Data Management (PDM):Product and Product Data, PDM systems	05
03	and importance, Components of PDM, Reason for implementing a PDM system,	
	financial justification of PDM, barriers to PDM implementation	
	Virtual Product Development Tools:For components, machines, and	05
04	manufacturing plants, 3D CAD systems and realistic rendering techniques,	
	Digital mock-up, Model building, Model analysis, Modeling and simulations in	
	Product Design, Examples/Case studies	
	Integration of Environmental Aspects in Product Design: Sustainable Development,	05
	Design for Environment, Need for Life Cycle Environmental Strategies, Useful Life	
05	Extension Strategies, End-of-Life Strategies, Introduction of Environmental Strategies	
	into the Design Process, Life Cycle Environmental Strategies and Considerations for	
	Product Design	
	Life Cycle Assessment and Life Cycle Cost Analysis: Properties, and Framework of	05
	Life Cycle Assessment, Phases of LCA in ISO Standards, Fields of Application and	
06	Limitations of Life Cycle Assessment, Cost Analysis and the Life Cycle Approach,	
	General Framework for LCCA, Evolution of Models for Product Life Cycle Cost	
	Analysis	

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper.Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. John Stark, "Product Lifecycle Management: Paradigm for 21st Century Product Realisation", Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, AntoninoRisitano, "Product Design for the environment-A life cycle approach", Taylor & Francis 2006, ISBN: 0849327229
- 3. SaaksvuoriAntti, Immonen Anselmie, "Product Life Cycle Management", Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, "Product Lifecycle Management: Driving the next generation of lean thinking", TataMcGrawHill,2006,ISBN:0070636265

Course Code	Course Name	Credits
ILO7012	Reliability Engineering	03

- 1. To familiarize the students with various aspects of probability theory
- 2. To acquaint the students with reliability and its concepts
- 3. To introduce the students to methods of estimating the system reliability of simple and complex systems
- 4. To understand the various aspects of Maintainability, Availability and FMEA procedure

- 1. Understand and apply the concept of Probability to engineering problems
- 2. Apply various reliability concepts to calculate different reliability parameters
- 3. Estimate the system reliability of simple and complex systems
- 4. Carry out a Failure Mode Effect and Criticality Analysis

Module	Detailed Contents	Hrs
	Probability theory: Probability: Standard definitions and concepts; Conditional Probability, Baye's Theorem.	
01	Probability Distributions: Central tendency and Dispersion; Binomial, Normal, Poisson, Weibull, Exponential, relations between them and their significance.	08
	Measures of Dispersion: Mean, Median, Mode, Range, Mean Deviation, Standard Deviation, Variance, Skewness and Kurtosis.	
	Reliability Concepts: Reliability definitions, Importance of Reliability, Quality Assurance and Reliability, Bath Tub Curve.	
02	Failure Data Analysis: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MTBF, Reliability Functions.	08
	Reliability Hazard Models: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, Weibull Model. Distribution functions and reliability analysis.	
03	System Reliability: System Configurations: Series, parallel, mixed configuration, k out of n structure, Complex systems.	05
04	Reliability Improvement: Redundancy Techniques: Element redundancy, Unit redundancy, Standby redundancies. Markov analysis.	08

	System Reliability Analysis – Enumeration method, Cut-set method, Success	
	Path method, Decomposition method.	
05	Maintainability and Availability:System downtime, Design for Maintainability:Maintenance requirements, Design methods:Fault Isolation and self-diagnostics, Partsstandardization and Interchangeability, Modularization and Accessibility, Repair VsReplacement.Availability – qualitative aspects.	05
06	Failure Mode, Effects and Criticality Analysis: Failure mode effects analysis, severity/criticality analysis, FMECA examples. Fault tree construction, basic symbols, development of functional reliability block diagram, Fault tree analysis and Event tree Analysis	05

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. L.S. Srinath, "Reliability Engineering", Affiliated East-Wast Press (P) Ltd., 1985.
- 2. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw Hill.
- 3. B.S. Dhillion, C. Singh, "Engineering Reliability", John Wiley & Sons, 1980.
- 4. P.D.T. Conor, "Practical Reliability Engg.", John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, "Reliability in Engineering Design", John Wiley & Sons.
- 6. Murray R. Spiegel, "Probability and Statistics", Tata McGraw-Hill Publishing Co. Ltd.

Course Code	Course Name	Credits
ILO7013	Management Information System	03

- 1. The course is blend of Management and Technical field.
- 2. Discuss the roles played by information technology in today's business and define various technology architectures on which information systems are built
- 3. Define and analyze typical functional information systems and identify how they meet the needs of the firm to deliver efficiency and competitive advantage
- 4. Identify the basic steps in systems development

- 1. Explain how information systems Transform Business
- 2. Identify the impact information systems have on an organization
- 3. Describe IT infrastructure and its components and its current trends
- 4. Understand the principal tools and technologies for accessing information from databases to improve business performance and decision making
- 5. Identify the types of systems used for enterprise-wide knowledge management and how they provide value for businesses

Module	Detailed Contents	Hrs
01	Introduction To Information Systems (IS): Computer Based Information Systems, Impact of IT on organizations, Imporance of IS to Society. Organizational Strategy, Competitive Advantages and IS.	4
02	Data and Knowledge Management: Database Approach, Big Data, Data warehouse and Data Marts, Knowledge Management. Business intelligence (BI): Managers and Decision Making, BI for Data analysis and Presenting Results	7
03	Ethical issues and Privacy: Information Security. Threat to IS, and Security Controls	7
04	Social Computing (SC): Web 2.0 and 3.0, SC in business-shopping, Marketing, Operational and Analytic CRM, E-business and E-commerce – B2B B2C. Mobile commerce.	7
05	Computer Networks Wired and Wireless technology, Pervasive computing, Cloud	6

	computing model.	
06	Information System within Organization: Transaction Processing Systems, Functional Area Information System, ERP and ERP support of Business Process. Acquiring Information Systems and Applications: Various System development life cycle models.	8

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Kelly Rainer, Brad Prince, Management Information Systems, Wiley
- 2. K.C. Laudon and J.P. Laudon, Management Information Systems: Managing the Digital Firm, 10th Ed., Prentice Hall, 2007.
- 3. D. Boddy, A. Boonstra, Managing Information Systems: Strategy and Organization, Prentice Hall, 2008

Course Code	Course Name	Credits
ILO7014	Design of Experiments	03

- 1. To understand the issues and principles of Design of Experiments (DOE)
- 2. To list the guidelines for designing experiments
- 3. To become familiar with methodologies that can be used in conjunction with experimental designs for robustness and optimization

- 1. Plan data collection, to turn data into information and to make decisions that lead to appropriate action
- 2. Apply the methods taught to real life situations
- 3. Plan, analyze, and interpret the results of experiments

Module	Detailed Contents	Hrs
01	Introduction 1.1 Strategy of Experimentation 1.2 Typical Applications of Experimental Design 1.3 Guidelines for Designing Experiments	06
	1.4 Response Surface Methodology	
02	 Fitting Regression Models 2.1 Linear Regression Models 2.2 Estimation of the Parameters in Linear Regression Models 2.3 Hypothesis Testing in Multiple Regression 2.4 Confidence Intervals in Multiple Regression 2.5 Prediction of new response observation 2.6 Regression model diagnostics 2.7 Testing for lack of fit 	08

	Two-Level Factorial Designs and Analysis	
	3.1 The 2^2 Design	
	3.2 The 2^3 Design	
	3.3 The General ^{2k} Design	
03	2.4 A Single Deplicate of the 2^k Design	07
	5.4 A Single Replicate of the 2 Design	
	3.5 The Addition of Center Points to the 2 ^k Design,	
	3.6 Blocking in the 2 ^k Factorial Design	
	3.7 Split-Plot Designs	
	Two-Level Fractional Factorial Designs and Analysis	
	4.1 The One-Half Fraction of the 2 ^k Design	
	4.2 The One-Quarter Fraction of the 2 ^k Design	
04	4.3 The General 2 ^{k-p} Fractional Factorial Design	07
	4.4 Resolution III Designs	
	4.5 Resolution IV and V Designs	
	4.6 Fractional Factorial Split-Plot Designs	
	Conducting Tests	
	5.1 Testing Logistics	
	5.2 Statistical aspects of conducting tests	
05	5.3 Characteristics of good and bad data sets	07
	5.4 Example experiments	
	5.5 Attribute Vs Variable data sets	
	Taguchi Approach	
06	6.1 Crossed Array Designs and Signal-to-Noise Ratios	04
	6.2 Analysis Methods	04
	6.3 Robust design examples	
		1

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rd edition, John Wiley & Sons, New York, 2001
- D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001
- 3. George E P Box, J Stuart Hunter, William G Hunter, Statics for Experimenters: Design, Innovation and Discovery, 2nd Ed. Wiley
- 4. W J Dimond, Peactical Experiment Designs for Engineers and Scintists, John Wiley and Sons Inc. ISBN: 0-471-39054-2
- 5. Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T.Voss
- 6. Phillip J Ross, "Taguchi Technique for Quality Engineering," McGrawHill
- 7. Madhav S Phadke, "Quality Engineering using Robust Design," Prentice Hall

Course Code	Course Name	Credits
ILO7015	Operations Research	03

- 1. Formulate a real-world problem as a mathematical programming model.
- 2. Understand the mathematical tools that are needed to solve optimization problems.
- 3. Use mathematical software to solve the proposed models.

- 1. Understand the theoretical workings of the simplex method, the relationship between a linear program and its dual, including strong duality and complementary slackness.
- 2. Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change.
- 3. Solve specialized linear programming problems like the transportation and assignment problems, solve network models like the shortest path, minimum spanning tree, and maximum flow problems.
- 4. Understand the applications of integer programming and a queuing model and compute important performance measures

Module	Detailed Contents	Hrs
	Introduction to Operations Research : Introduction, , Structure of the Mathematical Model, Limitations of Operations Research	
01	Linear Programming: Introduction, Linear Programming Problem, Requirements of LPP, Mathematical Formulation of LPP, Graphical method, Simplex Method Penalty Cost Method or Big M-method, Two Phase Method, Revised simplex method, Duality , Primal – Dual construction, Symmetric and Asymmetric Dual, Weak Duality Theorem, Complimentary Slackness Theorem, Main Duality Theorem, Dual Simplex Method, Sensitivity Analysis	14
	 Transportation Problem: Formulation, solution, unbalanced Transportation problem. Finding basic feasible solutions – Northwest corner rule, least cost method and Vogel's approximation method. Optimality test: the stepping stone method and MODI method. Assignment Problem: Introduction, Mathematical Formulation of the Problem, Hungarian Method Algorithm, Processing of n Jobs Through Two Machines and m 	
	Machines, Graphical Method of Two Jobs m Machines Problem Routing Problem,	

	Travelling Salesman Problem	
	Integer Programming Problem : Introduction, Types of Integer Programming Problems, Gomory's cutting plane Algorithm, Branch and Bound Technique. Introduction to Decomposition algorithms.	
02	Queuing models: queuing systems and structures, single server and multi-server models, Poisson input, exponential service, constant rate service, finite and infinite population	05
03	Simulation : Introduction, Methodology of Simulation, Basic Concepts, Simulation Procedure, Application of Simulation Monte-Carlo Method: Introduction, Monte-Carlo Simulation, Applications of Simulation, Advantages of Simulation, Limitations of Simulation	05
04	Dynamic programming . Characteristics of dynamic programming. Dynamic programming approach for Priority Management employment smoothening, capital budgeting, Stage Coach/Shortest Path, cargo loading and Reliability problems.	05
05	Game Theory . Competitive games, rectangular game, saddle point, minimax (maximin) method of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games without saddle point – mixed strategy for 2 X 2 games.	05
06	Inventory Models : Classical EOQ Models, EOQ Model with Price Breaks, EOQ with Shortage, Probabilistic EOQ Model,	05

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall, (7th Edition), 2002.
- 2. Ravindran, A, Phillips, D. T and Solberg, J. J. "Operations Research: Principles and Practice", John Willey and Sons, 2nd Edition, 2009.
- 3. Hiller, F. S. and Liebermann, G. J. "Introduction to Operations Research", Tata McGraw Hill, 2002.
- 4. Operations Research, S. D. Sharma, KedarNath Ram Nath-Meerut.
- 5. Operations Research, KantiSwarup, P. K. Gupta and Man Mohan, Sultan Chand & Sons.

Course Code	Course Name	Credits
ILO7016	Cyber Security and Laws	03

- 1. To understand and identify different types cybercrime and cyber law
- 2. To recognized Indian IT Act 2008 and its latest amendments
- 3. To learn various types of security standards compliances

- 1. Understand the concept of cybercrime and its effect on outside world
- 2. Interpret and apply IT law in various legal issues
- 3. Distinguish different aspects of cyber law
- 4. Apply Information Security Standards compliance during software design and development

Module	Detailed Contents	Hrs
01	Introduction to Cybercrime: Cybercrime definition and origins of the world, Cybercrime andinformation security, Classifications of cybercrime, Cybercrime and the Indian ITA 2000, A global Perspective on cybercrimes.	4
02	Cyber offenses & Cybercrime: How criminal plan the attacks, Social Engg, Cyber stalking, Cyber café and Cybercrimes, Botnets, Attack vector, Cloud computing, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, AuthenticationService Security, Attacks on Mobile/Cell Phones, Mobile Devices:Security Implications for Organizations, Organizational Measures forHandling Mobile, Devices-Related Security Issues, OrganizationalSecurity Policies and Measures in Mobile Computing Era, Laptops	9
03	Tools and Methods Used in Cyberline Phishing, Password Cracking, Keyloggers and Spywares, Virus and Worms, Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Over Flow, Attacks on Wireless Networks, Phishing, Identity Theft (ID Theft)	6
04	The Concept of Cyberspace E-Commerce , The Contract Aspects in Cyber Law ,The Security Aspect of Cyber Law	8

	,The Intellectual Property Aspect in Cyber Law , The Evidence Aspect in Cyber Law , The Criminal Aspect in Cyber Law, Global Trends in Cyber Law , Legal Framework for Electronic Data Interchange Law Relating to Electronic Banking , The Need for an Indian Cyber Law	
05	Indian IT Act. Cyber Crime and Criminal Justice : Penalties, Adjudication and Appeals Under the IT Act, 2000, IT Act. 2008 and its Amendments	6
06	Information Security Standard compliances SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI.	6

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination.

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Nina Godbole, Sunit Belapure, Cyber Security, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- 5. Nina Godbole, Information Systems Security, Wiley India, New Delhi
- 6. Kennetch J. Knapp, *Cyber Security & Global Information Assurance* Information Science Publishing.
- 7. William Stallings, Cryptography and Network Security, Pearson Publication

- 8. Websites for more information is available on : The Information Technology ACT, 2008-TIFR : https://www.tifrh.res.in
- 9. Website for more information , A Compliance Primer for IT professional : https://www.sans.org/reading-room/whitepapers/compliance/compliance-primerprofessionals-33538

Course Code	Course Name	Credits
ILO7017	Disaster Management and Mitigation Measures	03

- 1. To understand physics and various types of disaster occurring around the world
- 2. To identify extent and damaging capacity of a disaster
- 3. To study and understand the means of losses and methods to overcome /minimize it.
- 4. To understand role of individual and various organization during and after disaster
- 5. To understand application of GIS in the field of disaster management
- 6. To understand the emergency government response structures before, during and after disaster

- 1. Get to know natural as well as manmade disaster and their extent and possible effects on the economy.
- 2. Plan of national importance structures based upon the previous history.
- 3. Get acquainted with government policies, acts and various organizational structure associated with an emergency.
- 4. Get to know the simple do's and don'ts in such extreme events and act accordingly.

Module	Detailed Contents	Hrs
01	 Introduction 1.1 Definition of Disaster, hazard, global and Indian scenario, general perspective, importance of study in human life, Direct and indirect effects of disasters, long term effects of disasters. Introduction to global warming and climate change. 	03
02	 Natural Disaster and Manmade disasters: 2.1 Natural Disaster: Meaning and nature of natural disaster, Flood, Flash flood, drought, cloud burst, Earthquake, Landslides, Avalanches, Volcanic eruptions, Mudflow, Cyclone, Storm, Storm Surge, climate change, global warming, sea level rise, ozone depletion 2.2 Manmade Disasters: Chemical, Industrial, Nuclear and Fire Hazards. Role of growing population and subsequent industrialization, urbanization and changing lifestyle of human beings in frequent occurrences of manmade disasters. 	09
03	 Disaster Management, Policy and Administration 3.1 Disaster management: meaning, concept, importance, objective of disaster management policy, disaster risks in India, Paradigm shift in disaster management. 	06

	3.2 Policy and administration:	
	Importance and principles of disaster management policies, command and co- ordination of in disaster management, rescue operations-how to start with and how to proceed in due course of time, study of flowchart showing the entire process.	
	Institutional Framework for Disaster Management in India:	
04	4.1 Importance of public awareness, Preparation and execution of emergency management programme.Scope and responsibilities of National Institute of Disaster Management (NIDM) and National disaster management authority (NDMA) in India.Methods and measures to avoid disasters, Management of casualties, set up of emergency facilities, importance of effective communication amongst different agencies in such situations.	06
	4.2 Use of Internet and softwares for effective disaster management. Applications of GIS, Remote sensing and GPS in this regard.	
	Financing Relief Measures:	
05	5.1 Ways to raise finance for relief expenditure, role of government agencies and NGO's in this process, Legal aspects related to finance raising as well as overall management of disasters. Various NGO's and the works they have carried out in the past on the occurrence of various disasters, Ways to approach these teams.	09
	5.2 International relief aid agencies and their role in extreme events.	
	Preventive and Mitigation Measures:	
	6.1 Pre-disaster, during disaster and post-disaster measures in some events in general	
06	6.2 Structural mapping: Risk mapping, assessment and analysis, sea walls and embankments, Bio shield, shelters, early warning and communication	06
	6.3 Non Structural Mitigation: Community based disaster preparedness, risk transfer and risk financing, capacity development and training, awareness and education, contingency plans.	
	6.4 Do's and don'ts in case of disasters and effective implementation of relief aids.	

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. 'Disaster Management' by Harsh K.Gupta, Universities Press Publications.
- 2. 'Disaster Management: An Appraisal of Institutional Mechanisms in India' by O.S.Dagur, published by Centre for land warfare studies, New Delhi, 2011.
- 3. 'Introduction to International Disaster Management' by Damon Copolla, Butterworth Heinemann Elseveir Publications.
- 4. 'Disaster Management Handbook' by Jack Pinkowski, CRC Press Taylor and Francis group.
- 5. 'Disaster management & rehabilitation' by Rajdeep Dasgupta, Mittal Publications, New Delhi.
- 6. 'Natural Hazards and Disaster Management, Vulnerability and Mitigation R B Singh, Rawat Publications
- 7. Concepts and Techniques of GIS -C.P.Lo Albert, K.W. Yonng Prentice Hall (India) Publications.

(Learners are expected to refer reports published at national and International level and updated information available on authentic web sites)

Course Code	Course Name	Credits
ILO 7018	Energy Audit and Management	03

- 1. To understand the importance energy security for sustainable development and the fundamentals of energy conservation.
- 2. To introduce performance evaluation criteria of various electrical and thermal installations to facilitate the energy management
- 3. To relate the data collected during performance evaluation of systems for identification of energy saving opportunities.

- 1. To identify and describe present state of energy security and its importance.
- 2. To identify and describe the basic principles and methodologies adopted in energy audit of an utility.
- 3. To describe the energy performance evaluation of some common electrical installations and identify the energy saving opportunities.
- 4. To describe the energy performance evaluation of some common thermal installations and identify the energy saving opportunities
- 5. To analyze the data collected during performance evaluation and recommend energy saving measures

Module	Detailed Contents					
01	Energy Scenario: Present Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy Security, Energy Conservation and its Importance, Energy Conservation Act-2001 and its Features. Basics of Energy and its various forms, Material and Energy balance					
02	Energy Audit Principles: Definition, Energy audit- need, Types of energy audit, Energy management (audit) approach-understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution. Elements of monitoring& targeting; Energy audit Instruments; Data and information-analysis. Financial analysis techniques: Simple payback period, NPV, Return on investment (ROI), Internal rate of return (IRR)	08				
03	Energy Management and Energy Conservation in Electrical System: Electricity billing, Electrical load management and maximum demand Control;	10				

	Power factor improvement, Energy efficient equipments and appliances, star ratings. Energy efficiency measures in lighting system, Lighting control: Occupancy sensors, daylight integration, and use of intelligent controllers.	
	Energy conservation opportunities in: water pumps, industrial drives, induction motors, motor retrofitting, soft starters, variable speed drives.	
04	Energy Management and Energy Conservation in Thermal Systems: Review of different thermal loads; Energy conservation opportunities in: Steam distribution system, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system. General fuel economy measures in Boilers and furnaces, Waste heat recovery, use of insulation- types and application. HVAC system: Coefficient of performance, Capacity, factors affecting Refrigeration and Air Conditioning system performance and savings opportunities.	10
05	Energy Performance Assessment: On site Performance evaluation techniques, Case studies based on: Motors and variable speed drive, pumps, HVAC system calculations; Lighting System: Installed Load Efficacy Ratio (ILER) method, Financial Analysis.	04
06	Energy conservation in Buildings: Energy Conservation Building Codes (ECBC): Green Building, LEED rating, Application of Non-Conventional and Renewable Energy Sources	03

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Management Principles, C.B.Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

Course	Course Name	Teaching Scheme			Credits Assigned			
Code		Theory	Practical	Tutori al	Theory	TW/Practic al	Tutorial	Total
ELXL7 01	Instrumentation System Design Laboratory		02		04			04

	Course Name	Examination Scheme							
Course Code			The	eory Mark	T				
		Internal Assessment (IA)			End Semester	Work	Practical	Total	
		Test I	Test II	Average	Examination				
ELXL7 01	Instrumentation System Design Laboratory					25	25	50	

Term Work :-

At least 06 experiments covering entire syllabus of ELX 701 (Instrumentation System Design) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks.
Suggested List of Experiments :-

- 1. Study of pneumatic single acting & double acting cylinder
- 2. Study of hydraulic process control valves
- 3. Design of stepper motor interface & controller
- 4. Design of instrumentation amplifier for variable voltage gain
- 5. Design of signal conditioning circuits for LDR / thermistor / RTD / strain gauge
- 6. Design of linearization circuits for transducers
- 7. Design of temperature P+I+D controller
- 8. Tuning of P+I+D controller using MATLAB / Simulink
- 9. Implementation of PLC ladder diagram for given application
- 10. Study of SCADA & HMI
- 11. Designing of data acquisition system (DAS)
- 12. Simulating a simple process using LabVIEW

Course Code	C N	Tea	Teaching Scheme			Credits Assigned			
	Course Name	Theory	Practical	Tutori al	Theory	TW/Practic al	Tutorial	Total	
ELXL70 2	Power Electronics		02		04			04	

		Examination Scheme								
Course	Course Name		The	eory Mark	Tour	Oral &				
Code		Internal Assessment (IA)			End Semester	Work	Practical	Total		
		Test I	Test II	Average	Examination					
ELXL7 02	Power Electronics					25	25	50		

Term Work :-

At least 06 experiments covering entire syllabus of ELX 702 (Power Electronics) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will

be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Suggested List of Experiments

- 1. Characteristics of SCR, DIAC, TRAIC.
- 2. Characteristics of IGBT, MOSFET and Power BJT.
- 3. Firing circuit for SCR using UJT.
- 4. Study of Half wave and Full wave rectifiers using diodes.
- 5. Study of Half wave and Full wave controlled rectifiers.
- 6. Buck converter, Boost converter and Buck-Boost converter.
- 7. Study of Cycloconverter.
- 8. Simulation of single phase Half wave and Full wave rectifier circuit.
- 9. Simulation of controlled rectifier with R and RL load.
- 10. Simulation of controlled rectifier with (i) Source Inductance (ii) Freewheeling diode.

Course Code	Course Name	Teaching Scheme			Credits Assigned			
		Theory	Practical	Tutori al	Theory	TW/Practic al	Tutorial	Total
ELXL7 03	Digital Signal Processing		02		04			04

Course	Course Name		Examination Scheme								
			The	eory Mark	Taum	Oral 6					
Code		Internal Assessment (IA)			End Semester	Work	Practical	Total			
		Test I	Test II	Average	Examination						
ELXL7 03	Digital Signal Processing					25	25	50			

Instructions

- 1. Minimum 6 experiments and one course project must be submitted by each student.
- 2. Simulation tools like Matlab/Scilab can be used.
- 3. Processor based experiments/mini projects can be included.

The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced

Tentative List of Experiments:

- 1. Study of Convolution, Series and Parallel Systems
- 2. Generation of Basic Signals
- 3. Computation of DFT and it's inverse
- 4. Computation of FFT and comparison of frequency response of DFT and FFT
- 5. Computation of DFT
- 6. IIR Butterworth filter design using IIT technique
- 7. IIR Chebyshev filter design using BLT technique
- 8. Design of FIR filter using hamming and hanning window, low pass and high pass filter

Course Code		Teaching Scheme			Credits Assigned			
	Course Name	Theory	Practical	Tutori al	Theory	TW/Practic al	Tutorial	Total
ELXD OLO70 31	NEURAL NETWORKS & FUZZY LOGIC		02		04			04

			Examination Scheme									
Course	Course Name		The	eory Mark								
Code		Internal Assessment (IA)			End Semester	Term Work	Oral & Practical	Total				
		Test I	Test II	Average	Examination							
ELXD OLO70 31	NEURAL NETWORKS & FUZZY LOGIC					25	25	50				

Term Work:

The term work shall consist of

- 1. At least *six experiments* using MATLAB Or C/C++ or Java covering the whole of syllabus, duly recorded and graded.
- 2. One seminar and Two assignments to be included covering at least 60% of the syllabus.

The distribution of marks for term work shall be as follows:

The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced *The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.*

Suggested List of experiments: using C/C++ or Matlab or java

- Activation functions
- McCulloch Pitts Neuron Model
- Hebbian learning
- Single layer perceptron neural network
- Multi-layer perceptron neural network

- Error Back propagation neural network
- Kohonen Self-organizing Feature Maps
- Associative memory network
- Fuzzy relations
- Defuzzification methods

Suggested List of seminar :

- Classification of upper case and lower case letters.
- Classification of numbers 0-9.
- BPN for training a hidden layer.
- Implement a heteroassociative memory network to implement any pattern.
- Implement discrete Hopfield network for letters A-E.
- Implement BAM for a pattern of 5X3 array.
- Fuzzy Logic controller design washing machine / vehicle speed control.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned					
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total		
ELXLDLO7032	Advanced	-	2		-	01		01		
	Networking									
	Technologies									
	Laboratory									

Subject Code	Subject				Examinatio	n Schen	ie		
	Name	Theory Marks				Term	Practical	Oral	Total
		Internal assessment End			End	Work			
		Test Test Ave. Of			Sem.				
		1 2 Test 1		Exam					
				and Test					
				2					
ELXLDLO7032	Advanced	-	-	-	-	25		25	50
	Networking								
	Technologies								
	Laboratory								

Course Objectives:

Lab session includes **seven experiments plus one presentation** on any one of the suggested topics The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced

Suggested Experiments:

- 1. Evaluation of home/campus network
- 2. GSM-GPS protocol implementation
- 3. Bluetooth protocol implementation
- 4. ZigBee protocol implementation
- 5. Wi-Fi protocol implementation
- 6. Study of NMAP
- 7. Study of SNMP
- 8. Study of Ethernet.

Suggested topics for presentation:

- 1. MANET
- 2. VOFR
- 3. VOIP
- 4. X.25
- 5. Body area network
- 6. RFID
- 7. Web Security
- 8. Compression Techniques
- 9. Security attacks
- 10. NAT
- 11. College campus network

12. Fiber Optics types, advantages disadvantages13. WSN

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory Practical Tutorial			Theory	TW/Practical	Tutorial	Total	
ELXLDLO7033	Robotics	- 2			-	01		01	

Subject Code	Subject	Examination Scheme									
	Name		Th	eory Marks		Term	Practical	Oral	Total		
		Inte	rnal as	sessment	End	Work					
		Test Test Ave. Of			Sem.						
		1	2	Test 1	Exam						
				and Test							
				2							
ELXLDLO7033	Robotics	-	-	-	_	25		25	50		

Term Work:

The term work shall consist of

- **3.** At least *eight experiments* using MATLAB / Scilab covering the whole of syllabus, duly recorded and graded.
- 4. *Two assignments* to be included covering at least 60% of the syllabus.

The distribution of marks for term work shall be as follows:

The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced *The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.*

Suggested List of experiments: using Matlab / Scilab

- Forward kinematics
- Inverse kinematic
- Dynamic analysis
- Joint-space trajectory
- Cartesian-space trajectory
- Template matching
- Iterative processing
- Segmentation

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELXLDLO7034	IC	-	2		-	01		01	
	Technology								

Subject Code	Subject				Examinatio	on Scheme				
	Name	Theory Marks				Term	Practical	Oral	Total	
		Internal assessment End				Work				
		Test Test Ave. Of Sem.								
		1 2 Test 1		Exam						
		and Test								
				2						
ELXLDLO7034	IC	-	-	-	-	25		25	50	
	Technology									

Course Objectives:

Lab session includes **seven experiments plus one presentation** on any one of the suggested topics. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced

Suggested Experiments:

Following list of experiments covers the complete syllabus prescribed in IC Technology course. It is formulated in such a way that it allows student to explore various process, layout and device simulation tools. Detail analysis of observations should be recorded in the project book. Tools to be used are Microwind, SUPREME, Electric, Visual TCAD, Mentor Graphics Pyxis and tools available on nanohub. Linux based operating system is preferred to do simulations.

1. Draw and simulate layout for the CMOS inverter. Carry out static as well as transient simulation. Analyze CMOS inverter for i) $(W/L)_{pmos} > (W/L)_{nmos}$ ii) $(W/L)_{pmos} = (W/L)_{nmos}$ iii) $(W/L)_{pmos} < (W/L)_{nmos}$. Do parasitic extraction. Feed these parasitic in circuit simulator and do layout versus schematic verification.

2. Draw and simulate layout for the following circuits. Size them with respect to reference inverter.

a. CMOS NAND

b. CMOS NOR

Also observe the effect of different types of design rules on above circuits and tabulate the comparative results.

[y=

3. Draw and simulate layout for the given equation (each student will get different equation $\overline{A.B + C.D}$) with the following design style

- a. Static CMOS
- b. Transmission gate
- c. Dynamic Logic

4. Draw and simulate layout for 6T SRAM cell. Size the SRAM cell for 1) lowest area 2) high reliability

5. Draw and simulate layout for the following circuits.

a. SR latch

b. D flip Flop

6. Simulate oxidation process with Deal-Grove model for different conditions (e.g. oxidation type, orientation, time, temperature, thickness etc.) and comment on the results obtained.

7. Simulate diffusion process for different conditions (e.g. source, time, temperature, dopant etc.) and comment on the results obtained.

8. Simulate Si PN junction for various structure and environmental conditions and comment on the results obtained. Repeat the entire simulation for Ge diode.

9. Simulate MOS capacitor (Classical Simulation) for single gate device for a typical value of fixed charge density and interface trap charge density in gate insulator. Do the AC analysis and comment on the results obtained.

10. Simulate MOS capacitor (Quantum Simulation) for single gate device for a typical value of fixed charge density and interface trap charge density in gate insulator. Do the AC analysis and comment on the results obtained.

Suggested topics for presentation:

Presentation on any Novel device or process.

`Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned						
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total			
ELX 801	Internet of Things	4	2		4			04			

B.E. (Electronics Engineering) – Semester VIII

Subject	Subject Name		Examination Scheme											
Code			T	heory Marks		Term	Practical	Oral	Total					
		Inte	Internal assessment			Work								
		Test 1	Test	Ave. Of	Exam									
			2 Test 1 and											
				Test 2										
ELX 801	Internet of	20	20	20	80	-			100					
	Things													

Course Pre-requisite: ELX 501 :- Micro-controllers and Applications

ELX 601:- Embedded System and RTOS ELX602:- Computer Communication Network ELXDLO-2 Wireless Communication

Course Objectives:

The objectives of this course are to:

- 1. Understand the design features of Internet of Things(IoT)
- 2. Understand importance of data handling in IoT Way.
- 3. Introduce multiple way of data communication and networking.
- 4. Understand design issue in IoT

Course Outcomes:

On successful completion of the course the students will be able to:

- 1. Understand the concepts of Internet of Things
- 2. Analyze basic web connectivity in IoT
- 3. Understand Data handling in IoT
- 4. Design basic applications based on IoT using specific components

Module	Unit	Topics	Hrs.
No.	No.		
1.		Introduction to IoT	08
	1.1	Introduction;-Defining IoT, Characteristics of IoT, Physical design of IoT, Logical	
		design of IoT, Functional blocks of IoT, Sources of IoT, and M2MCommunication.	
	1.2	Iot and M2m:- IoT/M2M System layers and Design Standardization, Difference	
		between IoT and M2M	
2.		Network & Communication aspects	10

	2.1	Design Principles & Web Connectivity:- Web Communication Protocols for	
		connected devices, Web connectivity using Gateway, SOAP, REST, HTTP, RESTful	
		and WebSockets	
		(Publish –Subscribe),MQTT, AMQP, CoAP Protocols	
	2.2	Internet Connectivity: - Internet connectivity, Internet based communication, IP	
		addressing in IoT, Media Access Control, Application Layer Protocols.	
		LDWAN Fundamentals : LODA NDIST CAT I TE M1 SICEON	
		LPWAN Fundamentals LORA ,NBIOT,CAT LTE MI,SIGFOA	
3.0		IoT Platforms and Design Methodology	08
	3.1	Defining Specifications About:- Purpose & requirements, process, domain model,	
		information model, service, IoT level, Functional view, Operational view, Device and	
		Component Integration, (case studies)	
	3.2	IoT Levels:-IoT Levels and Deployment Templates	
4.0		Data Handling in IoT	10
	4.1	Data Acquiring, Organizing, Processing:- Data acquiring and storage, Organizing	
		the data, Transactions, Business Processes, Integration and Enterprise Systems,	
		Analytics.	
	4.2	Data Collection and Storage:- Cloud Computing Paradigm for Data Collection,	
		storage and computing, Cloud Service Models, Xively Cloud for Io I	
5.0		(AWS, Google APP engine , Dweet. IO, Fifebase)	0(
5.0			VO
	5.1	Exemplary Devices:- Raspberry Pi, R-Pi Interfaces, Programming R-Pi, Sensor Technology,	
		Sensor Data Communication Protocols, RFID, WSN Technology, Intel Galileo	
(0			0.6
6.0	(1		06
	6.1	Design Layers, complexity, Io1 Applications in Premises, Supply Chain and Customer	
	67	Home Automation Smart Cities Environment Agriculture IoT Printer	
	0.2	Tione Automation, Smart Cittes, Environment, Agriculture, 101 Finiter	
		Total	48

Recommended Text Books:

- 5. ArshdeepBahga and Vijay Madisetti, "Internet of Things: A Hands-on Approach, Universities Press.
- 6. Raj Kamal, "Internet of Things: Architecture and Design Principles", McGraw Hill Education ,First edition
- 7. David Hanes ,Gonzalo salgueiro"IoT Fundamentals Networking Technologies,Protocols and Use Cases for Internet of Things", Cisco Press, Kindle 2017 Edition
- 8. Andrew Minteer ,"Analytics for the Internet of Things(IoT)",Kindle Edition

Reference Books:

- 1. Adrian McEwen, Hakim Cassimally, : Designing the Internet of Things", Paperback, First Edition
- 2. <u>Yashavant Kanetkar</u>, <u>Shrirang Korde</u>:Paperback "21 Internet of Things (IOT) Experiments"
 - a. BPB Publications

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of thesyllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

2. Total 4 questions need to be solved.

3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.

4: Remaining questions will be selected from all the modules.

Subject Code	Subjec Name	t	Τ	eaching Scl	heme	eme Credits Assign					Assigned	1		
		ſ	heory	Practical	Tutori	al	Theory	y	T/W Practic	Tutori al		ial	Total	
ELX802	Analog and Mixed VLSI Design	g I 1	04	02	-		04	-			-		04	
		Exan	nination	Scheme										
		Theo Inter	ry Marl nal Asse	End	kam ,									
		Marl Test 1	cs Test 2	Average	Sem Exam (Marks)	Dı (H	uration [rs)	I W	Term work		ractical	Ora	Total	
ELX802	Analog and Mixed VLSI Design	20	20	20	80		03		-		-	-	100	

Course Pre-requisite:

- □ ELX302: Electronic Devices and Circuits I
- □ ELX303: Digital Circuit Design
- □ ELX402: Electronic Devices and Circuits II
- □ ELX504: Design With Linear Integrated Circuits
- □ ELX603: VLSI Design
- □ ELX DLO-3: IC Technology

Course Objectives:

- 1. To teach analysis and design of building blocks of CMOS Analog VLSI Circuits.
- 2. To highlight the issues associated with the CMOS analog VLSI circuit design.
- 3. To emphasize upon the issues related to mixed signal layout design.

Course Outcomes:

After successful completion of the course student will be able to

- 1. Discuss tradeoffs involved in analog VLSI Circuits.
- 2. Analyze building blocks of CMOS analog VLSI circuits.
- 3. Design building blocks of CMOS analog VLSI circuits
- 4. Carry out verifications of issues involved in analog and mixed signal circuits

Module No	Unit No	Topics	Hrs
		Analog building blocks	
1.0	1.1	Need for CMOS analog and mixed signal designs, MOS Transistor as sampling switch, active resistances, current source and sinks, current mirror.	8
	1.2	Voltage References: Band Gap References, General Considerations, Supply-independent biasing, Temperature independent references, PTAT	

		current generation and Constant Gm biasing	
		Amplifier Fundamentals	
		Single Stage Amplifiers: Basic concepts, Gain Bandwidth (GBW),	
	2 1	Common-source stage (with resistive load, diode connected load, current-	
	2.1	source load, triode load, source degeneration), source follower, common-	
		gate stage, cascode stage, folded cascade stage.	
2.0		Differential Amplifiers: Single ended and differential operation, Basic	
2.0	2.2	differential pair, large signal and small signal behaviours, Common-mode	12
		response, Differential pair with MOS loads.	
		Noise: Statistical Characteristics of Noise, Types of Noise, Representation	
	• •	of Noise in circuits, Noise in Single stage amplifiers (CS, CD, CG stages),	
	2.3	noise in differential pairs, noise bandwidth, noise figure, noise	
		temperature.	
		MOS Operational Amplifiers	
		Stability and Frequency Compensation: General Considerations,	
	3.1	Multipole systems, Phase margin, Frequency compensation, compensation	-
3.0		of two stage op- amps	
		Op-amp Design: General Considerations, performance parameters, One-	8
	2.2	stage op- amps, Two-stage op-amps, Gain Boosting, Common-mode	
	3.2	teedback, Input range limitations(ICMR), Slew Rate, Power supply	
		rejection, Noise in op-amps. Design of single ended and double ended two	
		stage Op-amps	
		Mixed Signal Circuits Dasia Concents: AMS design flow, ASIC Full system design Semi-	
	4.1	basic Concepts: AMS design now, ASIC, Full custom design, Semi-	
		custom design, System on Chip, System in package, Hardware softw	
4.0		Oscillators: General considerations Ring oscillators IC oscillators	0
	4.2	VCO	
		Phase-Locked Loop: Simple PLL, Charge pump PLL, Non-ideal effects	
	4.3	in PLL, Delay locked loops and applications of PLL in integrated circuits	
		Data Converter Fundamentals	
		Switch Capacitor Circuits: MOSFETs as switches, Speed considerations,	
5.0	5.1	Precision Considerations, Charge injection cancellation, Unity gain buffer,	4
		Non- inverting amplifier and integrator.	4
	5.2	Basic CMOS comparator Design, Adaptive biasing, Analog multipliers.	
		Data Converter Fundamentals and Architectures	
		Fundamentals: Analog versus discrete time signals, converting analog	
	6.1	signals to data signals, sample and hold characteristics. DAC	
		specifications, ADC specifications.	
6.0		DAC architectures: Digital input code, resistors string, R-2R ladder	8
		networks, current steering, charge scaling DACs, Cyclic DAC, pipeline	Ŭ
	6.2		
		ADC architectures: Flash, Two Step Flash, Pipeline ADC, Integrating	
		IALL'S NUCCESSIVE approximation ALL'S	
			40

Recommended Books:

- 1. B Razavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 1st Edition.
- 2. R. Jacaob Baker, Harry W. Li, David E. Boyce, "CMOS Circuit Design, Layout, and Simulation", Wiley, Student Edition
- 3. P. E. Allen and D. R. Holberg, "*CMOS Analog Circuit Design*", Oxford University Press, 3rd Edition.
- 4. Gray, Meyer, Lewis, Hurst, "Analysis and design of Analog Integrated Circuits", Willey, 5th Edition

Internal Assessment (IA)

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

2. Total 4 questions need to be solved.

3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.

4: Remaining questions will be selected from all the modules.

Subject Code	Subject Name	Г	Teaching Scheme					Credits Assigned							
		Theory	Pra	ctical	Tutoria	Theor	ry	Practical 7		Tutorial		Total			
ELX DLO8041	Advanced Power Electronics	04	()2		04				04					
	Subject Name	Examination Scheme													
Subject		Theory	y Mark	KS											
Code		Internal assessment				End	E	xam	Term Work	Practical		Oral	Total		
		Test 1	Test 2	Avg (and]	of Test 1 Fest 2	Sem. d Exam H		lours							
ELX DLO8041	Advanced Power Electronics	20	20	20		80	0.	3					100		

Course Pre-requisite:

- 4. Power Electronics.
- 5. Linear Control System.
- **6.** BEE

Course Objectives:

- 3. To enhance the ideas of students for more complex power electronic system.
- 4. To teach the analytical methods in power electronic systems.
- 5. To expose the students to various applications of power electronics in electronics equipment, drives and non-conventional energy systems.

Course Outcomes:

After successful completion of the course students will be able to:

- 1. Thoroughly understand the modern methods of analysis and control of power electronic systems.
- 2. Carry out the theoretical analysis of the power electronic systems from the 'Systems Theory' point of view.
- 3. Appreciate the ubiquity of power electronic systems in engineering fields.
- 4. Simulate and analyse power electronic systems.

Module No.	Unit No.	Contents	Hrs.
1		Three-phase Rectifiers	8
	1.1	3-phase half-wave and full-wave controlled rectifiers with R and RL load, Effect of source inductance,	
	1.2	Distortion in line current, calculation of performance parameters.	
2		Three-phase inverters and control	8
	2.1	Three phase bridge inverters (120° and 180° conduction mode) with R and RL load	
	2.2	PWM for 3-phase voltage source inverters, Space Vector Modulation (SVM) technique for 3-phase voltage source inverters, hysteresis control.	
3		DC-DC Converters	10
	3.1	Average model, linearized and transfer function models, state-space average models of basic buck, boost and buck-boost converters.	
	3.2	Feedback control of these converters (PI and PID).	
4		Power Electronic Applications in DC Drives	8
	4.1	Introduction to DC motors, speed control of DC motor, drives with semi converters, full converters and dual converters.	
	4.2	Chopper-based drive.	
	4.3	Electric braking of DC motors.	
5		Power Electronic Applications in AC Drives	10
	5.1	Introduction to three-phase induction motor, speed control methods for three-phase induction motor :	
		i) Stator voltage	
		ii) Variable frequency	
		iii) Rotor resistance	
		iv) V/f control	
		v) Slip power recovery schemes	
6		Power Electronic Applications	4
	6.1	Induction heating, dielectric heating, solid state relays,	

6.2	Energy conversion interface in renewable energy system.	
	Total	48

Recommended Books:

- 1. M. Rashid, Power Electronics: Circuits, Devices, and Applications, PHI, 3rd Edition.
- 2. R. W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, Springer, 2nd Edition.
- 3. Mohan, Undeland and Robbins, Power Electronics: Converters, Applications and Design, Wiley (Student Edition), 2nd Edition.
- 4. P. S. Bimbhra, Power Electronics, Khanna Publishers, 2012.
- 5. M. D. Singh, K. B. Khanchandani, Power Electronics, Tata McGraw Hill, 2nd Edition.
- 6. J. P. Agrawal, Power Electronics Systems: Theory and Design, Pearson Education, 2002.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining questions will be selected from all the modules.

Subject Code	Subject Name	Т	Teaching Scheme				Credits Assigned								
		Theory	Pra	ctical	Tutorial	Theor	ry	Practic	al Tu	torial		Tota	Total		
ELX DLO8042	MEMS Technology	04	()2		04						04			
	Subject Name	Exami	Examination Scheme												
Subject		Theory													
Code		Internal assessment				End F		xam	Term Work	Prac	Practical		Total		
		Test 1	Test 2	Avg of and T	of Test 1 Test 2	Sem. Exam		lours							
ELX DLO8042	MEMS Technology	20	20	20		80	0.	3					100		

Course Pre –requisite: VLSI Design an IC Technology

Course Objectives:

- 1. To provide knowledge of MEMS processing steps and processing modules
- 2. To provide knowledge of MEMS Materials with respect to applications.
- 3. To demonstrate the use of semiconductor based processing modules used in the fabrication of variety of sensors and actuators (e.g. pressure sensors, accelerometers, etc.) at the micro-scale.
- 4. To provide an understanding of basic design and operation of MEMS sensors, actuators and structures.

Course Outcomes:

- 1. Understand the underlying fundamental principles of MEMS devices including physical operation and material properties.
- 2. Design and simulate MEMS devices using standard simulation tools.
- 3. Develop different concepts of micro system sensors and actuators for real-world applications.
- 4. Understand the rudiments of Micro-fabrication techniques.

Module No.	Unit No.	Contents	Hrs.
1		Introduction to MEMS	4
	1.1	Introduction to MEMS, Comparison with Micro Electronics Technology,	
	1.2	Real world examples (Air-Bag, DMD, Pressure Sensors), MEMS Challenges, MEMS Sensors in Internet of Things (IoT), Bio-medical applications	
2		MEMS Materials and Their Properties	8
	2.1	Materials (eg. Si, SiO ₂ , SiN, SiC, Cr, Au, Al, Ti, SU8, PMMA, Pt)	
	2.2	Important properties: Young modulus, Poisson's ratio, density, piezoresistive coefficients, TCR, Thermal Conductivity, Material Structure.	
3		MEMS Sensors, Actuators and Structures	8
	3.1	MEMS Sensing (Capacitive, Piezo electric Piezo resistive)	
	3.2	Micro Actuation Techniques (Thermal, Piezo electric, Electro static, Shape Memory Alloys, LORENTZ FORCE ACTUATION), Micro Grippers, Micro Gears, Micro Motors, Micro Valves, Micro Pumps.	
4		MEMS Fab Processes	10
	4.1	MEMS Processes & Process parameters: Bulk & Surface Micromachining, High Aspect Ratio Micro	
	4.2	Machining (LIGA, Laser), X-Ray Lithography, Photolithography, PVD techniques, Wet, Dry, Plasma	
	4.3	etching, DRIE, Etch Stop Techniques. Die, Wire & Wafer Bonding, Dicing, Packaging(with Metal	
5		MEMS Devices	12
	5.1	Architecture, working and basic behaviour of Cantilevers, Micro heaters, Accelerometers, Pressure Sensor types, Micromirrors in DMD, Inkjet printer- head. Steps involved in Fabricating above devices	
6		MEMS Device Characterization	6

6.1	Piezo-resistance, TCR, Stiffness, Adhesion, Vibration, Resonant frequency, & importance of these measurements in studying device behavior MEMS Failure Mechanisms and Reliability.	
	Total	48

Recommended Books:

- 1. MEMS and MICROSYSTEMS Design and Manufacture by Tai Ran Hsu : McGraw Hill Education
- 2. An Introduction to Micro-electromechanical Systems Engineering; 2nd Ed by N. Maluf, K Williams; Publisher: Artech House Inc
- 3. Micro machined Transducers Sourcebook by G. Kovacs; Publisher: McGraw-Hill
- 4. Practical MEMS by Ville Kaajakari; Publisher: Small Gear Publishing
- 5. Micro-system Design by S. Senturia; Publisher: Springer
- 6. Analysis and Design Principles of MEMS Devices MinhangBao; Publisher: Elsevier Science
- 7. Fundamentals of Micro-fabrication by M. Madou; Publisher: CRC Press; 2 edition
- 8. Micro machined Transducers Sourcebook by G. Kovacs; Publisher: McGraw-Hill

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

2. Total 4 questions need to be solved.

3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.

4. Remaining questions will be selected from all the modules.

Course	Course Name	Teaching Scheme			Credits Assigned			
Code		Theory	Practical	Tutoria l	Theory	TW/Practica l	Tutorial	Total
ELXDLO 8043	Virtual Instrumentation	04			04			04

		Examination Scheme							
Course	Course Name		Th	eory Marks	Tarres	Oral 8			
Code		Interna	ıl Assessm	ent (IA)	End Semester	l erm Work	Practical	Total	
		Test I	Test II	Average	Examination				
ELXDL O8043	Virtual Instrumentation	20	20	20	80	-	-	100	

<u>Rationale</u> :- Virtual instrumentation combines mainstream commercial technologies such as the PC, with flexible software and a wide variety of measurement hardware, so one can create user-defined systems that meet their exact application needs. Virtual instrumentation has led to a simpler way of looking at measurement systems. Instead of using several stand-alone instruments for multiple measurement types and performing rudimentary analysis by hand, engineers now can quickly and cost-effectively create a system equipped with analysis software and a single measurement device that has the capabilities of a multitude of instruments for various applications & measurements.

Course Objectives :-

- 1. To understand virtual instrumentation (VI) & to realize its architecture
- 2. To familiarize with VI software & learn programming in VI
- 3. To study various instruments interfacing & data acquisition methods
- 4. To understand various analysis tools & develop programs for different measurement applications

Course Outcomes :-

At the end of the course, students should gain the ability to :-

- **CO-1** :- Explain the concepts of virtual instrumentation
- **CO-2** :- Select the proper data acquisition hardware
- **CO-3 :-** Configure the data acquisition hardware using LabVIEW
- **CO-4** :- Use LabVIEW to interface related hardware like transducers
- CO-5 :- Design virtual instruments for practical applications

Modul e No.	Topics			
1	INTRODUCTION TO VIRTUAL INSTRUMENTATION (VI)			
1.1	Historical perspective – Need for VI – Advantages of VI – Definition of VI – Block diagram & architecture of VI – Data flow techniques – Graphical programming in data flow – Comparison with conventional programming	06		
2	PROGRAMMING TECHNIQUES			
2.1	VI & sub-VI – Loops & charts – Arrays – Clusters – Graphs – Case & sequence structures – Formula nodes – Local & global variables – String & files inputs	08		
3	APPLICATION DEVELOPMENT SOFTWARE (LabVIEW)			
3.1	Creating virtual instrument in LabVIEW – Implementing dataflow programming in LabVIEW – VI, sub-VI & modular code creation in LabVIEW – Arrays & file I/O in LabVIEW – Textual math integration in LabVIEW – Interfacing external instruments to PC using LabVIEW	10		
4	DATA ACQUISITION BASICS			
4.1	Digital I/O – Counters & timers – PC hardware structure – Timing – Interrupts – DMA – Software & hardware installation – IEEE GPIB 488 concepts – Embedded system buses – PCI – EISA – CPCI	08		
5	COMMON INSTRUMENT INTERFACES			
5.1	Current loop – RS 232C / RS 485 – Interface basics – USB – PCMCIA – VXI – SCXI – PXI – Networking basics for office & industrial application VISA & IVI – Image acquisition & process – Motion control – Digital multimeter (DMM) – Waveform generator	08		
6	USING ANALYSIS TOOLS & APPLICATION OF VI			
6.1	Fourier transform – Power spectrum – Correlation method – Windowing & filtering – Pressure control system – Flow control system – Level control system – Temperature control system – Motion control employing stepper motor – PID controller toolbox	08		
1-6	TOTAL	48		

<u>Recommended Books</u> :-

1. Dr. Sumathi S. & Surekha P, LabVIEW Based Advanced Instrumentation System, PHI, 2nd edition (2007)

Cary Johnson, LabVIEW Graphical Programming, McGraw Hill, 2nd edition (2006)
 Lisa K. Wells & Jeffrey Travis, LabVIEW for Everyone, PHI, 3rd edition (2009)

4. Robert H. Bishop, Learning with LabVIEW 7 Express, Pearson Education, 1st edition (2005)
5. Jovitha Jerome, Virtual Instrumentation using LabVIEW, PHI, 2nd edition (2010)

Internal Assessment (IA) :-

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination :-

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Q.1 will be compulsory and based on entire syllabus.
- 4. Remaining questions (Q.2 to Q.6) will be set from all modules.

5. Weightage of each module in question paper will be proportional to the number of respective lecture hours mentioned in the syllabus.

Course	Course Name	Teaching Scheme			Credits Assigned			
Code		Theory	Practical	Tutoria l	Theory	TW/Practica l	Tutorial	Total
ELXDLO 8044	Digital Image Processing	04			04			04

		Examination Scheme							
Course Code	Course Name		Th	eory Marks	T	Oral 8			
		Internal Assessment (IA)			End Semester	Work	Practical	Total	
		Test I	Test II	Average	Examination				
ELXDL O 8044	Digital Image Processing	20	20	20	80	-	-	100	

Course Pre-requisite:

- □ Applied Mathematics
- □ Signals and Systems

Course Objectives:

- 1. To learn the fundamental concepts of Digital Image Processing through basic spatial and frequency domain techniques.
- 2. To learn Image Compression and Decompression Techniques and compression standards.

Course Outcomes:

After successful completion of the course student will be able to

- 1. Understand the fundamentals of Digital Image representation and simple pixel relations.
- 2. Explain spatial domain and frequency domain techniques for digital image enhancement.
- 3. Perform segmentation and morphological operations.
- 4. Apply compression and decompression techniques to different digital images.

Module No.	Unit No.	Topics	Hrs.
	1.1	Digital Image Processing FundamentalsIntroduction: Background, Representation of a Digital Image, Fundamental Steps inImage Processing, Elements of a Digital Image Processing System	-
1	1.2	Digital Image Fundamentals: Elements of Visual Perception, A Simple ImageModel, Two dimensional Sampling and Quantization, Tonal and Spatial Resolutions, Some Basic Relationships between Pixels,Image File Formats : BMP, TIFF and JPEG.Color Models (RGB, HSI, YUV)	04
2	2.1	Image Enhancement in Spatial DomainEnhancement in the spatial domain: Some Simple Intensity Transformations,Histogram Processing, Image Subtraction, Image Averaging,Spatial domain filters: Smoothing Filters, Sharpening Filters, High boost filter	_08
3	3.1	Image Segmentation and Representation Detection of Discontinuities, Edge Linking using Hough Transform, Thresholding, Region based Segmentation, Split and Merge Technique	08
	3.2	Shape Number, Two Dimensional Moments.	-
4	4.1	Binary Image Processing Binary Morphological Operators, Dilation and Erosion, Opening and Closing, Hit-or-Miss Transformation, Boundary Extraction, Region Filling, Thinning and Thickening, Medial Axis Transform, Connected Component Labeling	06
5	5.1	Image Transforms and frequency domain processingIntroduction to 2 Dimensional Fourier Transform, Discrete Fourier Transform, Properties of the Two-Dimensional Fourier Transform, Fast Fourier Transform(FFT), Computation of 2 DFFTDiscrete Hadamard Transform(DHT), Fast Hadamard Transform(FHT) Discrete	12

		Cosine Transform(DCT), Introduction to Discrete Wavelet Transform (DWT)	
	5.3	Enhancement in the frequency domain: Frequency Domain Filtering Lowpass Filtering, Highpass Filtering, Homomorphic Filtering, Generation of Spatial Masks from Frequency Domain Specifications	
		Image Compression:	
	6.1	Fundamentals : Coding Redundancy, Interpixel Redundancy, Psycho visual	
		Redundancy	
6		Image Compression Models : The Source Encoder and Decoder, Lossless	10
	6.2	Compression Techniques : Run Length Coding, Arithmetic Coding, Huffman	
		Coding, Differential PCM,	-
	6.3	Lossy Compression Techniques: Predictive Coding, Delta modulation, Improved Gray Scale Quantization, Transform Coding, JPEG, MPEG-1., Fidelity Criteria.	
Total	I		48

Text Books:

- 1. Rafel C. Gonzalez and Richard E. Woods, 'Digital Image Processing', Pearson Education Asia, Third Edition, 2009,
- 2. Anil K. Jain, "Fundamentals and Digital Image Processing", Prentice Hall of India Private Ltd, Third Edition

Reference Books:

- 1. S. Jayaraman, E.Esakkirajan and T.Veerkumar, "Digital Image Processing" TataMcGraw Hill Education Private Ltd, 2009,
- Milan Sonka, Vaclay Hlavac, and Roger Boyle, "Image Processing, Analysis, and Machine Vision", Second Edition, Thomson Learning, 2001
 William K. Pratt, "Digital Image Processing", Third Edition, John Wiley & Sons, Inc., 2001 Internal Assessment (IA) :-

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination :-

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Q.1 will be compulsory and based on entire syllabus.
- 4. Remaining questions (Q.2 to Q.6) will be set from all modules.

5. Weightage of each module in question paper will be proportional to the number of respective lecture hours mentioned in the syllabus.

e Code	Course Name	Credits
ILO8021	Project Management	03

Objectives:

- 1. To familiarize the students with the use of a structured methodology/approach for each and every unique project undertaken, including utilizing project management concepts, tools and techniques.
- 2. To appraise the students with the project management life cycle and make them knowledgeable about the various phases from project initiation through closure.

Outcomes: Learner will be able to...

- 1. Apply selection criteria and select an appropriate project from different options.
- 2. Write work break down structure for a project and develop a schedule based on it.
- 3. Identify opportunities and threats to the project and decide an approach to deal with them strategically.
- 4. Use Earned value technique and determine & predict status of the project.
- 5. Capture lessons learned during project phases and document them for future reference

Module	Detailed Contents	Hrs
01	Project Management Foundation: Definition of a project, Project Vs Operations, Necessity of project management, Triple constraints, Project life cycles (typical & atypical) Project phases and stage gate process. Role of project manager. Negotiations and resolving conflicts. Project management in various organization structures. PM knowledge areas as per Project Management Institute (PMI).	5
02	Initiating Projects: How to get a project started, Selecting project strategically, Project selection models (Numeric /Scoring Models and Non-numeric models), Project portfolio process, Project sponsor and creating charter; Project proposal. Effective project team, Stages of team development & growth (forming, storming, norming & performing), team dynamics.	6
03	 Project Planning and Scheduling: Work Breakdown structure (WBS) and linear responsibility chart, Interface Co-ordination and concurrent engineering, Project cost estimation and budgeting, Top down and bottoms up budgeting, Networking and Scheduling techniques. PERT, CPM, 	8

	GANTT chart. Introduction to Project Management Information System (PMIS).	
04	Planning Projects:Crashing project time, Resource loading and leveling, Goldratt's critical chain, ProjectStakeholders and Communication plan.Risk Management in projects: Risk management planning, Risk identification and riskregister. Qualitative and quantitative risk assessment, Probability and impact matrix.Risk response strategies for positive and negative risks	6
05	 5.1 Executing Projects: Planning monitoring and controlling cycle. Information needs and reporting, engaging with all stakeholders of the projects. Team management, communication and project meetings. 5.2 Monitoring and Controlling Projects: Earned Value Management techniques for measuring value of work completed; Using milestones for measurement; change requests and scope creep. Project audit. 5.3 Project Contracting Project procurement management, contracting and outsourcing, 	8
06	 6.1 Project Leadership and Ethics: Introduction to project leadership, ethics in projects. Multicultural and virtual projects. 6.2 Closing the Project: Customer acceptance; Reasons of project termination, Various types of project terminations (Extinction, Addition, Integration, Starvation), Process of project termination, completing a final report; doing a lessons learned analysis; acknowledging successes and failures; Project management templates and other resources; Managing without authority; Areas of further study. 	6

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- Jack Meredith & Samuel Mantel, Project Management: A managerial approach, Wiley India, 7thEd.
- 2. A Guide to the Project Management Body of Knowledge (PMBOK[®] Guide), 5th Ed, Project Management Institute PA, USA
- 3. Gido Clements, Project Management, Cengage Learning.
- 4. Gopalan, Project Management, , Wiley India
- 5. Dennis Lock, Project Management, Gower Publishing England, 9 th Ed.

Course Code	Course Name	Credits
ILO8022	Finance Management	03

Objectives:

- 1. Overview of Indian financial system, instruments and market
- 2. Basic concepts of value of money, returns and risks, corporate finance, working capital and its management
- 3. Knowledge about sources of finance, capital structure, dividend policy

Outcomes: Learner will be able to...

- 1. Understand Indian finance system and corporate finance
- 2. Take investment, finance as well as dividend decisions

Module	Detailed Contents	Hrs
	Overview of Indian Financial System: Characteristics, Components and Functions of Financial System.	
	Financial Instruments: Meaning, Characteristics and Classification of Basic Financial	
01	Instruments — Equity Shares, Preference Shares, Bonds-Debentures, Certificates of Deposit, and Treasury Bills.	06
	Financial Markets: Meaning, Characteristics and Classification of Financial Markets — Capital Market, Money Market and Foreign Currency Market	
	Financial Institutions: Meaning, Characteristics and Classification of Financial Institutions — Commercial Banks, Investment-Merchant Banks and Stock Exchanges	
	Concepts of Returns and Risks: Measurement of Historical Returns and Expected	
	Returns of a Single Security and a Two-security Portfolio; Measurement of Historical	
02	Risk and Expected Risk of a Single Security and a Two-security Portiolio.	06
	Due: Present Value of a Lump Sum, Ordinary Annuity, and Annuity Due: Continuous	
	Compounding and Continuous Discounting.	
	Overview of Corporate Finance: Objectives of Corporate Finance; Functions of	
03	Corporate Finance—Investment Decision, Financing Decision, and Dividend Decision.	09
	Financial Ratio Analysis: Overview of Financial Statements-Balance Sheet, Profit	
	and Loss Account, and Cash Flow Statement; Purpose of Financial Ratio Analysis;	

	Liquidity Ratios; Efficiency or Activity Ratios; Profitability Ratios; Capital Structure	
	Ratios; Stock Market Ratios; Limitations of Ratio Analysis.	
	Capital Budgeting: Meaning and Importance of Capital Budgeting; Inputs for Capital	
	Budgeting Decisions; Investment Appraisal Criterion—Accounting Rate of Return,	
	Payback Period, Discounted Payback Period, Net Present Value(NPV), Profitability Index Internal Pate of Pature (IPP), and Madified Internal Pate of Pature (MIPP)	
04	Index, Internal Rate of Return (IRR), and Modified Internal Rate of Return (MIRR)	10
	Working Capital Management: Concepts of Meaning Working Capital; Importance of	10
	Working Capital Management; Factors Affecting an Entity's Working Capital Needs;	
	Estimation of Working Capital Requirements; Management of Inventories;	
	Management of Receivables; and Management of Cash and Marketable Securities.	
	Sources of Finance: Long Term Sources-Equity, Debt, and Hybrids; Mezzanine	
	Finance; Sources of Short Term Finance-Trade Credit, Bank Finance, Commercial	
	Paper; Project Finance.	
05	Canital Structure: Factors Affecting an Entity's Canital Structure: Overview of	05
	Capital Structure Theories and Approaches— Net Income Approach. Net Operating	
	Income Approach; Traditional Approach, and Modigliani-Miller Approach. Relation	
	between Capital Structure and Corporate Value; Concept of Optimal Capital Structure	
	Dividend Balian Maning and Importance of Dividend Balian Easters Affecting on	
06	Entity's Dividend Decision: Overview of Dividend Policy Theories and Approaches	03
50	Gordon's Approach, Walter's Approach, and Modigliani-Miller Approach	00

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. Fundamentals of Financial Management, 13th Edition (2015) by Eugene F. Brigham and Joel F. Houston; Publisher: Cengage Publications, New Delhi.
- Analysis for Financial Management, 10th Edition (2013) by Robert C. Higgins; Publishers: McGraw Hill Education, New Delhi.
 Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education,
- Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education, New Delhi.
- 4. Financial Management, 11th Edition (2015) by I. M. Pandey; Publisher: S. Chand (G/L) & Company Limited, New Delhi.

Course Code	Course Name	Credits
ILO8023	Enterpreneurship Development and Management	03

Objectives:

- 1. To acquaint with entrepreneurship and management of business
- 2. Understand Indian environment for entrepreneurship
- 3. Idea of EDP, MSME

Outcomes: Learner will be able to...

- 1. Understand the concept of business plan and ownerships
- 2. Interpret key regulations and legal aspects of entrepreneurship in India
- 3. Understand government policies for entrepreneurs

Module	Detailed Contents	Hrs
01	Overview Of Entrepreneurship: Definitions, Roles and Functions/Values of Entrepreneurship, History of Entrepreneurship Development, Role of Entrepreneurship in the National Economy, Functions of an Entrepreneur, Entrepreneurship and Forms of Business Ownership	04
	Role of Money and Capital Markets in Entrepreneurial Development: Contribution of Government Agencies in Sourcing information for Entrepreneurship	
02	 Business Plans And Importance Of Capital To Entrepreneurship: Preliminary and Marketing Plans, Management and Personnel, Start-up Costs and Financing as well as Projected Financial Statements, Legal Section, Insurance, Suppliers and Risks, Assumptions and Conclusion, Capital and its Importance to the Entrepreneur Entrepreneurship And Business Development: Starting a New Business, Buying an Existing Business, New Product Development, Business Growth and the Entrepreneur Law and its Relevance to Business Operations 	09
03	Women's Entrepreneurship Development, Social entrepreneurship-role and need, EDP cell, role of sustainability and sustainable development for SMEs, case studies, exercises	05
04	Indian Environment for Entrepreneurship: key regulations and legal aspects, MSMED Act 2006 and its implications, schemes and policies of the Ministry of MSME, role and responsibilities of various government organisations, departments, banks etc., Role of State governments in terms of infrastructure developments and support etc.,	08

	Public private partnerships, National Skill development Mission, Credit Guarantee	
	Fund, PMEGP, discussions, group exercises etc	
05	Effective Management of Business: Issues and problems faced by micro and small enterprises and effective management of M and S enterprises (risk management, credit availability, technology innovation, supply chain management, linkage with large industries), exercises, e-Marketing	08
06	Achieving Success In The Small Business: Stages of the small business life cycle, four types of firm-level growth strategies, Options – harvesting or closing small business Critical Success factors of small business	05

Assessment: Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. Poornima Charantimath, Entrepreneurship development- Small Business Enterprise, Pearson
- 2. Education Robert D Hisrich, Michael P Peters, Dean A Shapherd, Entrepreneurship, latest edition, The McGrawHill Company
- 3. Dr TN Chhabra, Entrepreneurship Development, Sun India Publications, New Delhi
- 4. Dr CN Prasad, Small and Medium Enterprises in Global Perspective, New century Publications, New Delhi
- 5. Vasant Desai, Entrepreneurial development and management, Himalaya Publishing House
- 6. Maddhurima Lall, Shikah Sahai, Entrepreneurship, Excel Books
- 7. Rashmi Bansal, STAY hungry STAY foolish, CIIE, IIM Ahmedabad
- 8. Law and Practice relating to Micro, Small and Medium enterprises, Taxmann Publication Ltd.
- 9. Kurakto, Entrepreneurship- Principles and Practices, Thomson Publication
- 10. Laghu Udyog Samachar
- 11. www.msme.gov.in
- 12. www.dcmesme.gov.in
- 13. www.msmetraining.gov.in
| Course Code | Course Name | Credits |
|-------------|---------------------------|---------|
| ILO8024 | Human Resource Management | 03 |

Objectives:

- 1. To introduce the students with basic concepts, techniques and practices of the human resource management.
- 2. To provide opportunity of learning Human resource management (HRM) processes, related with the functions, and challenges in the emerging perspective of today's organizations.
- 3. To familiarize the students about the latest developments, trends & different aspects of HRM.
- 4. To acquaint the student with the importance of inter-personal & inter-group behavioral skills in an organizational setting required for future stable engineers, leaders and managers.

Outcomes: Learner will be able to...

- 1. Understand the concepts, aspects, techniques and practices of the human resource management.
- 2. Understand the Human resource management (HRM) processes, functions, changes and challenges in today's emerging organizational perspective.
- 3. Gain knowledge about the latest developments and trends in HRM.
- 4. Apply the knowledge of behavioral skills learnt and integrate it with in inter personal and integroup environment emerging as future stable engineers and managers.

Module	Detailed Contents	Hrs
01	 Introduction to HR Human Resource Management- Concept, Scope and Importance, Interdisciplinary Approach Relationship with other Sciences, Competencies of HR Manager, HRM functions. Human resource development (HRD): changing role of HRM – Human resource Planning, Technological change, Restructuring and rightsizing, Empowerment, TQM, Managing ethical issues. 	5
02	 Organizational Behavior (OB) Introduction to OB Origin, Nature and Scope of Organizational Behavior, Relevance to Organizational Effectiveness and Contemporary issues Personality: Meaning and Determinants of Personality, Personality development, Personality Types, Assessment of Personality Traits for Increasing Self Awareness 	7
	• Perception: Attitude and Value, Effect of perception on Individual Decision-	

		making, Attitude and Behavior.	
		• Motivation: Theories of Motivation and their Applications for Behavioral Change (Maslow, Herzberg, McGregor);	
		• Group Behavior and Group Dynamics: Work groups formal and informal groups and stages of group development. Team Effectiveness: High performing teams, Team Roles, cross functional and self-directed team.	
		• Case study	
ſ		Organizational Structure & Design	
	03	 Structure, size, technology, Environment of organization; Organizational Roles & conflicts: Concept of roles; role dynamics; role conflicts and stress. 	6
	05	• Leadership: Concepts and skills of leadership, Leadership and managerial roles, Leadership styles and contemporary issues in leadership.	0
		• Power and Politics: Sources and uses of power; Politics at workplace, Tactics and strategies.	
ſ		Human resource Planning	
	04	• Recruitment and Selection process, Job-enrichment, Empowerment - Job- Satisfaction, employee morale.	5
		• Performance Appraisal Systems: Traditional & modern methods, Performance Counseling, Career Planning.	
L		Training & Development: Identification of Training Needs, Training Methods	
		Emerging Trends in HR	
	05	• Organizational development; Business Process Re-engineering (BPR), BPR as a tool for organizational development , managing processes & transformation in HR. Organizational Change, Culture, Environment	6
		• Cross Cultural Leadership and Decision Making: Cross Cultural Communication and diversity at work, Causes of diversity, managing diversity with special reference to handicapped, women and ageing people, intra company cultural difference in employee motivation.	
ľ		HR & MIS	
		Need, purpose, objective and role of information system in HR, Applications in HRD in various industries (e.g. manufacturing R&D, Public Transport, Hospitals, Hotels and service industries	10
	06	Strategic HRM	10
		Role of Strategic HRM in the modern business world, Concept of Strategy, Strategic Management Process, Approaches to Strategic Decision Making; Strategic Intent – Corporate Mission, Vision, Objectives and Goals	
1			

Labor Laws & Industrial Relations	
Evolution of IR, IR issues in organizations, Overview of Labor Laws in India; Industrial Disputes Act, Trade Unions Act, Shops and Establishments Act	

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. Stephen Robbins, Organizational Behavior, 16th Ed, 2013
- 2. V S P Rao, Human Resource Management, 3rd Ed, 2010, Excel publishing
- 3. Aswathapa, Human resource management: Text & cases, 6th edition, 2011
- 4. C. B. Mamoria and S V Gankar, Dynamics of Industrial Relations in India, 15th Ed, 2015, Himalaya Publishing, 15thedition, 2015
- 5. P. Subba Rao, Essentials of Human Resource management and Industrial relations, 5th Ed, 2013, Himalaya Publishing
- 6. Laurie Mullins, Management & Organizational Behavior, Latest Ed, 2016, Pearson Publications

Course Code	Course Name	Credits
ILO8025	Professional Ethics and Corporat Social Responsibility (CSR)	03

Objectives:

- 1. To understand professional ethics in business
- 2. To recognized corporate social responsibility

Outcomes: Learner will be able to...

- 1. Understand rights and duties of business
- 2. Distinguish different aspects of corporate social responsibility
- 3. Demonstrate professional ethics
- 4. Understand legal aspects of corporate social responsibility

Module	Detailed Contents	Hrs
	Professional Ethics and Business: The Nature of Business Ethics; Ethical Issues in	
01	Business; Moral Responsibility and Blame; Utilitarianism: Weighing Social Costs and	04
	Benefits; Rights and Duties of Business	
	Professional Ethics in the Marketplace: Perfect Competition; Monopoly Competition;	
	Oligopolistic Competition; Oligopolies and Public Policy	
02		08
	Professional Ethics and the Environment: Dimensions of Pollution and Resource	
	Depletion; Ethics of Pollution Control; Ethics of Conserving Depletable Resources	
	Professional Ethics of Consumer Protection: Markets and Consumer Protection;	
	Contract View of Business Firm's Duties to Consumers; Due Care Theory; Advertising	
03	Ethics; Consumer Privacy	06
05		00
	Professional Ethics of Job Discrimination: Nature of Job Discrimination; Extent of	
	Discrimination; Reservation of Jobs.	
	Introduction to Corporate Social Responsibility: Potential Business Benefits-Triple	
	bottom line, Human resources, Risk management, Supplier relations; Criticisms and	
04	concerns—Nature of business; Motives; Misdirection.	05
	Trainstant of Corporate Social Responsibility in India	
	real real of the social responsionity in mula	
05	Corporate Social Responsibility: Articulation of Gandhian Trusteeship	08

	Corporate Social Responsibility and Small and Medium Enterprises (SMEs) in India,	
	Corporate Social Responsibility and Public-Private Partnership (PPP) in India	
	Corporate Social Responsibility in Globalizing India: Corporate Social	
06	Responsibility Voluntary Guidelines, 2009 issued by the Ministry of Corporate Affairs,	08
	Government of India, Legal Aspects of Corporate Social Responsibility-Companies	
	Act, 2013.	

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. Business Ethics: Texts and Cases from the Indian Perspective (2013) by Ananda Das Gupta; Publisher: Springer.
- 2. Corporate Social Responsibility: Readings and Cases in a Global Context (2007) by Andrew Crane, Dirk Matten, Laura Spence; Publisher: Routledge.
- 3. Business Ethics: Concepts and Cases, 7th Edition (2011) by Manuel G. Velasquez; Publisher: Pearson, New Delhi.
- 4. Corporate Social Responsibility in India (2015) by BidyutChakrabarty, Routledge, New Delhi.

Course Code	Course Name	Credits
ILO8026	Research Methodology	03

Objectives:

- 1. To understand Research and Research Process
- 2. To acquaint students with identifying problems for research and develop research strategies
- 3. To familiarize students with the techniques of data collection, analysis of data and interpretation

Outcomes: Learner will be able to...

- 1. Prepare a preliminary research design for projects in their subject matter areas
- 2. Accurately collect, analyze and report data
- 3. Present complex data or situations clearly
- 4. Review and analyze research findings

Module	Detailed Contents	Hrs
	 Introduction and Basic Research Concepts 1.1 Research – Definition: Concept of Construct, Postulate, Proposition, Thesis, 	
	Hypothesis, Law, Principle.Research methods vs Methodology	
01	1.2 Need of Research in Business and Social Sciences1.3 Objectives of Research	09
	1.4 Issues and Problems in Research	
	1.5 Characteristics of Research:Systematic, Valid, Verifiable, Empirical and Critical	
	Types of Research	
	2.1. Basic Research	
	2.2. Applied Research	
02	2.3. Descriptive Research	07
	2.4. Analytical Research	
	2.5. Empirical Research	
	2.6 Qualitative and Quantitative Approaches	

	Research Design and Sample Design		
03	3.1 Research Design – Meaning, Types and Significance	07	
	3.2 Sample Design – Meaning and Significance Essentials of a good sampling Stages in		
	Sample Design Sampling methods/techniques Sampling Errors		
	Research Methodology		
	4.1 Meaning of Research Methodology		
	4.2 . Stages in Scientific Research Process:		
	a. Identification and Selection of Research Problem		
	b. Formulation of Research Problem		
	c. Review of Literature		
04	d. Formulation of Hypothesis	08	
	e. Formulation of research Design		
	f. Sample Design		
	g. Data Collection		
	h. Data Analysis		
	i. Hypothesis testing and Interpretation of Data		
	j. Preparation of Research Report		
	Formulating Research Problem		
05	5.1 Considerations: Relevance, Interest, Data Availability, Choice of data, Analysis of	04	
	data, Generalization and Interpretation of analysis		
	Outcome of Research		
	6.1 Preparation of the report on conclusion reached		
06	6.2 Validity Testing & Ethical Issues	04	
	6.3 Suggestions and Recommendation		

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or at least 6 assignment on complete syllabus or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS Publishers Distributors.
- 2. Kothari, C.R., 1985, Research Methodology-Methods and Techniques, New Delhi, Wiley Eastern Limited.
- Kumar, Ranjit, 2005, Research Methodology-A Step-by-Step Guide for Beginners, (2nded), Singapore, Pearson Education

Course Code	Course Name	Credits
ILO8027	IPR and Patenting	03

Objectives:

- 1. To understand intellectual property rights protection system
- 2. To promote the knowledge of Intellectual Property Laws of India as well as International treaty procedures
- 3. To get acquaintance with Patent search and patent filing procedure and applications

Outcomes: Learner will be able to...

- 1. understand Intellectual Property assets
- 2. assist individuals and organizations in capacity building
- 3. work for development, promotion, protection, compliance, and enforcement of Intellectual Property and Patenting

Module	Detailed Contents	Hr
01	 Introduction to Intellectual Property Rights (IPR): Meaning of IPR, Different category of IPR instruments - Patents, Trademarks, Copyrights, Industrial Designs, Plant variety protection, Geographical indications, Transfer of technology etc. Importance of IPR in Modern Global Economic Environment: Theories of IPR, Philosophical aspects of IPR laws, Need for IPR, IPR as an instrument of development 	05
02	 Enforcement of Intellectual Property Rights: Introduction, Magnitude of problem, Factors that create and sustain counterfeiting/piracy, International agreements, International organizations (e.g. WIPO, WTO) active in IPR enforcement Indian Scenario of IPR:Introduction, History of IPR in India, Overview of IP laws in India, Indian IPR, Administrative Machinery, Major international treaties signed by India, Procedure for submitting patent and Enforcement of IPR at national level etc. 	07
03	Emerging Issues in IPR: Challenges for IP in digital economy, e-commerce, human genome, biodiversity and traditional knowledge etc.	05
04	Basics of Patents: Definition of Patents, Conditions of patentability, Patentable and non-patentable inventions, Types of patent applications (e.g. Patent of addition etc), Process Patent and Product Patent, Precautions while patenting, Patent specification Patent claims, Disclosures and non-disclosures, Patent rights and infringement, Method	07

	of getting a patent	
05	Patent Rules: Indian patent act, European scenario, US scenario, Australia scenario, Japan scenario, Chinese scenario, Multilateral treaties where India is a member (TRIPS agreement, Paris convention etc.)	08
06	 Procedure for Filing a Patent (National and International): Legislation and Salient Features, Patent Search, Drafting and Filing Patent Applications, Processing of patent, Patent Litigation, Patent Publicationetc, Time frame and cost, Patent Licensing, Patent Infringement Patent databases: Important websites, Searching international databases 	07

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or at least 6 assignments on complete syllabus or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCE BOOKS:

- 1. Rajkumar S. Adukia, 2007, A Handbook on Laws Relating to Intellectual Property Rights in India, The Institute of Chartered Accountants of India
- 2. Keayla B K, Patent system and related issues at a glance, Published by National Working Group on Patent Laws
- 3. T Sengupta, 2011, Intellectual Property Law in India, Kluwer Law International
- 4. Tzen Wong and Graham Dutfield, 2010, Intellectual Property and Human Development: Current Trends and Future Scenario, Cambridge University Press
- Cornish, William Rodolph & Llewelyn, David. 2010, Intellectual Property: Patents, Copyrights, Trade Marks and Allied Right, 7th Edition, Sweet & Maxwell
- Lous Harns, 2012, The enforcement of Intellactual Property Rights: A Case Book, 3rd Edition, WIPO
- 7. Prabhuddha Ganguli, 2012, Intellectual Property Rights, 1st Edition, TMH
- R Radha Krishnan & S Balasubramanian, 2012, Intellectual Property Rights, 1st Edition, Excel Books

- 9. M Ashok Kumar and mohd Iqbal Ali, 2-11, Intellectual Property Rights, 2nd Edition, Serial Publications
- 10. Kompal Bansal and Praishit Bansal, 2012, Fundamentals of IPR for Engineers, 1st Edition, BS Publications
- 11. Entrepreneurship Development and IPR Unit, BITS Pilani, 2007, A Manual on Intellectual Property Rights,
- 12. Mathew Y Maa, 2009, Fundamentals of Patenting and Licensing for Scientists and Engineers, World Scientific Publishing Company
- 13. N S Rathore, S M Mathur, Priti Mathur, Anshul Rathi, IPR: Drafting, Interpretation of Patent Specifications and Claims, New India Publishing Agency
- 14. Vivien Irish, 2005, Intellectual Property Rights for Engineers, IET
- 15. Howard B Rockman, 2004, Intellectual Property Law for Engineers and scientists, Wiley-IEEE Press

Course Code	Course Name	Credits
ILO8028	Digital Business Management	03

Objectives:

- 1. To familiarize with digital business concept
- 2. To acquaint with E-commerce
- 3. To give insights into E-business and its strategies

Outcomes: The learner will be able to

- Identify drivers of digital business
 Illustrate various approaches and techniques for E-business and management
- 3. Prepare E-business plan

Module	Detailed content	Hours
1	 Introduction to Digital Business- Introduction, Background and current status, E-market places, structures, mechanisms, economics and impacts Difference between physical economy and digital economy, Drivers of digital business- Big Data & Analytics, Mobile, Cloud Computing, Social media, BYOD, and Internet of Things(digitally intelligent machines/services) Opportunities and Challenges in Digital Business, 	09
2	 Overview of E-Commerce E-Commerce- Meaning, Retailing in e-commerce-products and services, consumer behavior, market research and advertisement B2B-E-commerce-selling and buying in private e-markets, public B2B exchanges and support services, e-supply chains, Collaborative Commerce, Intra business EC and Corporate portals Other E-C models and applications, innovative EC System-From E-government and learning to C2C, mobile commerce and pervasive computing EC Strategy and Implementation-EC strategy and global EC, Economics and Justification of EC, Using Affiliate marketing to promote your e-commerce business, Launching a successful online business and EC project, Legal, Ethics and Societal impacts of EC 	06

3	Digital Business Support services: ERP as e –business backbone, knowledge Tope Apps, Information and referral system Application Development: Building Digital business Applications and Infrastructure	06
4	Managing E-Business-Managing Knowledge, Management skills for e-business, Managing Risks in e –business Security Threats to e-business -Security Overview, Electronic Commerce Threats, Encryption, Cryptography, Public Key and Private Key Cryptography, Digital Signatures, Digital Certificates, Security Protocols over Public Networks: HTTP, SSL, Firewall as Security Control, Public Key Infrastructure (PKI) for Security, Prominent Cryptographic Applications	06
5	 E-Business Strategy-E-business Strategic formulation- Analysis of Company's Internal and external environment, Selection of strategy, E-business strategy into Action, challenges and E-Transition (Process of Digital Transformation) 	04
6	Materializing e-business: From Idea to Realization -Business plan preparation Case Studies and presentations	08

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or at least 6 assignment on complete syllabus or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

References:

- 1. A textbook on E-commerce, Er Arunrajan Mishra, Dr W K Sarwade, Neha Publishers & Distributors, 2011
- 2. E-commerce from vision to fulfilment, Elias M. Awad, PHI-Restricted, 2002
- 3. Digital Business and E-Commerce Management, 6th Ed, Dave Chaffey, Pearson, August 2014
- 4. Introduction to E-business-Management and Strategy, Colin Combe, ELSVIER, 2006
- 5. Digital Business Concepts and Strategy, Eloise Coupey, 2nd Edition, Pearson
- 6. Trend and Challenges in Digital Business Innovation, VinocenzoMorabito, Springer
- 7. Digital Business Discourse Erika Darics, April 2015, Palgrave Macmillan
- 8. E-Governance-Challenges and Opportunities in : Proceedings in 2nd International Conference theory and practice of Electronic Governance
- 9. Perspectives the Digital Enterprise –A framework for Transformation, TCS consulting journal Vol.5
- 10. Measuring Digital Economy-A new perspective -DOI:<u>10.1787/9789264221796-en</u>OECD Publishing

Course Code	Course Name	Credits
ILO8029	Environmental Management	03

Objectives:

- 1. Understand and identify environmental issues relevant to India and global concerns
- 2. Learn concepts of ecology
- 3. Familiarise environment related legislations

Outcomes: Learner will be able to...

- 1. Understand the concept of environmental management
- 2. Understand ecosystem and interdependence, food chain etc.
- 3. Understand and interpret environment related legislations

Module	Detailed Contents	Hrs
01	Introduction and Definition of Environment: Significance of Environment Management for contemporary managers, Career opportunities. Environmental issues relevant to India, Sustainable Development, The Energy scenario.	10
02	Global Environmental concerns : Global Warming, Acid Rain, Ozone Depletion, Hazardous Wastes, Endangered life-species, Loss of Biodiversity, Industrial/Man- made disasters, Atomic/Biomedical hazards, etc.	06
03	Concepts of Ecology: Ecosystems and interdependence between living organisms, habitats, limiting factors, carrying capacity, food chain, etc.	05
04	Scope of Environment Management, Role & functions of Government as a planning and regulating agency. Environment Quality Management and Corporate Environmental Responsibility	10
05	Total Quality Environmental Management, ISO-14000, EMS certification.	05
06	General overview of major legislations like Environment Protection Act, Air (P & CP) Act, Water (P & CP) Act, Wildlife Protection Act, Forest Act, Factories Act, etc.	03

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. Environmental Management: Principles and Practice, C J Barrow, Routledge Publishers London, 1999
- 2. A Handbook of Environmental Management Edited by Jon C. Lovett and David G. Ockwell, Edward Elgar Publishing
- 3. Environmental Management, T V Ramachandra and Vijay Kulkarni, TERI Press
- 4. Indian Standard Environmental Management Systems Requirements With Guidance For Use, Bureau Of Indian Standards, February 2005
- 5. Environmental Management: An Indian Perspective, S N Chary and Vinod Vyasulu, Maclillan India, 2000
- 6. Introduction to Environmental Management, Mary K Theodore and Louise Theodore, CRC Press
- 7. Environment and Ecology, Majid Hussain, 3rd Ed. Access Publishing.2015

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELXL 801	Internet of Things Laboratory	-	2		-	01		01	

Subject	Subject Name				Examinatio	ı Schem	e		
Code			T	heory Marks		Term	Practical	Oral	Total
		Internal assessment End Sem.				Work			
		Test 1	Test 1 Test Ave. Of		Exam				
			2	Test 1 and					
				Test 2					
ELXL 801	Internet of	-	-	-	-	25		25	50
	Things								
	Laboratory								

Course Objectives:

Lab session includes **seven experiments plus one presentation on case study.** The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Suggested Experiments:

(Programming using C, Embedded C, Pyhton is to be encouraged)

- 1. Minimum two Experiments using any hardware platform (Arduino/Raspberry Pi/BeagleBone/Galileo) for data handling and storage.
- 2. Minimum three experiments using any hardware platform (Arduino/Raspberry Pi/BeagleBone/Galileo) for interfacing various sensors and communicating data using Internet using various Protocols.
- 3. Minimum two experiments using any hardware platform (Arduino/Raspberry Pi/BeagleBone/Galileo) and wireless communication protocol (802.11 and 802.14.5 IEEE standard)
- 4. Minimum one experiment using Cloud Storage.

Suggested topics for Case Study:

Faculty members can suggest topics pertaining above syllabus and ask students to submit complete report covering design issues, hardware and software details and applications.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELXL 802	Analog and Mixed VLSI Design	-	2		-	01		01	

Subject	Subject Name				Examinatio	ı Schem	e		
Code			T	heory Marks		Term	Practical	Oral	Total
		Internal assessment End Sem.				Work			
		Test 1	Test	Ave. Of	Exam				
			2	Test 1 and					
				Test 2					
ELXL 802	Analog and	-	-	-	-	25		25	50
	Mixed VLSI								
	Design								

Course Objectives:

Lab session includes **seven experiments plus one presentation on case study.** The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Suggested Experiments:

Use of Online Tools to study analog VLSI circuits

- 2. Analysis of MOSFETs for analog performance
- 3. Design and simulate various types of current mirror circuits
- 4. Design and simulate various common source amplifier circuits
- 5. Design and simulate various types of single stage amplifiers
- 6. Design and simulate differential amplifier
- 7. Design and simulate operational tran-sconductance amplifier
- 8. Design and simulate switch capacitor circuits
- 9. Design and simulate various types of oscillators
- 10. Design and simulate mixed mode circuit
- 11. Generate layout for the simple and cascode current mirror
- 12. Generate layout for common source amplifier
- 13. Generate layout for the differential amplifier

14. Generate layout for the Oscillator

15. Generate layout for Phase Detector

Suggested topics for Case Study:

Faculty members can suggest topics pertaining above syllabus and ask students to submit proper report covering the latest advances in the field of Mixed VLSI Design.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)		Credits Ass	signed	
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ELXDLO	Advanced	-	2		-	01		01
8041	Power							
	Electronics							
	Lab.							

Subject	Subject Name	Examination Scheme							
Code			T	heory Marks		Term	Practical	Oral	Total
		Inte	rnal as	sessment	End Sem.	Work			
		Test 1	Test	Ave. Of	Exam				
			2	Test 1 and					
				Test 2					
ELXDLO	Advanced	-	-	-	-	25		25	50
8041	Power								
	Electronics								
	Lab.								

Course Objectives:

Lab session includes **seven experiments plus one presentation on case study.** The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Suggested Experiments:

- 1. Single Phase Full Controlled Bridge Rectifier.
- 2. Speed control of Separately excited DC motor using Armature Voltage Control
- 3. Speed control of 3-phase Induction Motor using V/F control.
- 4. Simulation of 3-phase fully controlled Bridge rectifier with R and RL load.
- 5. Simulation of 1-phase fully controlled Bridge rectifier and study of various parameters.
- 6. Simulation of 1-phase Inverter and study of various Performance parameters.
- 7. Simulation of SVM Inverter.
- 8. Simulation of Closed loop dc-dc converter
- 9. Study High Frequency Induction heating & Dielectric heating.

10. Study of operation and control of solid state relays.

Suggested topics for Case Study:

Faculty members can suggest topics pertaining above syllabus and ask students to submit complete report covering design issues, hardware and software details and applications.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELXDLO	MEMS	-	2		-	01		01	
8042	Technology								
	Lab.								

Subject	Subject Name				Examination	n Scheme					
Code			T	heory Marks		Term	Practical	Oral	Total		
		Inte	rnal as	sessment	End Sem.	Work					
		Test 1 Test Ave. Of			Exam						
		2 Test 1 and									
			Test 2								
ELXDLO	MEMS	-	-	-	-	25		25	50		
8042	Technology										
	Lab.										

Course Objectives:

Lab session includes **seven experiments plus one presentation on case study.** The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Suggested Experiments:

- 1. Design electro-statically actuated cantilever
- 2. Design bimorph cantilever which act as pressure sensor.
- 3. Dynamic analysis of Beam
- 4. Find the tip deflection of the cantilever with different types of load
- 5. Find the tip deflection of the cantilever in sweep analysis
- 6. Model and simulate Electro-mechanical actuator. Do dc and transient analysis

7. Design the geometry of MEMS and find performance characteristics such as resonant frequency, deflection per voltage or temperature

- 8. Simulate the harvested electrical power from mechanical vibrations using piezoelectric cantilever beam
- 9. Model and simulate of accelerometer
- 10. Case study of MEMS based device

Suggested topics for Case Study:

Faculty members can suggest topics pertaining above syllabus and ask students to submit complete report covering fabrication issues, materials, characterization and applications of the MEMS devices.

Course		Te	eaching So	cheme		Credits A	ssigned	
Code	Course Name	Theory	Practic	al Tutoria l	¹ Theory	TW/Practica l	Tutorial	Total
ELXDL O8043	Virtual Instrumentation Laboratory		02		04			04
			Examination Scheme					
Course	Course Name		Th	eory Marks	T			
Code		Internal Assessment (IA)			End Semeste	er Work	Practical	Total
		Test I	Test II	Average	Exam			
ELXDL O8043	Virtual Instrumentatio n					25	25	50
	Laboratory							

Term Work :-

At least 6 experiments covering entire syllabus of ELXDLO8043 (Virtual Instrumentation) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. One presentation on a case study based on the topic in Virtual Instrumentation need to be submitted. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced

Suggested List of Experiments :-

- 1. Verification of arithmetic operations
- 2. Verification of Boolean Expressions / half-adder & full-adder
- 3. Implementation of array functions
- 4. Program to convert Celsius into Fahrenheit & vice-versa
- 5. Program for implementing seven segment display
- 6. Program for calculating body mass index (BMI) using cluster

- 7. Program to control temperature using thermistor / RTD & DAQ
- 8. Program to control liquid flow using DAQ
- 9. Program to control liquid level using DAQ
- 10. Program to control pressure using DAQ
- 11. Program for DC motor speed control using PID toolbox

R2016 University	of Mumbai B.	E. Electronics	Engineering]

Course		Te	eaching Sc	heme		Credits Assigned				
Code	Course Ivanie	Theory	Practica	al Tutoria l	¹ Theory	TW/Practica l	Tutorial	Total		
ELXDL O8044	Digital Image Processing		02		04			04		
			Examination Scheme							
Course	Course Name	Theory Marks					0.14			
Code		Interna	l Assessm	ent (IA)	End Semeste	er Vork	Oral & Practical	Total		
		Test I	Test II	Average	Exam					
ELXDL O8044	Digital Image Processing					25	25	50		

Term Work :-

At least 7 experiments covering entire syllabus of ELXDLO8044 (Digital Image Processing) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. One presentation on a case study based on the topic in Digital Image Processing need to be submitted. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELXL704	Project I	-	06		-	03		09	
ELXL803	Project II		12			06			

Objectives:

- 1. To acquaint with the process of undertaking literature survey/industrial visit and identifying the problem
- 2. To familiarize the process of problem solving in a group
- 3. To acquaint with the process of applying basic engineering fundamental in the domain of practical applications
- 4. To inculcate the process of research Outcomes

Outcome:

Learner will be able to:

- 1. Do literature survey/industrial visit and identify the problem
- 2. Apply basic engineering fundamental in the domain of practical applications
- 3. Cultivate the habit of working in a team
- 4. Attempt a problem solution in a right approach
- 5. Correlate the theoretical and experimental/simulations results and draw the proper inferences
- 6. Prepare report as per the standard guidelines.

Students should do literature survey/visit industry/analyse current trends and identify the problem for Project and finalize in consultation with Guide/Supervisor Students should use multiple literatures and understand the problem. Students should attempt solution to the problem by experimental/simulation methods. The solution is to be validated with proper justification and the report needs to be compiled in standard format.

Guidelines for Assessment of Project I

Project I should be assessed based on following points

- a) Quality of problem selected
- b) Clarity of Problem definition and Feasibility of problem solution
- c) Relevance to the specialization
- d) Clarity of objective and scope
- e) Breadth and depth of literature survey

Project I should be assessed through a presentation by the student project group to a panel of Internal examiners appointed by the Head of the Department/Institute of respective Programme.

Guidelines for Assessment of Project II

Project II should be assessed based on following points

- a) Quality of problem selected
- b) Clarity of Problem definition and Feasibility of problem solution
- c) Relevance to the specialization / Industrial trends
- d) Clarity of objective and scope
- e) Quality of work attempted
- f) Validation of results
- g) Quality of Written and Oral Presentation

Project Report has to be prepared strictly as per University of Mumbai report writing guidelines. Project II should be assessed through a presentation by the student project group to a panel of Internal and External Examiner approved by the University of Mumbai Students should be motivated to publish a paper in Conferences/students competitions based on the work

UNIVERSITY OF MUMBAI No. UG/43 of 2018-19

CIRCULAR:-

Attention of the Principals of the affiliated Colleges and Directors of the recognized Institutions in Science & Technology Faculty is invited to this office Circular No. UG/243 of 2010, dated 12th August, 2010 relating to syllabus of the Bachelor of Engineering (B.E.) degree course.

They are hereby informed that the recommendations made by the Ad-hoc Board of Studies in Electronics Engineering at its meeting held on 9th April, 2018 have been accepted by the Academic Council at its meeting held on 5th May, 2018 vide item No. 4.54 and that in accordance therewith, the revised syllabus as per the (CBCS) for the T.E. & B.E. in Electronics Engineering (Sem - V to VIII) has been brought into force with effect from the academic year 2018-19 and 2019-2020, accordingly. (The same is available on the University's website www.mu.ac.in).

merande (Dr. Dinesh Kamble) I/c REGISTRAR

MUMBAI - 400 032 25th June, 2018 To

The Principals of the affiliated Colleges & Directors of the recognized Institutions in Science & Technology Faculty. (Circular No. UG/334 of 2017-18 dated 9th January, 2018.)

A.C/4.54/05/05/2018

No. UG/ 43 -A of 2018

MUMBAI-400 032 25 June, 2018

Copy forwarded with Compliments for information to:-

- 1) The I/c Dean, Faculty of Science & Technology,
- 2) The Chairman, Ad-hoc Board of Studies in Electronics Engineering,
- 3) The Director, Board of Examinations and Evaluation,
- 4) The Director, Board of Students Development,
- 5) The Co-Ordinator, University Computerization Centre,

lell and

(Dr. Dinesh Kamble) I/c REGISTRAR

UNIVERSITYOFMUMBAI

Revised syllabus (Rev- 2016) from Academic Year 2016 -17 Under

FACULTY OF TECHNOLOGY

Electronics Engineering

Second Year with Effect from AY 2017-18 Third Year with Effect from AY 2018-19 Final Year with Effect from AY 2019-20

As per **Choice Based Credit and Grading System** with effect from the AY 2016–17

Co-ordinator, Faculty of Technology's Preamble:

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) and give freedom to affiliated Institutes to add few (PEO's). It is also resolved that course objectives and course outcomes are to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth and approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges and experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, and developed curriculum accordingly. In addition to outcome based education, semester based credit and grading system is also introduced to ensure quality of engineering education.

Choice based Credit and Grading system enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning and not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes and Faculty of Technology has devised a transparent credit assignment policy and adopted ten points scale to grade learner's performance. Credit assignment for courses is based on 15 weeks teaching learning process, however content of courses is to be taught in 12-13 weeks and remaining 2-3 weeks to be utilized for revision, guest lectures, coverage of content beyond syllabus etc.

Choice based Credit and grading system is implemented from the academic year 2016-17 through optional courses at department and institute level. This will be effective for SE, TE and BE from academic year 2017-18, 2018-19 and 2019-20 respectively.

Dr. S. K. Ukarande Co-ordinator, Faculty of Technology, Member - Academic Council University of Mumbai, Mumbai

University of Mumbai, B. E. (Electronics Engineering), Rev 2016

Chairman's Preamble:

Engineering education in India is expanding and is set to increase manifold. Themajor challenge in the current scenario is to ensure quality to the stakeholders along with expansion. To meet this challenge, the issue of quality needs to be addressed, debated and taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education and reflects the fact that in achieving recognition, the institution or program of study is committed and open to external review to meet certain minimum specified standards. The major emphasis of this accreditation process is to measure the outcomes of the program that is being accredited. Program outcomes are essentially a range of skills and knowledge that a student will have at the time of graduation from the program. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating the philosophy of outcome based education in the process of curriculum development.

As the Chairman, Board of Studies in Electronics Engineering of the University of Mumbai, I am happy to state here that, the Program Educational Objectives for Undergraduate Program were finalized in a brain storming session, which was attended by more than 40 members from different affiliated Institutes of the University. They are either Heads of Departments or their senior representatives from the Department of Electronics Engineering. The Program Educational Objectives finalized for the undergraduate program in Electronics Engineering are listed below;

- 1. To prepare the Learner with a sound foundation in the mathematical, scientific and engineering fundamentals
- 2. To motivate the Learner in the art of self-learning and to use modern tools for solving real life problems
- 3. To inculcate a professional and ethical attitude, good leadership qualities and commitment to social responsibilities in the Learner's thought process
- 4. To prepare the Learner for a successful career in Indian and Multinational Organisations

In addition to Program Educational Objectives, for each course of the program, objectives and expected outcomes from a learner's point of view are also included in the curriculum to support the philosophy of outcome based education. I strongly believe that even a small step taken in the right direction will definitely help in providing quality education to the major stakeholders.

Dr.Sudhakar S. Mande

Chairman, Board of Studies in Electronics Engineering, University of Mumbai

Course	Course Name	T (eaching Sche Contact Hou	me rs)	Credits Assigned				
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELX301	Applied Mathematics III	04		01@	04		01	05	
ELX302	Electronic Devices and Circuits I	04			04			04	
ELX303	Digital Circuit Design	04			04			04	
ELX304	Electrical Network Analysis and Synthesis	04			04			04	
ELX305	Object Oriented Programming Methodology	04			04			04	
ELXL301	Electronic Devices and Circuits I Lab		02			01		01	
ELXL302	Digital Circuit Design Lab.		02			01		01	
ELXL303	Electrical Network Analysis and Synthesis Lab		02			01		01	
ELXL304	Object Oriented Programming Methodology Lab.		02+02#			02		02	
	Total	20	08	02	20	04	01	26	

S.E. (Electronics Engineering) – Semester III

@1 hour tutorial class-wise

#02 hours class-wise and 02 hours batch-wise

				Exar	nination So	cheme – Semes	ster III		
				Theo	ory				
Course	Course Name	Inter	nal Asse	ssment	End	Exam	Term	Oral	
Code			(IA)		Sem	Duration	Work	/Prac	Total
		Test	Test	AVG.	Exam	(Hours)			
		I	II		Marks				
ELX301	Applied Mathematics III	20	20	20	80	03	25		125
ELX302	Electronic Devices and Circuits I	20	20	20	80	03			100
ELX303	Digital Circuit Design	20	20	20	80	03			100
ELX304	Electrical Network Analysis and	20	20	20	80	03			100
	Synthesis	20	20	20	80	05			100
ELX305	Object Oriented Programming	20	20	20	80	03			100
	Methodology	20	20	20	00	05			100
ELXL301	Electronic Devices and Circuits I						25	25	50
	Lab						25	25	50
ELXL302	Digital Circuit Design Lab.						25	25	50
ELXL303	Object Oriented Programming						25	25	50
	Methodology Lab.						25	25	50
ELXL304	Electrical Network Analysis and						25		25
	Synthesis Lab						23		23
	Total	100	100	100	400	15	125	75	700

Course Code	Course Name	T(()	eaching Sche Contact Hour	me rs)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELX501	Microcontrollers and Applications	04			04			04	
ELX 502	Digital Communication	04	-		04			04	
ELX 503	Engineering Electromagnetics	04	-	@01	04		01	05	
ELX 504	Design with Linear Integrated Circuits	04	02		04			04	
ELX 505	Business Communication & Ethics	02	02#			02		02	
ELXDLO501X	Department Level optional courses I	04	02		04			04	
ELXL501	Microcontrollers and Applications Lab.					01		01	
ELXL502	Digital Communication Lab.					01		01	
ELXL503	Design with Linear Integrated Circuits Lab.					01		01	
ELX DLOI50X	Department Level optional course-I Lab					01		01	
	TOTAL	20	08	04	20	06	01	27	

T.E. (Electronics Engineering) – Semester V

1 hour tutorial class-wise #02 hours batch-wise

				Exar	nination S	cheme – Se	mester V		
				Theory					
		Interna	l Assessme	ent (IA)	End	Exam	Term	Oral	
Course Code	Course Name	Test I	Test II	AVG.	Sem	Durati	Work	/Prac	Total
					Exam	on			
					Marks	(Hours			
)			
ELX501	Micro-controllers and Applications	20	20	20	80	03			100
ELX 502	Digital Communication	20	20	20	80	03			100
ELX 503	Engineering Electromagnetics	20	20	20	80	03	25		125
FI X 504	Design with Linear Integrated	20	20	20	80	03			100
ELA 304	Circuits	20	20	20	80	05			100
ELX 505	Business Communication & Ethics						50		50
ELX DLO501X	Department Level Elective-I	20	20	20	80	03			100
FL VI 501	Micro-controllers and Applications						25	25	50
ELALSUI	Lab.						25	25	50
ELXL 502	Digital Communication Lab.						25		25
FI VI 503	Design with Linear Integrated						25	25	50
ELAL 303	Circuits Lab.						25	25	50
ELXL	Department Elective Llab						25	25	50
DLO501X	Department Elective I lab						23	25	50
	Total	100	100	100	400	15	175	75	750

Course Code	Department Level Optional Course I
ELXDLO5011	Database and Management System
ELXDLO5012	Digital Control system
ELXDLO5013	ASIC Verification
ELXDLO5014	Biomedical Instrumentation

University of Mumbai, B. E. (Electronics Engineering), Rev 2016

Course Code	Course Name	т	o obing Saha	-		Credite A	aigned	
Course Coue	Course Name	1	Contact Hour	ine ····		Creats As	signed	
		Theory	Practical	s) Tutorial	Theory	Practical	Tutorial	Total
		T neor y	Tactical	Tutoriai	Theory	Tactical	Tutoriai	TUTAL
ELX601	Embedded System and RTOS	04			04			04
ELX 602	Computer Communication Network	04			04			04
ELX 603	VLSI Design	04			04			04
ELX 604	Signals and systems	04		@01	04		01	05
ELXDLO502X	Department Level Optional courses II	04			04			04
ELXL601	Embedded System and RTOS Lab.		02			01		01
ELXL 602	Computer Communication Network Lab.		02			01		01
ELXL 603	VLSI Design Lab.		02			01		01
ELXLDLO601 X	Department Level Optional courses IILab.		02			01		01
	TOTAL	20	08	01	20	04	01	25

T.E. (Electronics Engineering) – Semester VI

			Examination Scheme – Semester VI								
	Course Name		Theory								
Course Code			Interna	l Assessme	ent (IA)	End	Exam	Term	Oral		
Course Coue	Course Main		Test I	Test II	AVG.	Sem	Duration	Work	/Prac	Total	
						Exam	(Hours)				
						Marks					
ELX601	Embedded System and F	RTOS	20	20	20	80	03			100	
ELX 602	Computer Communication	on	20	20	20	80	03			100	
ELX 603	VLSI Design		20	20	20	80	03			100	
ELX 604	Signals and systems		20	20	20	80	03	25	25	100	
ELXDLO602X	Department Level Optic courses II*	onal	20	20	20	80	03			100	
ELXL601	Embedded System and F	TOS Lab.						25	25	50	
ELXL 602	Computer Communication Network Lab.	on						25	25	50	
ELXL 603	VLSI Design Lab.							25	25	50	
ELXLDLO602 X	Department Level Optio Courses II*Lab.	nal						25	25	50	
	Total		100	100	100	400	15	125	125	750	
	Cour	se Code		Departme	nt Level (Optional C	Course II			<u> </u>	
	ELXDLO6021 Microwave Engineering										
	ELXI	DLO6022	2 Electronics Product Design								
	ELXI	XDLO6023 Wireless Communication									

Computer Organization and Architecture

University of Mumbai, B. E. (Electronics Engineering), Rev 2016

ELXDLO6024

Course Code	Course Name	T. (1	eaching Sche Contact Hour	me rs)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELX701	Instrumentation System Design	04			04			04	
ELX702	Power Electronics	04			04			04	
ELX703	Digital signal processing	04			04			04	
ELXDLO703X	Department Level Optional course III	04			04			04	
ILO701X	Institute Level Optional Course I#	03			03			03	
ELXL701	Instrumentation System Design Lab.		02			01		01	
ELXL702	Power Electronics Lab.		02			01		01	
ELXL703	Digital signal processing Lab.		02			01		01	
ELXL704	Project-I		06			03		03	
ELXLDLO703 X	Dept. Level Optional course III Lab.		02			01		01	
	TOTAL	19	14		19	07		26	

B E	(Electronics	Engineering)	– Semester	VII
D.L.	(Electronics)	Engineering)	- Semester	V 11

	Examination Scheme – Semester VII								
				Theory					
		Internal Assessment (IA) E				End Exam		Oral	
Course Code	Course Name	Test I	Test II	AVG.	Sem	Durati	Work	/Prac	Total
					Exam	on			
					Marks	(Hours			
EL V701	Instrumentation System Design	20	20	20	80)			100
ELA/01	Instrumentation System Design	20	20	20	80	03			100
ELX 702	Power Electronics	20	20	20	80	03			100
ELX 703	Digital signal processing	20	20	20	80	03			100
ELXDLO703X	Department Level Optional	20	20	20	0.0	0.2			100
	courses III*	20	20	20	80	03			100
II 0701V	Institute Level Optional Subject	20	20	20	80	02			100
	institute Level Optional Subject	20	20	20	80	03			100
ELXL701	Instrumentation System Design						25	25	50
	Lau.								
ELXL702	Power Electronics Lab.						25	25	50
ELXL703	Digital signal processing Lab.						25	25	50
ELXL704	Project-I						50	50	100
ELXLDLO703 X	Dept. Level Optional courses III Lab.						25	25	50
	Total	100	100	100	400	15	150	150	800
		1							

University of Mumbai, B. E. (Electronics Engineering), Rev 2016

Course Code	Course Name	To (eaching Sche Contact Hour	me ·s)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELX801	Internet of Things	04			04			04	
ELX 802	Analog and Mixed VLSI Design	04			04			04	
ELXDLO804X	Department Level Optional course IV	04			04			04	
ILO802X	Institute Level Optional course II#	03			03			03	
ELXL801	Internet of Things Lab.		02			01		01	
ELXL802	Analog and Mixed VLSI Design Lab.		02			01		01	
ELXL803	Project-II		12			06		06	
ELXLDLO804 X	Department Level Optional Courses IV Lab.		02			01		01	
	TOTAL	15	18		15	9		24	

B.E. (Electronics Engineering) – Semester VI
--

	Examination Scheme – Semester VIII									
				Theory						
		Interna	l Assessme	ent (IA)	End	Exam	Term	Oral		
Course Code	Course Name	Test I	Test II	AVG.	Sem	Durati	Work	/Prac	Total	
					Exam	on				
					Marks	(Hours				
)				
ELX801	Internet of Things	20	20	20	80	03			100	
ELX 802	Analog and Mixed VLSI Design	20	20	20	80	03			100	
	Department Level Optional course	20	20	20	00	02			100	
ELXDL0804X	IV	20	20	20	80	03			100	
ILO802X	Institute Level Optional course II	20	20	20	80	03			100	
	1									
ELXL801	Internet of Things Lab.						25	25	50	
								-		
	Analog and Mixed VLSI Design									
ELXL802	I ah						25	25	50	
	Luo.									
FL VI 803	Project II						100	50	150	
ELALOUS	i ioject-ii						100	50	150	
FLXLDLO804	Department Level Optional									
V	Courses W Leb						25	25	50	
Λ	Courses IV Lab.									
	T- 4-1	00	00	00	220	15	150	150	700	
	I otal	80	80	80	320	15	150	150	700	

University of Mumbai, B. E. (Electronics Engineering), Rev 2016
Course Code	Department Level Optional Course III	Course Code	Institute Level Optional Course I
ELXDLO7031	Neural Network and Fuzzy Logic	ILO7011	Product Lifecycle Management
ELXDL 07032	Advance Networking Technologies	IL 07012	Reliability Engineering
LLADLO/052	Advance Networking Teenhologies	1107012	Rendonity Engineering
EL VEL OFAAA		II. 07010	
ELXDLO/033	Robotics	ILO/013	Management Information System
ELXDLO7034	Integrated Circuit Technology	ILO7014	Design of Experiments
		IL 07015	Operation Research
			operation research
		ILO/016	Cyber Security and Laws
		ILO7017	Disaster Management and Mitigation Measures
		ILO7018	Energy Audit and Management
		120,010	
		1	

Course Code	Department Level Elective Course IV	Course Code	Institute Level Elective Course II [#]
ELXDLO8041	Advanced Power Electronics	ILO8021	Project Management
ELXDLO8042	MEMS Technology	ILO8022	Finance Management
ELXDLO8043	Virtual Instrumentation	ILO8023	Entrepreneurship Development and Management
ELXDLO8044	Digital Image Processing	ILO8024	Human Resource Management
		ILO8025	Professional Ethics and CSR
		ILO8026	Research Methodology
		ILO8027	IPR and Patenting
		ILO8028	Digital Business Management
		ILO8029	Environmental Management

Course Code	(Course	Name		Teaching scheme				Credit assigned					
FLV	Mias		allana	and	Theory	Pra	ct.	Tut.	T	heory	Pract.	Tu	t. '	Fotal
ELX 501	A	Applica	tions	anu	04					04			,	04
								Exam	ina	tion Sc	heme			
				Theory										
Course	Course Name			Interna	ıl		Dur	a-	Term			Pract.		
Code			A	ssessme	ent	End	tion (hrs	\mathbf{v}	work	Pract.	Oral	/ Oral	Total	
				Test 1	Test 2	Avg.	sem		,					
ELX 501	Microcontrollers &Applications			20	20	20	80	03				-		100
Cour	se Coo	de				С	ourse	Name					Cre	dits
EL	X 501		Micro	oconti	ollers a	nd App	olicati	ons					0	4
Course	Objec	tives	To stu to adv	idy 8- vancec	bit micro 32-bit a	ocontro	ller ar ture.	chitect	ure	for syst	em desig	n along	g with ex	posure
Course Outcomes			1. 2. 3. 4.	 Explain 8051 microcontroller architecture. Develop assembly language programmes for 8051 microcontroller. Design and implement 8051 based systems. Explain advanced features of Cortex-M3 architecture. 										
Module							Cont	ents						Time
		8051	Micro	contr	oller Ar	chitect	ure							
	1.1	Introd	luction	to m	crocont	roller.								
1.	1.2	Overv	view of	f MCS	51 fami	ly.								04
	1.3	8051	archite	ectural	features	5.								
	1.4	Memo	ory org	ganisa	tion.					•				
	2.1	8051	Micro	contr	oller ass	sembly	langu	lage pi	rogi	rammir	ng			
2.	2.1	Instru		Sot: D	$\frac{501003}{2}$	1. for Ari	thmat	ia Loo	ricol	1 Branc	hing			10
	2.2	Asser	nhly I	anoua	$\frac{1}{9}$	rammin	a	ic, Log	gica	I, DIalic	.mng.			
	2.5	8051	Intern	al Ha	rdware	& Pro	gram	ming						
	3.1	I/O po	ort stru	cture	and pros	grammi	ng.							
3.	3.2	Interr	upts ar	nd pro	grammi	ng.	0.							10
	3.3	Timer	r/Coun	ter an	d progra	mming								-
	3.4	Serial	l port a	nd pro	ogrammi	ing.								
4		8051	Interf	acing	- & Appl	ication	S							10
4.	4.1	Displa	ay inte	rfacin	g: 7-seg	ment L	ED di	splay,	16x	2 gener	ic alphan	umeric		12

		LCD display.	
	4.2	Keyboard interfacing: 4x4 matrix keyboard.	
	4.3	Analog devices interfacing: 8-bit ADC/DAC, temperature sensor (LM35).	
	4.4	Motor interfacing: Relay, dc motor, stepper motor and servo motor.	
		ARM CORTEX-M3 Architecture	
	5.1	Comparison of CISC & RISC architectures, overview of ARM family.	
		ARM Cortex-M3 architecture, Programmer's model: Operation Modes and	
5.	5.2	States, registers, special registers, Application Program Status Register-	12
		Integer status flags, Q status flag, GE bits.	
	5.3	Memory system: Features and memory map	
	5.4	Exceptions and Interrupts-Nested vectored interrupt controller	
	•	Total	48

Text books:

1.M. A. Mazidi, J. C. Mazidi, Rolin D. McKinlay,"The 8051 Microcontroller and Embedded Systems Using Assembly and C", Pearson Education, 2ndEdition.

2.Joseph Yiu,"The Definitive guide to ARM CORTEX-M3 & CORTEX-M4 Processors", Elsevier, 2014, 3rd Edition.

Reference Books:

1.Kenneth J. Ayala,"The 8051 Microcontroller", Cengage Learning India Pvt. Ltd, 3rdEdition.

2. David Seal, "ARM Architecture", Reference Manual (2nd Edition), Publisher Addison Wesley.

3.Andrew Sloss, Dominic Symes, Chris Wright, "ARMSystem Developers Guide: Designing and Optimising System Software", Publisher Elsevier Inc. 2004.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total of 4 questions.
- 3. Question No.1 will be compulsory and based on the entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be set from all the modules.
- 5. Weightage of marks, commensurate with the time allocated to the respective module.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELX 502	Digital	4			4			04	
	Communication								

Subject	Subject Name				Examinatio	n Scheme				
Code			T	heory Marks		Term	Practical	Oral	Total	
		Internal assessment			End Sem.	Work				
		Test 1	Test	Ave. Of	Exam					
			2	Test 1 and						
				Test 2						
ELX 502	Digital	20	20	20	80	-			100	
	Communication									

Course Pre-requisite: ELX405 Principles of Communication Engineering

Course Objectives:

The objectives of this course are to:

- 1. Understand the typical subsystems of a digital communication system
- 2. Understand the significance of the trade-off between SNR and Bandwidth
- 3. Understand the effect of ISI in Baseband transmission of a digital signal.
- 4. Analyze various Digital modulation techniques
- 5. Identify the necessity of Source encoding and Channel encoding in Digital communication

Course Outcomes:

On successful completion of the course the students will be able to:

- 1. Comprehend the advantages of digital communication over analog communication and explain need for various subsystems in Digital communication systems
- 2. Realize the implications of Shannon-Hartley Capacity theorem while designing the efficient Source encoding technique.
- 3. Understand the impact of Inter Symbol Interference in Baseband transmission and methods to mitigate its effect
- 4. Analyze various Digital modulation methods and assess them based on parameters such as spectral efficiency, Power efficiency, Probability of error in detection
- 5. Explain the concept and need for designing efficient Forward Error Correcting codes.
- 6. Realize the areas of application of Digital communication.

Module	Unit	Topics	Hrs.				
N0.	No.						
		Introduction to Digital communication system:					
		A typical Digital communication system Advantages and disadvantages of Digital					
	1.1	transmission significance of digitization: PCM encoding of voice and image signals					
		transmission, significance of digitization. I Civi cheoding of voice and image signals.					
		Concept of Probability Theory in Communication Systems: Random variables,	06				
1.	1.2	Mean and Variance of Random variables and sum of random variables Definition with					
	1.2	examples,					
		Useful PDFs & CDFs :Gaussian, Rayleigh pdf & Rician Distribution, Binomial					
	1.3	Distribution, Poisson Distribution, Central-Limit Theorem, Binary Synchronous					
	1.0	Channel(BSC), development of Optimal receiver					
		Information Theory and Source Coding					
		Information Theory and Source Coung					
2.	• •	Measure of Information, Entropy, Information rate, Channel capacity, Shannon –	06				
-	2.1 Hartley Capacity Theorem and its Implications.						
	2.2	Shannon-Fano encoding, Huffman encoding, Code Efficiency & Redundancy.					
		Pulse Shaping for Optimum Transmission:					
-		Line codes and their desirable properties PSD of digital data					
	3.1	Diffe codes and their desirable properties, 15D of digital data					
3.		Baseband PAM transmission: Concept of Inter symbol interference(ISI), Raised Cosine	08				
	3.2	filter, Nyquist Bandwidth. Concept of equalizer to overcome ISI					
		Correlative adding: Due binary encoding and modified due binary encoding					
	3.3	Correlative coding. Duo-binary encoding and modified duo-binary encoding					
		Digital Modulation Techniques					
		Concept of Binary and M-ary transmission, Coherent and Non-Coherent reception,					
	4.1	Power spectral density of Pass-band signal, Signal space Representation and Euclidian					
		distance					
4.0		Pass Band Amplitude modulation & Demodulation: BASK, M-ary PAM, Digital					
		Phase Modulation & Demodulation BPSK OOPSK OPSK M-ary PSK OAM	14				
	4.2	Digital Frequency Modulation & Demodulation BESK MSK Mary FSK	17				
		Comparison of all techniques based on Spectral efficiency, Power efficiency,					
	4.3 Probability of error in detection						
		Optimal Reception of Digital Data [•] A baseband signal receiver and its Probability					
	4.4	error, The Optimum receiver, Matched filter, & its properties.					
		Ennon Control coder					
5.0		Error Control codes:	10				
0.0	5.1	Need for channel encoding, Concept of Error detection and correction, Forward Error	10				
		· · ·					

		correction	
	5.2	Linear block codes : Hamming Distance, Hamming Weight, Systematic codes ,Syndrome Testing	
	5.3	Cyclic codes ; Generator polynomial for Cyclic codes, Systematic cyclic codes, Feedback shift register for Polynomial division	
	5.4	Convolution codes : Convolution encoder, Impulse response of encoder, State diagram, trellis diagram Representations	
		Applications of Digital communication	
	6.1	Satellite communication system : Satellite communication System model, Transponder ,Satellite Orbits : LEO, MEO, GEO , Link analysis	0.5
6.0	6.2	Optical Communication system : Advantages of Optical communication ,Signal transmission in Optical fibres, Optical sources and Optical Detectors, Optical Digital Communication system.	06
		Total	48

Recommended Text Books:

- 1. Simon Haykin, "Communication System", John Wiley And Sons, 4th Ed
- 2. Taub Schilling & Saha, "Principles Of Communication Systems", Tata Mc-Graw Hill, Third Ed
- 3. B P Lathi & Zhi Ding, "Modern Digital and Analog communication systems" -4E, Oxford University Press, Indian Ed.
- 4. R N Mutagi, "Digital Communication", Oxford University Press, 2nd Ed.

Reference Books:

- 1. Bernad Sklar,- "Digital communication", Pearson Education, 2nd Ed.
- 2. Simon Havkin, "Digital communication", John wiley and sons
- PROAKIS & SALEHI, "Communication system Engineering", Pearson Education.
 Anil K.Maini & Varsha Agarwal, "Satellite communications", Wiley publication.
- 5. Amitabha Bhattacharya, "Digital Communication", Tata Mcgraw Hill

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4: Remaining question will be selected from all the modules.

Subject	Subject Name				Examination	Scheme	9		
Code			Т	heory Marks		Term	Practical	Oral	Total
		Inte	Internal assessment			Work			
		Test 1	Test	Ave. Of	Exam				
			2	Test 1 and					
				Test 2					
ELX503	Electromagnetic	20	20	20	80				100
	Engineering								
Subject	Subject Name				Examination	Scheme	e		
Code			Т	heory Marks		Term	Practical	Oral	Total
		Inte	rnal as	ssessment	End Sem.	Work			
		Test 1	Test	Ave. Of	Exam				
			2	Test 1 and					
				Test 2					
ELX503	Electromagnetic	20	20	20	80				100
	Engineering								

Course Objectives:

- 1. To study correlation between electrostatics, steady magnetic field and time varying fields using Maxwell's equations for different media.
- 2. To calculate energy transported by means of electromagnetic waves from one point to another and to study polarization of waves.
- 3. To solve electromagnetic problems using different numerical methods.
- 4. To extend the students' understanding about the propagation of the waves of different types.
- 5. To understand the radiation concepts.

Course Outcomes:

After successful completion of the course, students will be able to:

- 1. Analyze the behaviour of electromagnetic waves in different media.
- 2. Evaluate various parameters of transmission lines and radiating systems.
- 3. Apply computational techniques to analyze electromagnetic field distribution.
- 4. Understand different mechanisms of radio wave propagation.

Module No.	Unit No.	Topics	Hrs.
		Basic Laws of Electromagnetic and Maxwell's Equations	
1.0	1.1 Coulomb's law, Gauss's law, Bio-Savart's law, Ampere's law, Poisson's a equations		10
	1.2 Maxwell's Equations: Integral and differential form for static and time va and its interpretations		
	1.3	Boundary conditions for Static electric and magnetic fields	
		Electromagnetic Waves	
	2.1	Wave Equation and its solution in partially conducting media(lossy dielectric), perfect dielectrics, free space and good conductors, Skin Effect and concept of Skin depth	
2.0	2.2	Polarization of wave: Linear, Circular and Elliptical	10
2.0	2.3	Electromagnetic Power: Poynting Vector and Power Flow in free space, dielectric and conducting media	12
	2.4	Propagation in different media: Behavior of waves for normal and oblique incidence in dielectrics and conducting media, propagation in dispersive media	

		Computational Electromagnetics				
	2.1	Finite Difference Method (FDM): Neumann type and mixed boundary conditions,				
	3.1	Iterative solution of finite difference equations, solutions using band matrix method				
3.0		Finite Element Method (FEM): triangular mesh configuration, finite element	06			
	3.2	discretization, element governing equations, assembling all equations and solvin				
		resulting equations				
	3.3	Method of Moment (MOM): Field calculations of conducting wire				
		Fundamentals of Radiating Systems				
	4.1	Concept of retarded potentials, Lorentz Condition				
	4.0	Radiation from an alternating current element, half-wave dipole and quarter-wave				
4.0	4.2	monopole	06			
		Antenna Parameters: Radiation Patterns, beam-width, Radiation intensity, directiv				
	4.3	power gain, band-width, radiation resistance and efficiency, effective length and				
		effective area				
		Radio wave propagation				
	5.1	Types of wave propagation: Ground, space, and surface wave propagation				
	5.2	Space wave propagation: Effect of imperfection of earth, curvature of earth, effect of	I			
5.0	5.2	interference zone, Line of sight propagation, troposphere propagation and fading	06			
5.0	5.3	Sky wave propagation: Reflection and refraction of waves, structure of Ionosphere	00			
		Measures of ionosphere propagation: Critical frequency Angle of incidence				
	5.4	Maximum usable frequency Skin distance Virtual height				
		Transmission Lines				
6.0	6.1	I ransmission Line parameters and equivalent circuit				
6.0		I ransmission line equation and solution	08			
	6.2 Secondary Parameters: Propagation constant, characteristic impedance, r					
		transmission coefficient, Input Impedance, SWR, introduction to Smith chart	- 10			
		Total	48			

Recommended Books:

- 1. W.H. Hayt, and J.A. Buck, "Engineering Electromagnetics", McGraw Hill Publications, 7th Edition, 2006
- 2. R.K. Shevgaonkar, "Electromagnetic Waves", TATA McGraw Hill Companies, 3rd Edition, 2009
- 3. Edward C. Jordan and Keth G. Balmin, "*Electromagnetic Waves and Radiating Systems*", Pearson Publications, 2nd Edition, 2006
- 4. Matthew N.D. Sadiku, "Principles of Electromagnetics", Oxford International Student 4th Edition, 2007
- 5. J.D. Kraus, R.J. Marhefka, and A.S. Khan, "Antennas & Wave Propagation", McGraw Hill Publications, 4th Edition, 2011

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4: Remaining question will be selected from all the modules.

Subject Code	Subject Name]	Teaching	Scheme		Credits Assigned						
		Theory	Practi	ical T	torial	Theory	TW/Pr	act T	utorial	Total		
ELX504	Design with Linear Integrated Circuits	04				04				04		
			Examination Scheme									
	Subject Name		The	ory Ma	ks							
		Internal assessment										
Subject Code		Test 1	Test 2	Avg. Test and Test	f Er	nd Sem. Exam	Term Work	Prac.	Oral	Total		
ELX504	Design with Linear Integrated Circuits	20	20	20		80				100		

Course Pre-requisite:

• Electronic Devices and Circuits I and II

Course Objectives:

- 1. To teach fundamental principles of standard linear integrated circuits.
- 2. To develop a overall approach for students from selection of integrated circuit, study its specification, the functionality, design and practical applications

Course Outcomes:

After successful completion of the course student will be able to

- 1. demonstrate an understanding of fundamentals of integrated circuits.
- 2. analyze the various applications and circuits based on particular linear integrated circuit.
- 3. select and use an appropriate integrated circuit to build a given application.
- 4. design an application with the use of integrated circuit

Module	Unit	Topics	Hrs.						
No.	No.								
1	Fundan	nentals of Operational Amplifier	04						
	1.1	eal Op Amp, characteristics of op-amp, op-amp parameters, high frequency							
		effects on op-amp gain and phase, slew rate limitation, practical determination of							
		op-amp parameters, single supply versus dual supply op-amp							
	1.2	Operational amplifier open loop and closed loop configurations, Inverting and							
		non-inverting amplifier							
2	Applica	tions of Operational Amplifier	12						
	2.1	Amplifiers: Adder, subtractor, integrator, differentiator, current amplifier,							
		difference amplifier, instrumentation amplifier and application of Op-Amp in							
		Transducer Measurement System with detail design Procedure. Single supply dc							
		biasing techniques for inverting, non inverting and differential amplifiers.							
	2.2	Converters: Current to voltage converters, voltage to current converters,							
		generalized impedance converter							
	2.3	Active Filters: First order filters, Second order active finite and infinite gain low							
		pass, high pass, band pass and band reject filters.							
	2.4	Sine Wave Oscillators: RC phase shift oscillator, Wien bridge oscillator,							

		Quadrature oscillator.							
3	Non-Li	near Applications of Operational Amplifier	10						
	3.1	Comparators: Inverting comparator, non-inverting comparator, zero crossing							
		detector, window detector and level detector.							
	3.2	2 Schmitt Triggers: Inverting Schmitt trigger, non-inverting Schmitt trigger with							
		adjustable threshold levels.							
	3.3	Waveform Generators: Square wave generator and triangular wave generator							
		with duty cycle modulation.							
	3.4	Precision Rectifiers: Half wave and full wave precision rectifiers and their							
		applications.							
	3.5	Peak Detectors, Sample & Hold Circuits, voltage to frequency converter,							
		frequency to voltage converter, logarithmic converters and antilog converters							
4	Data C	onverters	06						
	4.1	Analog to Digital: Performance parameters of ADC, Single Ramp ADC, ADC							
		using DAC, Dual Slope ADC, Successive Approximation ADC, Flash ADC,							
		ADC0808/0809 and its interfacing							
	4.2	Digital to Analog: Performance parameters of DAC, Binary weighted register							
		DAC, R/2R ladder DAC, Inverted R/2R ladder DAC, DAC0808 and its interfacing							
5	Special	Purpose Integrated Circuits	08						
	5.1	Functional block diagram, working, design and applications of Timer 555.							
	5.2	Functional block diagram, working and applications of VCO 566, PLL 565,							
		multiplier 534, waveform generator XR 2206, power amplifier LM380.							
6	Voltage	Regulators	08						
	6.1	Functional block diagram, working and design of three terminal fixed (78XX,							
		79XX series) and three terminal adjustable (LM 317, LM 337) voltage regulators.							
	6.2	Functional block diagram, working and design of general purpose 723 (LVLC,							
		LVHC, HVLC and HVHC) with current limit and current fold-back protection,							
		Switching regulator topologies, Functional block diagram and working of LT1070							
		monolithic switching regulator.							
		Total	48						

Recommended Books:

- 1. Sergio Franco, "Design with operational amplifiers and analog integrated circuits", Tata McGraw Hill, 3rd Edition.
- 2. William D. Stanley, "Operational Amplifiers with Linear Integrated Circuits", Pearson, 4th Edition
- 3. D. Roy Choudhury and S. B. Jain, "Linear Integrated Circuits", New Age International Publishers, 4th Edition.
- 4. David A. Bell, "Operation Amplifiers and Linear Integrated Circuits", Oxford University Press, Indian Edition.
- 5. Ramakant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", Pearson Prentice Hall, 4th Edition.
- 6. R. P. Jain, "Modern Digital Electronics," Tata McGraw Hill, 3rd Edition.
- 7. Ron Mancini, "Op Amps for Everyone", Newnes, 2nd Edition.
- 8. J. Millman and A. Grabel, "*Microelectronics*", Tata McGraw Hill, 2nd Edition.
- 9. R. F. Coughlin and F. F. Driscoll, "Operation Amplifiers and Linear Integrated Circuits", Prentice Hall, 6th Edition.
- J. G. Graeme, G. E. Tobey and L. P. Huelsman, "Operational Amplifiers- Design & Applications", NewYork: McGraw-Hill, Burr-Brown Research Corporation. Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final internal assessment.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory preferably objective type and based on entire syllabus.
- 4. Remaining questions (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Nam	e	Teacl	ning sche	me	Credit assigned					
ELX DLO5011	Database Management System		heory	Pract.	Tut.	Theory	Pract.	Tut.	To	tal	
			04			04			04		
		Examination Scheme									
		Theory Marks									
Subject	Subject	Int	ternal a	al assessment			Torm				
Code	Name	Test 1	Test 2	Avg. Test 1 : Test	of 1 and 2	End Sem. Exam	Work	Practical	Oral	Total	
ELX DLO5011	Database Management System	20	20	20		80				100	

Prerequisite:

Basic knowledge of Data structure.

Course objectives:

- 1. Learn and practice data modelling using the entity-relationship and developing database designs.
- 2. Understand the use of Structured Query Language (SQL) and learn SQL syntax.
- 3. Apply normalization techniques to normalize the database
- 4. Understand the needs of database processing and learn techniques for controlling the consequences of concurrent data access.

Course outcomes: On successful completion of course learner will be able to:

- 1. Understand the fundamentals of a database systems
- 2. Design and draw ER and EER diagram for the real life problem.
- 3. Convert conceptual model to relational model and formulate relational algebra queries.
- 4. Design and querying database using SQL.
- 5. Analyze and apply concepts of normalization to relational database design.
- 6. Understand the concept of transaction, concurrency and recovery.

Module No.	Unit No.	Topics	Hrs.
		Introduction Database Concepts:	4
1.0		Introduction, Characteristics of databases	
	1.1	File system v/s Database system	4
		Users of Database system	

		Data Independence	
	1.2	DBMS system architecture	
		Database Administrator	
		Entity-Relationship Data Model	
2.0	2.1	The Entity-Relationship (ER) Model: Entity types : Weak and strong entity sets, Entity sets, Types of Attributes, Keys, Relationship constraints : Cardinality and Participation, Extended Entity-Relationship (EER) Model : Generalization, Specialization and Aggregation	8
		Relational Model and relational Algebra	
3.0	3.1	Introduction to the Relational Model, relational schema and concept of keys. Mapping the ER and EER Model to the Relational Model	8
	3.2	Relational Algebra – unary and set operations, Relational Algebra Queries.	-
		Structured Query Language (SQL)	
		Overview of SQL	-
4.0	4.1	Data Definition Commands, Data Manipulation commands, Data Control commands, Transaction Control Commands.	12
	4.2	Set and string operations, aggregate function - group by, having.Views in SQL, joins, Nested and complex queries, Integrity constraints :- key constraints, Domain Constraints, Referential integrity, check constraints	-
	4.3	Triggers	-
5.0		Relational–Database Design	
		Pitfalls in Relational-Database designs, Concept of normalization	8
	5.1 Function Dependencies, First Normal Form, 2nd, 3rd, BCNF, multi- dependencies, 4NF.		
6.0		Transactions Management and Concurrency	
		Transaction concept, Transaction states, ACID properties	
	6.1	Concurrent Executions, Serializability – Conflict and View,	12
		Concurrency Control: Lock-based, Timestamp-based protocols.	

6.2	Recovery System: Failure Classification, Log based recovery, ARIES, Checkpoint, Shadow paging. Deadlock handling	
	Total	52

Text Books:

- 1. G. K. Gupta "Database Management Systems", McGraw Hill.
- 2. Korth, Slberchatz, Sudarshan, "Database System Concepts", 6th Edition, McGraw Hill
- 3. Elmasri and Navathe, "Fundamentals of Database Systems", 5th Edition, Pearson education.
- 4. Peter Rob and Carlos Coronel, "Database Systems Design, Implementation and Management", Thomson Learning, 5th Edition.

Reference Books:

- 1. Dr. P.S. Deshpande, SQL and PL/SQL for Oracle 10g, Black Book, Dreamtech Press.
- 2. Gillenson, Paulraj Ponniah, "Introduction to Database Management", Wiley Publication.
- 3. Sharaman Shah, "Oracle for Professional", SPD.
- 4. Raghu Ramkrishnan and Johannes Gehrke, "Database Management Systems ",TMH.

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Nam	ie	Teaching scheme				Credit assigned						
FLX	Digital Cantual		heory	Pract.	Tut	. The	ory	Pract.		Tut.	Total		
DLO5012	Systems	UI	04			04	4				04		
11			Examination Scheme										
Course	Course		Theory										
Code	Name	Inter	nal Asses	sment	End	Dura	Teri	erm Pra		Oral	Total		
		Test 1	Test 2	Avg	sem	tion (hrs)	wor	K					
ELX DLO5012	Digital Control Systems	20	20	20	80	03					100		

Course Pre-requisite: ELX301: Mathematics III, ELX401: Mathematics IV, ELX406: Linear Control Systems

Course Objectives:

- 1. To introduce the discrete-time systems theory.
- 2. To introduce Z-transform methods in digital systems design.
- 3. To introduce modern state-space methods in digital systems design.

Course Outcomes : At the end of the course, the learner will have the ability to

- 1. Justify the need for digital control systems as well as understand sampling and reconstruction of analog signals.
- 2. Model the digital systems using various discretization methods and understand the concept of Pulse Transfer Function.
- 3. Analyze the digital control systems using classical techniques.
- 4. Analyze the digital control systems using modern state-space techniques.
- 5. Understand the concept of controllability and design the state feedback controllers.
- 6. Understand the concept of observability and design the state observers.

Module		Contents	Time
		Basics of discrete-time signals and discretization	
		Why digital control system? Advantages and limitations, comparison of	
	1.1	continuous and discrete data control, block diagram of digital control	
1.		system.	06
	12	Impulse sampling. Nyquist-Shannon sampling theorem, reconstruction of	
	1.2	discrete-time signals (ideal filter)	
	13	Realizable reconstruction methods (ZOH and FOH). Transfer function of	
	1.5	ZOH and FOH.	
		Modelling of Digital Control System	
	2.1	Discretization Approaches: Impulse invariance, step invariance, bilinear	
2.	2.1	transformation, finite difference approximation of derivative.	10
	2.2	Z-transform revision and its equivalence with starred Laplace transform.	
	2.3	The pulse transfer function (PTF) and general procedures to obtain PTF.	
3		Stability Analysis and Controller Design via Conventional Methods	12
3.	3.1	Mapping between s-plane and z-plane, stability analysis of digital systems	12

	1			
		in z-plane. Effects of sampling frequency on stability.		
	2.2	Transient and steady-state analysis of time response, digital controller		
	5.2	design using root-locus method.		
	3.3	Digital controller design using bode plots, digital PID controller.		
		Realization of digital controllers: direct programming, standard		
	3.4	programming, series programming, parallel programming, ladder		
		programming,		
		State Space Analysis of Discrete-time Systems		
		Revision of continuous-time state-space models. Solution of continuous-		
	4.1	time state-space equation. Discretization of continuous-time state-space		
		solution and discrete-time state-space model.	00	
4.	4.2	Various canonical state-space forms for discrete-time systems and	08	
		transformations between state-space representations.		
	12	Solution of discrete-time state-space equation. Computation of state-		
	4.5	transition matrix (z-transforms, Caley-Hamilton theorem, Diagonalization).		
		Controllability and State Feedback Controller Design		
	5 1	Concept of controllability. Distinction between reachability and		
5.	5.1	controllability in discrete-time systems.	06	
	5.2	Digital controller design using pole-placement methods. (Similarity		
	5.2	transforms, Ackerman's formula).		
		Observability and Observer Design		
6.	6.1	Concept of observability. Distinction between detectability and		
	0.1	observability in discrete-time systems.	06	
	60	Observer design (prediction observer and current observer). Output		
	0.2	feedback controller design. Introduction to separation principle.		
	6.3	Dead-beat controller design, dead-beat observer design.		
Total			48	

Text books:

- 1. **Ogata Katsuhiko**, "Discrete-time Control Systems", Pearson, 2nd Edition, 1995.
- 2. **M. Gopal**, "Digital Control and State Variable Methods", Tata McGrow-Hill, 3rd Edition, 2003. **Reference Books:**

1. Gene Franklin, J. David Powell, Michael Workman, "Digital Control of Dynamic Systems", Addison Wesley, 3rd Edition, 1998.

- 2. B. C. Kuo, "Digital Control Systems", Oxford University press, 2nd edition, 2007.
- 3. Chi-Tsong Chen, "Linear System Theory and Design", Oxford University Press, USA, 1998.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus.

4. Remaining questions will be selected from all the modules.

Course Code	Course Name		Teachi	me		Credit assigned							
FIV	ASIC	Theory Pract.		Tut.	Theo	ory	Pract.		Tut.			Total	
DLO5013	Verification	0	4			04	04						04
			Examination Scheme										
		Theory											
Course Code	Course Name	Internal Assessment			End	Dura tion	Те	erm	Pra	Pract.		1	Total
		Test 1	Test 2	Avg	sem	(hrs)	hrs) work						
ELX DLO5013	ASIC Verification	20	20	20	80	03			-	-		•	100

Course Pre-requisite: EXC303: Digital Circuits and Design, ELXL304: Object Oriented Programming Methodology Laboratory, ELX 404: Digital System Design

Course Objectives

1. To introduce the learner System Verilog concepts for verification.

2. To introduce the learner advanced verification features such as practical use of classes, randomization, checking and coverage.

3. To highlight the significance of verification in VLSI industry.

Course Outcomes

At the end of the course, the learner will have the ability to

- 1. Demonstrate an understanding of programmable devices and verification methodologies.
- 2. Exploit new constructs in SV and advanced ASIC verification techniques.
- 3. Create test benches for digital designs in system verilog.
- 4. Carry out verification of design successfully using simulators

Module		Contents	Time
		Programmable Devices and Verilog	
1.	1.1	Programmable Devices: Architecture of FPGA, CPLD with an example of Virtex- 7 and Spartan -6 family devices	08
	1.2	Verilog HDL: Data types, expressions, assignments, behavioural, gate and switch level modelling, tasks and functions	
		Verification Basics and Data Types	
		Verification Basics: Technology challenges, Verification methodology options,	1
	2.1	Test bench creation, test bench migration, Verification languages, Verification IP	
2.		reuse, Verification approaches, Layered Testbench, Verification plans	12
	2.2	Data Types: Built in, Fixed size array, dynamic array, queues, associative array, linked list, array methods, choosing a storage type, creating new types with typedef, creating user defined structures, type conversion, enumerated types, constants,	
		strings, expression width	
		Procedural statements, test bench and Basic OOP	12
3.	3.1	Procedural Statements and Routines: Procedural statements, tasks, functions and void functions, task and function overview, routine arguments, returning from a	12

		routine, local data storage, time values Connecting the Test bench and Design: Separating the test bench and design, the interface construct, stimulus timing, interface driving and sampling, connecting it all together top level scope program-module interactions	
	3.2	Basic OOP: Class, Creating new objects, Object deal location, using objects, variables, class methods, defining methods outside class, scoping rules, using one class inside another, understanding dynamic objects, copying objects, public vs. local, building a test bench	
		Randomization and IPC	
4.	4.1	Randomization: Randomization in system Verilog, constraint details, solution probabilities, controlling multiple constraint blocks, valid constraints, In-line constraints, The pre-randomize and post-randomize functions, Random number functions, Constraints tips and techniques	10
	4.2	Threads and Inter process Communication: working with threads, disabling threads, inter process communication, events, semaphores, mailboxes, building a test bench with threads and IPC	
		Assertions and Functional Coverage	
5	5.1	System Verilog Assertions: Assertions in verification methodology, Understanding sequences and properties	06
5.	5.2	Functional Coverage: Coverage types, strategies, examples, anatomy of a cover group, triggering a cover group, data sampling, cross coverage, generic cover groups, coverage options	
		Total	48

Text books:

- 1. **Chris Spear**, "System Verilog for Verification: A guide to learning the testbench language features", Springer, 3rd Edition.
- 2. Janick Bergeron, "Writing Testbenches Using System Verilog", Springer 2006.
- 3. Stuart Sutherland, Simon Davidmann, and Peter Flake, "System Verilog for Design:

A guide to using system verilog for hardware design and modeling", Springer, 2nd Edition.

Reference Books:

- 1. Ben Cohen, Srinivasan Venkataramanan, Ajeetha Kumari and Lisa Piper, "SystemVerilog Assertions Handbook", VhdlCohen Publishing, 3rd edition
- 2. S Prakash Rashinkar, Peter Paterson and Leena Singh, "System on Chip Verification Methodologies and Techniques", Kluwer Academic, 1st Edition.
- 3. System Verilog Language Reference manual
- 4. Samir Palnitkar, "Verilog HDL: A guide to Digital Design and Synthesis" second edition, Pearson IEEE 1364-2001 compliant.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus.
- 4. Remaining questions will be selected from all the modules.

Course Code	Course Name		Te	aching	schem	e	Credit assigned					
ELX	Biomedical	_	Theory Pra		act. Tut.		Theory	Pract	. Τι	ıt.	Total	
DLO5014	Instrumentatio	on	04	04 02		2			-	-	04	
			Examination Scheme									
	Course Name	Theory										
Course		Internal				Dura	Term			Pract		
Code	Course Maine	Assessment			End tion		work	Pract.	Oral	Pract.	Total	
		Test 1	Test 2	Avg	sem	(hrs)	WOLK					
ELX DL O5014	Biomedical	Biomedical 20		20	80	03					100	
DL03014	insti umentation					1	1					

Course Objectives

1. Introduce the learners to basic physiology and function of various systems in human body.

2. Introduce the learners to Diagnostic, Pathology, Life supportive equipment and latest imaging modalities in hospitals and healthcare industry.

3. Motivate learners to take up live projects with medical applications which will benefit the society at large.

Course Outcomes

- · Have basic knowledge about the basic structure and functions of parts of cell, generation of action potential and various bioelectric potentials.
- Builds foundation of knowledge of physiological processes such as respiratory, cardiovascular, nervous and muscular systems in human body.
- Compare various methods used for measurement of various cardiac parameters such as blood pressure, blood flow, blood volume, cardiac output and heart sounds.
- Know the basic principle of analytical instruments and will have an over view of pathology laboratory equipments such as colorimeter, spectrophotometer, blood cell counter and auto-analyser.
- Have knowledge of life support equipments such as pacemaker, defibrillator, Heart lung machine, Haemodialysis machine and baby incubator along with safety limits of micro and macro shocks and understand the importance of electrical safety in hospital equipments.

Module		Contents	Time
		Bio-Potential measurements	
	1 1	Human Cell	0.6
1.	1.1	Structure of Cell, Origin of Bio-potentials, Generation of Action Potentials,.	06
	1.2	Electrodes	
	1.2	Electrode-Electrolyte interface and types of bio-potential electrodes	
		Physiological Systems and Related Measurement	
		Cardiovascular system	12
2.	2.1	Structure of Heart, Electrical and Mechanical activity of Heart, ECG	
	2.1	measurements and Cardiac arrhythmias, Design of ECG amplifier, Heart	
		sounds measurement.	
Univers	ity of I	Mumbai, B. E. (Electronics Engineering), Rev 2016 2'	7

Have knowledge of imaging modalities such as X-ray, CT, MRI and Ultrasound.

	2.2	Nervous system CNS and PNS: Nerve cell, Neuronal Communication, Generation of EEG and its measurement. Normal and abnormal EEG, Evoked potential. Electroencephalography: EEG measurements, Electrode-placement and Block diagram of EEG machine	
	2.3	Respiratory systemPhysiology of respiration and measurements of respiratory related parameterslike respiration rate, Lung Volumes and capacities	
	2.4	Muscular system Typical Muscle fibre Action potential Electromyography: EMG measurement and block diagram.	
		Cardio-Vascular measurements	
	3.1	Blood Pressure- Direct and Indirect types.	
3	3.2	Blood Flow- Electromagnetic and Ultrasonic type.	08
5.	3.3	Blood Volume- Plethysmography: Impedance, Capacitive and Photoelectric type	
	3.4	Cardiac Output- Fick's method, Dye-dilution and Thermo-dilution type.	
		Analytical equipment	
	4.1	Beer Lambert's law, Principle of photometry.	
1	4.2	Photo-colorimeter : Optical diagram	05
4.	4.3	Spectrophotometer : Optical diagram	
	4.5	Blood cell counter : Coulter's counter	
	4.6	Auto-analyser : Schematic diagram	
		Life-saving and Support equipment	
	5.1	Pacemaker- Types of Pacemaker, Modes of pacing and its applications.	
	5.2	Defibrillator-Types of fibrillations, Modes of operation, DC Defibrillators and their applications.	
5.	5.3	Heart-Lung machine: System-flow diagram and its Application during surgery.	09
	5.4	Haemodialysis machine: Principle of operation and System-flow diagram.	
	5.5	Baby Incubator and its applications	
		Patient safety	
	5.6	Physiological effects of electrical current, Shock Hazards from electrical	
		equipments and methods of accident prevention	
		Imaging techniques	
	6.1	X-Ray- Generation, X-ray tube and its control, X-ray machine and its	
6.		applications	08
	6.2	CT Scan- CT Number, Block Diagram, scanning system and applications.	
	6.3	MRI- Concepts and image generation, block diagram and its applications	
	6.4	Ultrasound Imaging- Modes of scanning and their applications	
		Total	48

Text books:

- 1. Handbook of Biomedical Instrumentation: R S. Khandpur. (PH Pub)
- 2. Medical Instrumentation, Application and Design: J G. Webster. (John Wiley)
- 3. Introduction to Biomedical Equipment Technology: Carr –Brown. (PH Pub)

Reference Books:

- 1. Encyclopedia of Medical Devices and Instrumentation: J G. Webster. Vol I- IV (PH Pub)
- 2. Various Instruments Manuals.
- 3. Various internet resources.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks. The Learners need to solve total 4 questions. Question No.1 will be compulsory and based on entire syllabus. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Name		Teac	hing sc	heme		Credit assigned					
FLVI	Microcontrollers & Applications Laboratory	Theory Prac		t. Tut.		Theory	Pract.	Τι	ıt.	Total		
501		-	02					01	_	-	01	
]	Examir	ination Scheme					
	Course Name	Theory										
Course Code		Internal Assessment		al ent	End	Dura tion	Term	Pract.	Oral	Pract.	Total	
		Test 1	Test 2	Avg.	sem	(hrs)	WUIK					
ELXL501	Microcontrollers &Applications Laboratory						25			25	50	

Assessment:

Term Work:

At least SIX experiments based on the entire syllabus of ELX 501 (Microcontrollers and Applications) should be set to have well predefined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. Term work must include a mini project in addition to the number of experiments. The course mini-project is to be undertaken in a group of two to three students.

The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work, mini project and minimum passing marks in term work. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed students well in advanced. Practical and Oral exam will be based on the entire syllabus.

Suggested experiments:

- Maximum three experiments in X 51 assembly programming involving arithmetic, logical, Boolean, code-conversion etc operations.
- Minimum three experiments on interfacing of X 51 based system with peripheral IC's (ADCs, DACs etc) peripheral actuators (relays, motors etc.) sensors (temperature, pressure etc.).

Suggested mini projects:

- Interfacing single LED/seven-segment display(SSD)/multiple-SSD with refreshing along-with some additional functional feature.
- Interfacing dot matrix LED for message display/ rolling message display.

- Interfacing IR emitter/receiver pair for time-period/speed calculations.
- Interfacing single key/4 key/4 X 4 matrix keyboard with some additional functional feature.
- Motors continuous, stepper, servo interfacing with speed(RPM) indication.
- Multi-function alarm clock using buzzer and LCD.
- Interfacing DAC and generating various waveforms.
- Ambient temperature indicator using LM 35 and 8-bit ADC 0808.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned					
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total		
ELXL 502	Digital	-	2		-	01		01		
	Communication									
	Laboratory									

Subject	Subject Name				e				
Code			T	neory Marks		Term	Practical	Oral	Total
		Internal assessment End Sem.			Work				
		Test 1	Cest 1 Test Ave. Of		Exam				
			2 Test 1 and						
				Test 2					
ELXL 502	Digital	-	-	-	-	25		25	50
	Communication								
	Laboratory								

Laboratory Experiments:

Lab session includes Seven experiments and a Case study(Power point Presentation) on any one of the suggested topics.

- 1. The experiments will be based on the syllabus contents.
- 2. Minimum Seven experiments need to be conducted, out of which at least THREE should be software-based

(Scilab, MATLAB, LabVIEW, etc).

3. Each student (in groups of 3/4) has to present a Case study (Power point Presentation) as a part of the laboratory work.

The topics for Presentation / Case-study may be chosen to be any relevant topic on emerging technology.

("Beyond the scope of the syllabus".) Power point presentation should contain minimum of 15 slides and students should submit a report, (PPT+REPORT carry minimum of 10 marks

The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed students well in advanced.

Suggested experiments based on Laboratory setups:

- 1. Line codes
- 2. Binary modulation techniques: BASK, BPSK, BFSK
- 3. M-ary modulation techniques: QPSK ,QAM
- 4. MSK

Suggested experiments based on software:

- 1. Simulation of PDF& CDF of Raleigh / Normal/ Binomial Distributions
- 2. Simulation of Eye pattern for PAM signal
- 3. Source encoding: Huffman coding for Binary symbols

- 4. Simulation of Shannon-Hartley equation to find the upper limit on the Channel Capacity
- 5. Channel Encoding: Linear Block code : code generation, Syndrome
- 6. Cyclic code-code generation, Syndrome
- 7. Channel encoding: Convolutional code-code generation from generator sequences
- 8. Simulation of BPSK/QPSK/BFSK Modulation
- 9. Simulation of Duo-binary encoder-decoder
- 10. Plot and compare BER curves for Binary/ M-ary modulation schemes
- 11. Simulation of error performance of a QPSK/BPSK/MSK Modulator

Suggested topics for presentation:

- 1. DTH
- 2. Digital Multiplexing
- 3. Satellite Launching vehicles: PSLV, GSLV
- 4. Digital TV
- 5. Digital Satellite system: VSAT
- 6. RFID

Any other related and advanced topics.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned					
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total		
ELXL504	Design With	-	2		-	01		01		
	Linear									
	Integrated									
	Circuits									
	Laboratory									

Course	Course		Examination Scheme									
Code	Name			Theory Mar	·ks	Term	Practical	Oral	Total			
		Int	ernal as	ssessment	End Sem.	Work	and					
		Test	Test	Avg. of	Exam		Oral					
		1	2	Test 1 and								
				Test 2								
ELXL504	Design With					25	25		50			
	Linear											
	Integrated											
	Circuits											
	Laboratory											

Term Work:

At least Six experiments based on the entire syllabus of Course ELX504 (Design with Linear Integrated Circuits) should be set to have well predefined inference and conclusion. Few computation/simulation based experiments are encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme.

A mini project based on the following topic or additional real time applications are encouraged. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed students well in advanced. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus.

Suggested List of Experiments:

- 1. Experiment on op amp parameters
- 2. Experiment on design of application using op amp (Linear)
- 3. Experiment on implementation of op amp application e.g. oscillator
- 4. Experiment on non linear application (e.g. comparator) of op amp
- 5. Experiment on non linear application (e.g. peak detector) of op amp
- 6. Experiment on ADC interfacing
- 7. Experiment on DAC interfacing
- 8. Experiment on IC 555

- 9. Experiment on voltage regulator (Design)
- 10. Experiment on implementation of instrumentation system (e.g. data acquisition). The topic for the mini project in the course based on the syllabus of ELX505(Design with Linear Integrated Circuits)need to be application oriented.

Course Code	Course Name		Teachir	ng schei	me	Credit assigned						
ELXL DLO5011	Database	The	ory P	ract.	Tut.	Theory	Pract	. T	ut.	Tot	al	
	Management Systems Laboratory	-	-	02			01	-	-	01		
			Examination Scheme									
Course	Course Name	Intern	Theory Internal Assessment			Term	Pract	Oral	Prac	ract. Tot	ntal	
Cout		Test 1	Test 2	Avg	sem	work	I I act.	Ulai	/ Or	al	<i>r</i> ta1	
ELXL DLO5011	Database Management Systems Laboratory					25		25		5	50	

At least **eight experiments** based on the entire syllabus of **ELXDLO5011 (Data Base Management System)** should be set to have well-defined inference and conclusion. The experiments should be student-centric, and attempt should be made to make experiments more meaningful, interesting and innovative. Experiment must be graded from time to time. Additionally, each student (in group of 2/3) must perform a Mini Project as a part of the laboratory and report of mini project should present in laboratory journal. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Oral exam will be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed students well in advanced.

Suggested List of Experiments

Expt. No	Title of the Experiments
1	To analyse the sampling and reconstruction of analog signal.
2	To study various discretization approaches (Impulse Invariance, Step Invariance, Bilinear Transformation)
3	Study of time domain transient and steady-state performance and performance specifications.
4	Digital controller design using Root-locus method.
5	Modelling of discrete-time systems in state-space and conversion to various canonical forms.
6	Discrete-time system simulation in Simulink.
7	Study digital PID controller and its implementation in MATLAB and Simulink.
8	Controllability and Observability of discrete-time systems.

9	Pole placement controller design for discrete-time systems.
10	Design of deadbeat controller and observer.

Course Code	Course Name		Teachin	ig schei	me	Credit assigned						
FLVI	ASIC	The	ory P	ract.	Tut.	Theory	Theory Pract.		ut.	Total		
DLO5013	DLO5013 Verification			02		01		-	-	01		
			·		Exam	ination S	cheme					
Course	Course Name		The	ory								
Code		Internal Assessment			End	Term	Pract.	Oral	Pract.	Total		
		Test 1	Test 2	Avg	sem	work			/ Oral			
ELXL DLO5013	ASIC Verification					25		25		50		

At least **eight** experiments based on the entire syllabus of **ELXDLO5013** (**ASIC Verification**) should be set to have well-defined inference and conclusion. The experiments should be student-centric and attempt should be made to make experiments more meaningful, interesting and innovative. Experiment must be graded from time to time. Additionally, each student (in group of 2/3) has to perform a Mini Project as a part of the laboratory and report of mini project should present in laboratory journal. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Oral exam will be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed students well in advanced.

List of Experiments:

- 1. Implementation of 4:1 Multiplexer in Verilog with
 - a. Gate level Modeling
 - b. Structural/ Dataflow Modeling
 - c. Behavioral Modeling
- 2. Implementation of D flip flop (Asynchronous/ Synchronous/latch) using Verilog.
- 3. Experiment to practice creating dynamic arrays, associative arrays, and queues (Test a synchronous 8bit x64K (512kBit) RAM).
- 4. Write a test plan and test bench for ALU Design.
- 5. Experiment to practice Procedural Statements and Routines using tasks, functions and do-while loops.
- 6. Create Interfaces to connect the Test bench and Design.
- 7. Threads & IPC: Implement the following counters
 - i. UP counter
 - ii. DOWN counter
 - iii. Divide by 2 count As threads. Use Fork join, fork join_none, fork_joinany.
- 8. Threads & IPC create dynamic processes (threads) and get familiar with interprocess communication using events, semaphore and mailb
- 9. Functional Coverage write cover groups and get familiar with the coverage repor Verification of FIFO

Course Code	Course Name		Teaching scheme				Credit assigned					
FLVI	Biomodical	The	ory P	ract.	Tut.	Theory	Pract	. Tu	ut.	Total		
DLO5013	Instrumentation		-	02			01	-	-	01		
		Examination Scheme										
Course			The	eory					Pract			
Code	Course Name	Internal Assessment			End	Term	Pract	Oral	Pract.	Total		
Couc		Test	Test	Δνσ	sem	work	ork	Ulai	/ Oral	I Utai		
		1	2	Avg								
ELXL	Biomedical					25		25		50		
DLO5013	Instrumentation					23		23		50		

At least **eight** experiments based on the entire syllabus of **ELXDLO5014** (Biomedical Instrumentation) should be set to have well-defined inference and conclusion. The experiments should be student-centric and attempt should be made to make experiments more meaningful, interesting and innovative. Experiment must be graded from time to time. Additionally, each student (in group of 2/3) has to perform a Mini Project as a part of the laboratory and report of mini project should present in laboratory journal. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Oral exam will be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed students well in advanced.

Expt. No.	Title of the Experiments
1	Study of X-ray Tubes
2	Design of active notch filter for line frequency
3	Design of general purpose amplifier for Bio potential measurement.
4	Design of Pacemaker using 555 timer.
5	Demonstration of Blood pressure measurement.
6	Demonstration of Electrocardiogram recording.
7	Demonstration of Electroencephalogram recording.
8	Demonstration of Electromyogram recording.
9	Demonstration of Photo-Colorimeter.
10	Demonstration of Spectrophotometer.

Suggested List of Experiments

11	Demonstration of Auto-analyser.
12	Demonstration of Blood Cell counter.
13	Demonstration of D C Defibrillator (proto type).
14	Demonstration of Baby Incubator.
15	Demonstration of X Ray machine.
16	Demonstration of CT scanner.
17	Demonstration of MRI machine.
18	Demonstration of Ultrasound machine.

Course Code	Course Name	Tea	ching sche	me	Credit assigned				
EI V (01	Embedded	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ELA 001	Systems& Real Time Operating System	04			04			04	

Course Code		Examination Scheme										
		Theory										
	Course	Intern	Internal Assessment			Du						
	Name	Test 1	Test 2	Avg	End sem	ra tio n (hr s)	Term work	Pract.	Oral	Pract. / Oral	Total	
ELX 601	Embedded Systems& Real Time Operating System	20	20	20	80	03					100	

Course Objectives

To study concepts involved in embedded hardware and software for systems realisation.

Course Outcomes At the end of the course, the learner will have the ability to

- 1. Identify and describe various characteristic features and applications of embedded systems.
- 2. Analyse and identify hardware for embedded systems implementation.
- 3. Analyse and identify various software issues involved in Embedded systems for real time requirements.
- 4. Analyse and explain the design life-cycle for embedded system implementation.

Module		Contents	Time
		Introduction to Embedded Systems	04
	1.1	Characteristics and Design metrics of Embedded system.	
1.	1.2	Real time systems:Need for Real-time systems, Hard-Soft Real-time systems.	
	1.3	Challenges in Embedded system Design: Power, Speed and Code density.	
		Embedded Hardware	12
	2.1	Embedded cores, Types of memories, Sensors (Optical encoders, Resistive) and Actuators (Solenoid valves, Relay/switch, Opto-couplers)	
2.	2.2	Power supply considerations in Embedded systems: Low power features- Idle & Power down mode, Sleep mode, Brown-out detection.	
	2.3	Communication Interfaces: Comparative study of serial communication interfaces (RS-232, RS-485), I2C, CAN, USB (v2.0), Bluetooth, Zig-Bee. Selection criteria of above interfaces. (Frame formats of above protocols are not expected)	
		Embedded Software	14
	3.1	Program Modelling concepts: DFG,FSM,UML	
	3.2	Embedded C-programming concepts (from Embedded system point of view): Data types, Modifiers, Qualifiers, Functions, Macros, Interrupt service routine. Device drivers	
3.	3.3	Real-time Operating system: Need of RTOS in Embedded system software and comparison with GPOS, Foreground/Background processes, Interrupt latency, Task, Task states, Multi-tasking, Context switching, Task scheduling, Scheduling algorithms-Rate Monotonic Scheduling, Earliest Deadline First (with numericals), Inter-process communication: Semaphore, Mailbox, Message queues, Event timers, Task synchronisation- Shared data, Priority inversion, Deadlock. Memory Management	
	3.4	Introduction to μ COS II RTOS: Study of Kernel structure of μ COS II, μ COS II functions for Initialisation, Task creation, Inter-task communication and Resource management, Memory management	08
		System Integration, Testing and Debugging Methodology	04
	4.1	Embedded Product Design Life-Cycle (EDLC)	
4.	4.2	Hardware-Software Co-design	
	4.3	Testing & Debugging: Boundary-scan/JTAG interface concepts, Black-Box testing, White-Box testing, Hardware emulation, Logic analyser.	
		Case Studies	06
5.	5.1	Soft Real-time: Automatic Chocolate Vending machine using $\mu \overline{COS}$ II RTOS- Requirements study, Specification study using UML, Hardware architecture, Software architecture	
	5.2	Hard Real-time: Car Cruise-Control using μ COS II RTOS- Requirements study, specification study using UML, Hardware architecture, Software Architecture	

Text books:

1.Dr. K.V. K. K. Prasad, "Embedded Real Time System: Concepts, Design and Programming", Dreamtech, New Delhi, Edition 2014.

2.Jean J. Labrosse, "MicroC / OS-II The Real-Time Kernel", CMP Books, 2011, Edition 2nd.

3. Rajkamal, "Embedded Systems: Architecture, Programming and Design", McGraw Hill Education (India) Private Limited, New Delhi, 2015, Edition 3rd.

4. SriramIyer, Pankaj Gupta, "Embedded Real Time Systems Programming", Tata McGraw Hill Publishing Company ltd., 2003.

Reference Books:

1. DavidSimon, "An Embedded Software Primer", Pearson, 2009.

2.Jonathan W. Valvano, "Embedded Microcomputer Systems – Real Time Interfacing", Publisher - Cengage Learning, 2012 Edition 3rd.

3.AndrewSloss, DomnicSymes, Chris Wright, "ARM System Developers Guide Designing and Optimising System Software", Elsevier, 2004

4.FrankVahid, Tony Givargis, "Embedded System Design – A Unified Hardware/Software Introduction", John Wiley & Sons Inc., 2002.

5.Shibu K V, "Introduction to Embedded Systems", Tata McGraw Hill Education Private Limited, New Delhi, 2009.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total of 4 questions.
- 3. Question No.1 will be compulsory and based on the entire syllabus.
- 4. Remaining question (Q.2 to Q.6) will be set from all the modules.
- 5. Weightage of marks, commensurate with the time allocated to the respective module.

Programme Structure for Bachelor of Engineering (B.E.) – Electronics Engineering (Rev. 2016)

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELX 602	Computer	4	2		4			04	
	Communication								
	and Networks								

Subject	Subject Name				Examinatio	n Scheme					
Code			T	heory Marks		Term	Practical	Oral	Total		
		Inte	rnal as	sessment	End Sem.	Work					
		Test 1	Test	Ave. Of	Exam						
			2	Test 1 and							
				Test 2							
ELX 602	Computer	20	20	20	80	-			100		
	Communication										
	and Networks										

Course Pre-requisite: ELX405 Principles of Communication Engineering ELX502 Digital Communication

Course Objectives:

The objectives of this course are to:

- 1. Introduce networking architecture and protocols
- 2. Understand the various layers and protocols in the TCP/IP model
- 3. Recognize different addressing schemes, connecting devices and routing protocols
- 4. Select the required protocol from the application layer protocols

Course Outcomes:

On successful completion of the course the students will be able to:

1.Demonstrate understanding of networking concepts and required protocols

2. Analyze the various layers and protocols of the layered architecture

3. Evaluate different addressing schemes, connecting devices and routing protocols

4. Appreciate the application layer protocols
| Module | Unit | Topics | Hrs. |
|--------|------|---|------|
| No. | No. | | |
| 1. | | Introduction to Network Architectures, Protocol Layers, and Service models | 06 |
| | 1.1 | Uses of computer networks. Topologies, LAN, MAN, WAN, Network topologies, | |
| | | Addressing : Physical / Logical /Port addressing, Protocols and Standards. | |
| | 1.2 | Protocol Architecture: Need of layered protocol architecture, Layers details of OSI, ,
Protocol Layers and Their Service Models | |
| | 1.3 | TCP/IP Model: Protocol suite, Comparison of OSI and TCP/IP | |
| 2. | | Physical Laver | 08 |
| | 2.1 | Transmission Media: Guided media like Coaxial, fiber, twisted pair, and Wireless media, Transmission Impairments. Interconnecting Devices: Hub, Bridges, Switches, Router, Gateway | |
| | 2.2 | Data communication model : DTE, DCE, RS-232D Interface , Null Modem ,
Multiplexing : FDM , Synchronous TDM , Statistical TDM, ADSL , xDSL, Cable Modem | |
| 3. | | Data Link Control | 08 |
| | 3.1 | Data link services: Framing, Flow control, Error control, ARQ methods, | |
| | | Piggybacking | |
| | 3.2 | High Level Data Link Control (HDLC): HDLC configurations, Frame formats, Typical frame exchanges. | _ |
| | 3.3 | Medium Access Control Protocols: ALOHA, Slotted ALOHA, CSMA, CSMA/CD | |
| 4. | | Network Layer | 14 |
| | 4.1 | Switching : Switched Communication networks, Circuit switching Networks, , Circuit switching Concepts, Packet switching Principles: Virtual circuit switching and Datagram switching | |
| | 4.2 | Routing in Packet Switching Networks: Characteristics, Routing strategies, Link state Routing versus Distance vector Routing. Least-Cost Routing Algorithms: Dijkstra's Algorithm, Bellman Ford Algorithm. | |
| | 4.3 | Internet Protocol:
Principles of Internetworking: Requirements, Connectionless Operation
Internet Protocol Operation: IP packet, IP addressing, subnet addressing, IPv4, ICMP,
ARP, RARP
IPv6 (IPv6 Datagram format, comparison with IPv4, and transition from IPv4 to IPv6) | |
| 5. | | Transport Layer & Application Layer | 08 |
| | 5.1 | Connection –oriented Transport Protocol Mechanisms: Transmission Control
Protocol (TCP): TCP Services, TCP Header format, TCP three way handshake, TCP state transition diagram. | |

		User datagram Protocol (UDP)	
	5.2	Congestion: Effects of congestion, Congestion control methods, Traffic management, Congestion control in Packet switching Networks	
	5.3	Application layer Protocols : HTTP, FTP, DNS,SMTP, SSH	
6.		LANs. High speed Ethernet	04
	6.1	LAN Protocol architecture, LAN topologies, Hub, Bridges, Virtual LANs	
		Traditional Ethernet and IEEE 802.3 LAN Standard : Ethernet protocol, Frame structure, Physical layers,	
	6.2	High Speed Ethernet : Fast Ethernet, Gigabit Ethernet & 10- Gigabit Ethernet	
	•	Total	48

Recommended Text Books

- 1. William Stallings, "Data and Computer communications", Pearson Education, 10th Edition.
- 2. Behrouz A. Forouzan, "Data communication and networking ", McGraw Hill Education, Fourth Edition.
- 3. Alberto Leon Garcia, "Communication Networks", McGraw Hill Education, Second Edition

Reference books :

- 1. S. Tanenbaum, "Computer Networks", Pearson Education, Fourth Edition.
- 2. J. F. Kurose and K. W. Ross ,"Computer Networking: A Top-Down Approach", Addison Wesley, 5th Edition.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4: Remaining question will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme (Hrs.)				Credits Ass	signed	
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ELX 603	VLSI Design	4	2		4			04

Subject	Subject Name	Examination Scheme							
Code			T	heory Marks		Term	Practical	Oral	Total
		Inte	Internal assessment End Sem.			Work			
		Test 1	Test	Ave. Of	Exam				
			2	Test 1 and					
				Test 2					
ELX 603	VLSI Design	20	20	20	80	-			100

Prerequisite Subject:

- ELX302: Electronics Devices and Circuits- I
- ELX304: Digital Circuit Design
- ELX404: Digital System Design
- ELX504: Design with Linear Integrated Circuits

Course Objectives:

- 1. To study MOS based circuit realization using different design styles
- 2. To highlight the fundamental issues in data path and system level design

Course Outcomes: After successful completion of the course student will be able to ...

- 1. Demonstrate a clear understanding of choice of technology, scaling, MOS models and system level design issues.
- 2. Design and analyze MOS based inverters.
- 3. Design MOS based circuits with different design styles.
- 4. Design semiconductor memories, adders and multipliers.

Unit No.	Details	Teaching Hours
1	Technology Trend : 1.1 Technology Comparison: Comparison of BJT and MOS technology 1.2 MOSFET Scaling: Types of scaling, Level 1 and Level 2 MOSFET Models, MOSFET capacitances	06
2	 MOSFET Inverters: 2.1 Types of MOS inverters: Active and passive load and their comparison. 2.2 Circuit Analysis of MOS Inverters: Static Analysis resistive and CMOS inverter: Calculation of all critical voltages and noise margins. Design of symmetric CMOS inverter. Dynamic Analysis of CMOS inverter: Calculation of rise time, fall time and propagation delay 2.3Logic Circuit Design: Analysis and design of 2-I/P NAND,NOR and complex Boolean function using equivalent CMOS inverter for simultaneous switching. 	10
3	MOS Circuit Design Styles:	10

University of Mumbai, B. E. (Electronics Engineering), Rev 2016

	3.1 Design Styles: Static CMOS, pass transistor logic, transmission gate, Pseudo	
	NMOS, C ² MOS, Dynamic, Domino,NORA and Zipper.	
	3.2Circuit Realization: Basic gates, SR Latch, JK FF, D FF, 1 Bit Shift Register,	
	MUX using above design styles.	
4	Semiconductor Memories:	
	4.1 SRAM: 6T SRAM, operation, design strategy, leakage currents, read/write circuits,	
	sense amplifier.	
	4.2DRAM: 1T_DRAM, operation modes, leakage currents, refresh operation, physical	08
	design.	
	4.3 ROM Array: NAND and NOR PROM, Nonvolatile read/write memories-	
	classification and programming techniques	
5	Data Path Design:	
	5.1 Adder: CLA adder, MODL, Manchester carry chainand high speed adders like	04
	carryskip, carry select and carry save.	04
	5.2 Multipliers and shifter: Array multiplier and barrel shifter	
6	VLSI Clocking and System Design:	
	6.1Clocking: CMOS clocking styles, Clock generation, stabilization and distribution	
	6.2Low Power CMOS Circuits: Various components of power dissipation in CMOS,	
	Limits on low power design, low power design through voltage scaling	10
	6.3I/O pads and Power Distribution: ESD protection, input circuits, output circuits,	
	simultaneous switching noise, power distribution scheme	
	6.4Interconnect: Interconnect delay model, interconnect scaling and crosstalk.	

Text and Reference Books

1.Sung-Mo Kang and Yusuf Leblebici, "CMOS Digital Integrated Circuits Analysis and Design", Tata McGraw Hill, 3rd Edition.

2. John P. Uyemura, "Introduction to VLSI CIRCUITS AND SYSTEMS", Wiley India Pvt. Ltd.

3. Jan M. Rabaey, Anantha Chandrakasan and BorivojeNikolic, "*Digital Integrated Circuits: A Design Perspective*", Pearson Education, 2nd Edition.

4. Etienne Sicard and Sonia Delmas Bendhia, "Basics of CMOS Cell Design", Tata McGraw Hill, First Edition.

5. Neil H. E. Weste, David Harris and Ayan Banerjee, "CMOS VLSI Design: A Circuits and Systems Perspective", Pearson Education, 3rd Edition.

6. Debaprasad Das, "VLSI Design", Oxford, 1st Edition.

7. Kaushik Roy and Sharat C. Prasad, "Low-Power CMOS VLSI Circuit Design", Wiley, Student Edition.

8. David A Hodges, Horace G Jackson and Resve A Saleh, "Analysis and Design of Digital Integrated Cicuits", TMH, 3rd Edition

Additional Study Material & e-Books

1.Douglas A Pucknell, Kamran Eshraghian, "Basic VLSI Design", Prentice Hall of India Private Ltd.

2.Samir Palnitkar, "A Guide to Digital Design and Synthesis", Pearson Education

Subject Code	Subject Name	Te	eaching Sch	eme		Credits A	ssigned	
		Theory Practical Tutorial			Theory	Practical	Tutorial	Total
ELX604	Signals and Systems	04		#01	04		01	05

Subject	Subject		Examination Scheme							
Code	Name		T	heory Marks		Term	Practical	Oral	Total	
		Internal assessment			End	Work				
		Test	Test	Ave. Of	Sem.					
		1	2	Test 1 and	Exam					
				Test 2						
ELX604	Signals and	20	20	20	80	25	-	-	125	
	Systems									

#Class wise

Course Objectives:

- 1. To provide a comprehensive coverage of continuous time and discrete time Signals and Systems.
- 2. To introduce various time domain and frequency domain methods for analysis of Signals and systems.

Course Outcomes:

After successful completion of this course student will be able to

- 1. Differentiate between continuous time and discrete time Signals and Systems.
- 2. Understand various transforms for time domain to frequency domain conversion
- 3. Apply frequency domain techniques for analysis of LTI systems
- 4. Apply frequency domain techniques for analysis of continuous and discrete signals

Module	le Unit Topics 1							
No.	No.							
1.		Continuous and Discrete Time Signals	8					
	1.1	Mathematical Representation and Classification of CT and DT signals, Orthogonality of signals						
	1.2	Arithmetic operations on the signals, Time Shifting, Time scaling, Time Reversal of signals						
	1.3	Sampling and Reconstruction, Aliasing effect	1					
2		Continuous and Discrete Systems	8					
	2.1	Mathematical Representation and classification of CT and DT systems	1					
	2.2	Properties of LTI systems, impulse and step response.						
	2.3	Use of convolution integral, convolution sum and correlation for analysis of LTI systems						
	2.4	Properties of convolution integral and convolution sum						
3		Frequency Domain Analysis of Continuous Time System using Laplace Transform	6					
	3.1	Concept of Complex frequency, Region of Convergence for Causal, Non-causal and Anti-causal systems, Poles and Zero of transfer function						
	3.2	Unilateral Laplace Transform						
	3.3	Analysis and characterization of LTI system using Laplace Transform: Impulse and Step Response, Causality, Stability, Stability of Causal system						
4		Frequency Domain Analysis of Discrete Time System using Z Transform	12					
	4.1	Need for Z transform, definition, properties of unilateral and bilateral Z Transform, mapping with s plane, relationship with Laplace transform						
	4.2	Z transform of standard signals, ROC, poles and zeros of transfer function, Inverse Z transform						
	4.3	Analysis and characterization of LTI system using Z transform: impulse and step response, causality, stability, stability of causal system						
	4.4	System realization-Direct, Direct Canonic, Cascade and Parallel forms						
5		Frequency Domainc Analysis of Continuous Signals	6					
	5.1	Frequency Domain Analysis of periodic non-sinusoidal signals						
	5.2	Frequency Domain Analysis of aperiodic Signals-Introduction, Properties of Fourier Transform, Fourier Transform based amplitude and phase response of standard signals, Relationship with Laplace and Z transform, Energy Spectral						
6		Frequency Domain Analysis of Discrete Signals	8					
	6.1	Discrete Time Fourier Series, Evaluation of DTFS coefficients, Magnitude and	l					
		Phase Spectrum of Discrete time periodic signals, Power Spectral Density						
	6.2	Discrete Time Fourier Transform – Concept of discrete time signal in frequency domain, definition of DTFT, determination of magnitude and phase functions using DTFT						
			40					
		l otal	48					

Text Books:

- 1. Tarun Kumar Rawat, "Signals and Systems", Oxford UniversityPress 2016.
- 2. A. NagoorKani, "Signals and Systems", Tata McGraw-Hill Education

Reference Books:

1. John Proakis and DimitrisMonolakis, "Digital Signal Processing", Pearson Publication, 4th Edition

- 2. Alan V. Oppenheim, AlanS. Willsky, and S.Hamid Nawab, "Signals and Systems", 2nd Edition, PHIlearning,2010.
- 3. B. P. Lathi, "Linear Systems and Signals", Oxford University Press,

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4: Remaining question will be selected from all the modules.

Subject Code	Subject Name	T	eaching Sch	eme		Credits A	ssigned	
		Theory Practical Tutorial			Theory	Practical	Tutorial	Total
ELX	Microwave	04		#01	04		01	05
DLO6021	Engineering							

Subject	Subject		Examination Scheme							
Code	Name		T]	heory Marks		Term	Practical	Oral	Total	
		In	Internal assessment			Work				
		Test	Test	Ave. Of	Sem.					
		1	2	Test 1 and	Exam					
				Test 2						
ELX6021	Microwave	20	20	20	80	25	-	-	125	
	Engineering									

Prerequisites: Knowledge of basic Engineering Electromagnetics

Course Objectives:

- 1. To introduce the students to various concepts of Microwave Engineering.
- 2. To teach the students the working principles and applications of different microwave devices.

Course Outcomes (CO):

After successful completion of the course, students will be able to:

- 1. Understand the importance and applications of microwaves.
- 2. Explain the process of generation and amplification of microwaves.
- 3. Analyse the electromagnetic field distribution in various microwave components.
- 4. Measure various microwave parameters.

Module	Contents	Hours
1	Introduction to microwave communication	4
	1.1 Microwave spectrum and bands	
	1.2 Limitations of conventional circuit theory concepts at microwave	
	frequencies	
	1.3 Applications of microwaves	
	1.4 Limitations of conventional vacuum tubes at microwave frequencies	
2	Generation and amplification of microwaves	12
	2.1 Two cavity Klystron amplifiers: Construction, Process of velocity	
	modulation and bunching , Apple gate diagram	
	Output power and efficiency. Applications	
	2.2 Reflex Klystron:	
	Construction ,Process of velocity modulation and bunching	

	Apple gate diagram, Output power and efficiency	
	2.3 Cylindrical Magnetron Construction and working principle	
	Hull cut-off magnetic equation , Cyclotron angular frequency	
	Applications	
	2.4 Traveling wave tube : construction and working principle	
	applications	
3	Vaveguides:	10
5	() a c galación	10
	3.1 Rectangular and circular waveguides	
	3.2 solution of Maxwell's equation for distribution of fields in the	
	3.3 characteristic equation	
	3.4 Dominant and degenerate modes	
	3.5 group and phase velocities	
	3.6 cut-off frequency	
	3.7 numerical examples based on the above topics	
4	Waveguide components and analysis:	12
	4.1 Definition and significance of s-narameters	
	4.2 Properties of s-parameters	
	4.3 Construction, working principle and s-matrix representation of cavity	
	resonators, waveguide attenuators, waveguide phase shifters,	
	waveguide multiport junctions, E-plane and H-plane Tees, Magic Tee,	
	4.4 Microwave ferrite components:	
	Faraday rotation isolator. Circulator. Gyrator	
	Numerical examples based on the above topics	
5	Microwave solid state devices:	5
	5.1Principle of operation and characteristics of:	
	Gunn Diode, TRAPATT and IMPATT diodes, Microwave	
	Transistors	
	5.2 Introduction to Strip Lines	
6	Microwave Measurement:	5
	Measurement of	
	6.1 Power	
	6.2 Attenuation	
	6.3 Frequency	
	0.4 VSWK 65 Cavity O	
	6.6 Impedance	
1	or impedance	1

Text Books:

- 1. "Microwave Devices and Circuits" by Samuel Liao, PHI
- 2. "Microwave circuits and Passive Devices" by M L Sisodia, G S Raghuvanshi, New Age International(P) Ltd

Reference Books:

- 1. "Electronic Communication Systems" by Kennedy, Davis, 4e TMH
- 2. "Microwave Engineering: Passive Circuits" by Peter Rizzi, PHI
- 3. "Foundations for Microwave Engineering" by Robert E Collin, 2e, John Wiley
- 4. "Basic Microwave Techniques & Laboratory Manual" by M L Sisodia, G S Raghuvanshi, 2001 New Age International(P) Ltd
- 5. Microwave Engineering, Annapurna Das, TMH

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4: Remaining question will be selected from all the modules.

Course Code		Teaching Scheme			Credits Assigned				
	Course Name	Theory	Practical	Tutoria l	Theory	TW/Practic al	Tutorial	Total	
ELX DLO6022	Electronic Product Design	04			04			04	

Course		Examination Scheme								
	Course Name		Th	eory Marks	Tour	Oral &				
Code		Interna	ll Assessm	ent (IA)	End Semester	Work	Practical	Total		
		Test I	Test II	Average	Examination					
ELX DLO6022	Electronic Product Design (EPD)	20	20	20	80			100		

<u>Rationale</u> :- The aim of this course is to enable students to gain practical experience & nurture their creativity in electronic product design & the objective is to provide students with a clear understanding of the practical design problems of the electronic products at an introductory level. With this course, students are expected to become familiar with the concept of designing a product as per the requirements (non-technical) & given specifications (technical), component tolerances, production constraints, safety requirements & EMC standards.

Course Objectives:-

- 1. To understand the stages of product (hardware / software) design & development
- 2. To learn different considerations of analog, digital & mixed circuit design
- 3. To be acquainted with methods of PCB design & different tools used for the same
- 4. To be aware of the importance of testing in product design cycle
- 5. To gain knowledge about various processes & importance of documentation

Course Outcomes :-

At the end of the course, students should gain the ability to :-

- **CO-1** :- Design electronic products using user-centered designing processes
- CO-2 :- Identify & recognize essential design & production procedures of electronic products
- CO-3 :- Implement a prototype for meeting a particular requirement / specification
- CO-4 :- Demonstrate problem solving & troubleshooting skills in electronic product design
- CO-5 :- Prepare the relevant set of design documentation & present it as a case study

Modul e No.	Topics	Hour s
1	INTRODUCTION TO ELECTRONIC PRODUCT DESIGN Man-machine dialog & industrial design, user-centered design, elements of successful design, cognition, ergonomics, packaging & factors; design for manufacture, assembly & disassembly wiring, temperature, vibration & shock; safety, noise, energy coupling, grounding, earthing, filtering & shielding	06
2	HARDWARE DESIGN & TESTING METHODS Design process, identifying the requirements, formulating specifications, design specifications, system partitioning, functional design, architectural design, functional model v/s architectural model, prototyping, performance & efficiency measures, formulating a test plan, writing all the specifications, test procedures & test cases, design reviews, module debug & testing – black box testing, white box testing, grey box testing	10
3	SOFTWARE DESIGN & TESTING METHODS Types of software, the waterfall model of software development, models, metrics & software limitations, risk abatement & failure prevention, software bugs & testing, good programming practice, user interface, embedded & real-time software	10
4	PRINTED CIRCUIT BOARD (PCB) DESIGNING Fundamental definitions, standards, routing topology configuration, layer stack up assignment, grounding methodologies, aspect ratio, image planes, functional partitioning, critical frequency & bypassing, decoupling; design techniques for ESD protection, guard- band & guard-rings	08
5	PRODUCT DEBUGGING & TESTING Steps of debugging, the techniques for troubleshooting, characterization, electromechanical components, passive components, active components, active devices, operational amplifier, analog-to-digital conversion, digital components, inspection & testing of components, process of simulation, prototyping & testing, integration, validation & verification, EMI & EMC issues	08
6	THE DOCUMENTATION PROCESS Definition, needs & types of documentation, records, accountability & liability, audience, steps in preparation, presentation & preservation of documents, methods of documentation, visual techniques, layout of documentation, bills of materials, manuals – instructional or operating manual, service and maintenance manual, fault finding tree, software documentation practices	06
1 – 6	TOTAL	48

Recommended Books :-

- 1. R. G. Kaduskar & V. B. Baru, Electronic Product Design, 3rd edition, Wiley India
- 2. Kim Fowler, Electronic Instrument Design, 2nd edition, Oxford University Press
- 3. Robert J. Herrick, PCB Design Techniques for EMC Compliance, 2nd edition, IEEE Press

4. G. C. Loveday, Electronic Testing & Fault Diagnosis, 4th edition, A. H. Wheeler Publishing

- 5. James K. Peckol, Embedded Systems A Contemporary Design Tool, 1st edition, Wiley Publication
- 6. J. C. Whitaker, The Electronics Handbook, CRC Press

Internal Assessment (IA) :-

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination :-

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Q.1 will be compulsory and based on entire syllabus.
- 4. Remaining questions (Q.2 to Q.6) will be set from all modules.

5. Weightage of each module in question paper will be proportional to the number of respective lecture hours mentioned in the syllabus

Subject Code	Subject Name	Teaching Scheme (Hrs.)						
		Theory Practical Tutorial			Theory	TW/Practical	Tutorial	Total
ELX	Wireless	4	2		4			04
DLO6023	Communication							

Subject	Subject Name				Examination	n Scheme					
Code			T	heory Marks		Term	Practical	Oral	Total		
		Inte	Internal assessment End Sem.			Work					
		Test 1	Test	Ave. Of	Exam						
			2	Test 1 and							
				Test 2							
ELX	Wireless	20	20	20	80	-			100		
DLO6023	Communication										

Course Objectives:

The objectives of this course are to:

- 1. To introduce the Concepts of basic Cellular communication systems, mobile Radio propagation
- 2. To understand the various Cellular processes such as handoff strategies, interference, Trunking theory
- 3. To study the features and services of 2G cellular technologies: GSM and CDMA
- 4. To study the features of evolving technological advances in 2G, 3G & 4G Cellular systems.

Course Outcomes:

After successful completion of the course, students will be able to:

- 1. Understand the concepts of basic cellular system, frequency reuse, channel assignment
- 2. Understand the fundamentals radio propagation, Path loss and comprehend the effect of Fading.
- 3. Acquire the Knowledge about multiple access technologies and different of different spread spectrum techniques.
- 4. Acquire the Knowledge about overall GSM cellular concept and analyse its services and features
- 5. Comprehend the features of CDMA technology
- 6. Analyse the evolution of cellular technology from 2G to 4G Cellular systems .

Module	Unit	Topics	Hrs.
No.	No.		
1.		Concept of Cellular Communication	08
	1.1	Introduction to cellular communications, Frequency reuse, Channel assignment	
		strategies	
	1.2	Cellular Processes: Call setup, Handoff strategies, interference and system capacity,	
		Co-channel Interference reduction with the use of Directional Antenna	
	1.3	Traffic Theory: Trunking and Grade of service, Improving Coverage and capacity in	
		Cellular systems: Cell splitting, Sectoring, Micro-cell Zone concept	
2.		Mobile Radio Propagation	08

	2.1	Introduction to Radio wave propagation, Free space propagation model, the three basic	
		Propagation mechanisms, The Ground Reflection (two-ray) model, Practical Link	
		budget design using Path-Loss models:Log-distance Path -loss model.	
	2.2	Small scale Multipath Propagation: Factors influencing small scale fading, Doppler	
		shift, Parameters of mobile multipath channels,	
	2.3	Types of small scale fading, Fading effects due to Doppler spread, Fading effects due	
		to Multipath Time delay spread, Raleigh and Rician distributions	
3.0		Multiple access techniques & Spread spectrum Modulation	08
	3.1	Multiplexing and Multiple Access: Time Division Multiple Access, Frequency Division	
		Multiple Access, Spread-spectrum multiple-access:Code Division Multiple Access	
	3.2	Spread spectrum Modulation :Need for and concept of spread spectrum modulation,	
		PN-sequence generation, properties of PN-sequence, Gold sequence generation, Direct-	
		sequence SS, Frequency-hopping SS,	
4.0		GSM	12
	41	GSM network architecture Signalling protocol architecture Identifiers Physical and	
	7.1	Logical Channels, Frame structure, Speech coding, Authentication and security Call	
		procedure Hand-off procedure Services and features	
		procedure, mand-on procedure, services and reatures	
5.0		IS-95	06
	5.1	Frequency and channel specifications of IS-95, Forward and Reverse CDMA channel,	
		Packet and Frame formats, Mobility and Resource management	
6.0		Evolution from 2G to 4G	06
	6.1	GPRS, EDGE technologies, 2.5G CDMA-One cellular network, W-CDMA (UMTS),	
		CDMA2000, LTE, Introduction to 5G Networks	
		Total	48

Recommended Books:

- 6. Theodore Rappaport, "Wireless Communications: Principles and Practice, 2nd Edition, Pearson Publication
- 7. ITI Saha Misra, "Wireless Communication and Networks: 3G and Beyond", Publication
- 8. Vijay Garg, "IS-95 CDMA and cdma 2000: Cellular/PCS System Implementation", Pearson Publication.

Reference Books:

- 1. T.L Singal, "Wireless Communication", Tata McGraw Hill, 2010
- 2. Upena Dalal, "Wireless Communication", Oxford University Press, 2009
- 3. Andreas F Molisch, "Wireless Communication", John Wiley, India 2006.
- 4. Vijay Garg, "Wireless communication and Networking", Pearson Publication

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to marks will be asked.
- 4: Remaining question will be selected from all the modules.

Course Code	Course Name	Tea	ching sche	me		Credit	assigned	
ELX DLO6024	Computer	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total
	Organization and Architecture	04			04			04

			Examination Scheme										
Course Code	Course		Theory							Dreat			
	Name In	Internal Assessment			En Dura		Term	Pract	Oral	r ract	Total		
		Test 1	Tost 2 Av	d	tion	work	•	Ulai	' Oral	i utai			
				g	sem	(hrs)				Orai			
ELX DLO602 4	Computer Organizatio n and Architecture	20	20	20	80	03					100		

Course Objectives	 To introduce the learner to the design aspects which can lead to maximized performance of a Computer. To introduce the learner to various concepts related to Parallel Processing 3.To highlight the various architectural enhancements in modern processors.
Course Outcomes	At the end of the course, the learner will have the ability to
	 Define the performance metrics of a Computer Explain the design considerations of Processor, Memory and I/O in Computer systems Explain the advantages and limitations of Parallelism in systems Explain the various architectural enhancements in modern processors

Module		Contents	Time		
		Introduction to Computer Organization	[06]		
	1.1	Fundamental Units of a Computer	01		
1.	1.2	Introduction to Buses	01		
	13	Number Representation methods- Integer and Floating-point, Booth's	03		
	1.5	Multiplier, Restoring and Non-Restoring Division	05		
	14	Basic Measures of Computer Performance - Clock Speed, CPI, MIPs and	01		
	1.1	MFlops	01		
		Processor Organization and Architecture	10		
	21	CPU Architecture, Register Organization, Instruction cycle, Instruction	04		
2	2.1	Formats	01		
	22	Control Unit Design- Hardwired and Micro-programmed Control: Vertical	04		
		and Horizontal Micro-Instructions, Nano-programming	0.		
	2.3	Comparison between CISC and RISC architectures	02		
		Memory Organization	12		
		Classification of Memories-Primary and Secondary Memories, RAM			
	3.1	(SRAM and DRAM) and ROM (EPROM, EEPROM), Memory Inter-	02		
		leaving			
3.		Memory Hierarchy, Cache Memory Concepts, Mapping Techniques, Write			
	3.2	Policies, Cache Coherency	06		
		(* Numerical Problems expected)			
	3.3	Virtual Memory Management-Concept, Segmentation, Paging, Page	04		
		Replacement policies			
		Input/Output Organization	06		
4.	4.1	Types of I/O devices and Access methods, Types of Buses, Bus	03		
		Arbitration			
	4.2	Expansion Bus Concept, PCI Bus	03		
		Parallelism	06		
	5.1	Introduction to Parallel Processing Concepts, Flynn's classification,	02		
5.		Amdahl's law	-		
		Pipelining - Concept, Speedup, Efficiency, Throughput, Types of Pipeline			
	5.2	hazards and solutions	04		
		(* Numerical Problems expected)			
		Architectural Enhancements	08		
6.		Superscalar Architectures, Out-of-Order Execution, Multi-core processors,			
0.		Clusters, Non-Uniform Memory Access (NUMA) systems, Vector	08		
		Computation, GPU			

Text books:

1. William Stallings, "*Computer Organization and Architecture: Designing for Performance*", Eighth Edition, Pearson.

2. C. Hamacher, Z. Vranesic and S. Zaky, "Computer Organization", McGraw Hill, 2002.

Reference Books:

1. J.P. Hayes, "Computer Architecture and Organization", McGraw-Hill, 1998.

2. B. Govindarajulu, "*Computer Architecture and Organization: Design Principles and Applications*", Second Edition, Tata McGraw-Hill.

3. D. A. Patterson and J. L. Hennessy, "Computer Organization and Design - The Hardware/Software Interface", Morgan Kaufmann, 1998.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered for final Internal Assessment.

End Semester Examination:

Question paper will comprise of 6 questions, each carrying 20 marks.

The Learner need to solve total 4 questions.

Question No.1 will be compulsory and based on entire syllabus. Remaining question (Q.2 to Q.6) will be selected from all the modules.

Course Code	Course Name		Teach	ing	schen	ne		Cred	lit assig	gned		
	Embedded	Theo	ory	Pra	ct.	Tut.	Theory	Pract.	Т	ut.	,	Total
ELXL 601	Systems& Real Time Operating System Laboratory			02				01	-	-		01
					-	Exar	nination S	Scheme				
			r	Гhee	ory							
Course Code	Course Name	Internal Assessmen		nt	Fnd	Dura tion	Term	Pract	Oral	Prac	et.	Total
Couc		Test 1	Tes t 2	A v g	sem	(hrs)	work	TTACL.	Orai	/ O r:	al	I Utal
ELXL 601	Embedded Systems& Real Time Operating System Laboratory						25			25		50

Assessment:

Term Work:

At least SIX experiments based on the entire syllabus of ELX 601 (Embedded System & Real Time Operating System) should be set to have well predefined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. Term work must include a mini project in addition to the number of experiments. The course mini-project is to be undertaken in a group of two to three students. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work, mini project and minimum passing marks in term work.

Practical and Oral exam will be based on the entire syllabus. Suggested Experiments:

- Simulation experiments using KeilC–cross complier to: evaluate basic C program for X-51 assembly; evaluating various C data types; evaluating and understanding iterative C constructs translated into x51's assembly; evaluating and understanding interrupt implementation.
- Simulate and understand working of μ COS-II functions using example programs from recommended text, "MicroC / OS-II The Real-Time Kernel", by Jean J. Labrosse.
- Porting of µCOS-II on X-51/AVR/CORTEX M3 platform.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned					
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total		
ELXL 602	Computer Communication and Networks Laboratory	-	2		-	01		01		

Subject	Subject Name		Examination Scheme									
Code	-		Tł	neory Marks		Term	Practical	Oral	Total			
		Inter	rnal as	sessment	End Sem.	Work						
		Test 1	Test	Ave. Of	Exam							
			2	Test 1 and								
				Test 2								
ELXL 602	Computer	-	-	-	-	25		25	50			
	Communication											
	and Networks											
	Laboratory											

Laboratory Experiments:

Lab session includes Seven experiments and a Case study(Power point Presentation) on any one of the suggested topics.

- 1. The experiments will be based on the syllabus contents.
- 2. Minimum **Seven experiments** need to be conducted, out of which **at least Four Experiments** should be softwarebased (C/C++, Scilab, MATLAB, LabVIEW, etc).
- 3. Each student (in groups of 3/4) has to present a Case study (Power point Presentation) as a part of the laboratory work. The topics for Presentation / Case-study may be chosen to be any relevant topic on emerging technology. ("Beyond the scope of the syllabus".)

Power point presentation should contain minimum of 15 slides and students should submit a report (PPT+Report)carry minimum of 10 marks. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Suggested List of experiments:

- 1. Study of transmission media and interconnecting devices of communication networks.
- 2. Implementation of serial transmission using RS232
- 3. Implementing bit stuffing algorithm of HDLC using C/C++
- 4. Implementation of Routing protocols using C/C++
- 5. Study of NS2 simulation software
- 6. Implementation of TCP/UDP session using NS2
- 7. Implementation of ARQ methods using NS2
- 8. Study of WIRESHARK and analyzing Packet using WIRESHARK
- 9. Study and implementation of IP commands
- 10. Study of GNS software and implementation of routing protocols using GNS

Course Code	Course Name	Tea	ching sche	me	Credit assigned				
		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ELXL 603	VLSI Design Laboratory		02			01		01	

		Examination Scheme									
			T	heory							
Course	Course	Internal Assessment				Dur	T			D	
Code	Name	Test 1	Test 2	Av g	End sem	a tion (hrs)	l erm work	Pract.	Oral	/ Oral	Total
ELXL 603	VLSI Design Laboratory						25			25	50

Assessment:

Term Work:

At least SIX experiments based on the entire syllabus of ELX 603 (VLSI Design) should be set to have well predefined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. Term work must include a mini project in addition to the number of experiments. The course mini-project is to be undertaken in a group of two to three students. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work, mini project and minimum passing marks in term work.

Practical and Oral exam will be based on the entire syllabus.

Suggested Experiments:

MOSFET Scaling using circuit simulation software like Ngspice Static and transient performance analysis of various inverter circuits Implementation of NAND and NOR gate using various logic design styles Design and verification of CMOS Inverter for given static and transient performance Implementation of ROM, SRAM, DRAM Interconnect analysis

Course Code	Course Name	Tea	ching sche	me	Credit assigned				
		Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total	
ELXL DLO6021	Microwave Engineering Laboratory		02			01		01	

	-				Ε	xamina	ation Scheme					
			T	heory		-						
Course	Course	Interna	l Assess	ment		Dur	Tarm			Pract		
Code	Name	Test 1	Test 2	Av g	End sem	a tion (hrs)	work	Pract.	Oral	/ Oral	Total	
ELXL DLO6 021	Microwave Engineering Laboratory						25			25	50	

Assessment:

Term Work:

At least SIX experiments based on the entire syllabus of ELXDLO 6021 (Microwave Engineering) should be set to have well predefined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be students' centric and attempt should be made to make experiments more meaningful, interesting and innovative. Term work assessment must be based on the overall performance of the student with every experiment graded from time to time. Term work must include a mini project in addition to the number of experiments. The course mini-project is to be undertaken in a group of two to three students. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

The grades should be converted into marks as per the **Credit and Grading System** manual and should be **added and averaged**. The grading and term work assessment should be done based on this scheme.

The final certification and acceptance of term work ensures satisfactory performance of laboratory work, mini project and minimum passing marks in term work.

Practical and Oral exam will be based on the entire syllabus.

Course Code	Course N	ame	Tea	aching	schen	ne	Credit assigned					
			Theory	Pra	ct.	Tut.	Theory	Pract	. T	ut.	Total	
ELXL DLO6022	Electronic Product De	esign		02	2			01	-	-	01	
						Examin	ation Scl	neme				
	Course Name	r		Theory	7							
Course Code		A	Internal Assessmen		End	Dura tion	Term	Pract.	Oral	Prac	t. Total	
		Test 1	Test 2	Avg	sem	(hrs)	WUIK			/ 017	11	
ELXL DLO6022	ELXL DLO6022 Electronic Product Design						25			25	50	

At least **Six** experiments based on the entire syllabus of **ELXDLO6022** (Electronic Product Design) should be set to have well-defined inference and conclusion. The experiments should be student-centric and attempt should be made to make experiments more meaningful, interesting and innovative. Experiment must be graded from time to time. Additionally, each student (in group of 2/3) has to perform a Mini Project as a part of the laboratory and report of mini project should present in laboratory journal. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Oral exam will be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Lab session includes six experiments plus one presentation on case study.

Suggested Experiments:

- 1. Experiment based on Ground and Supply bounce
- 2. PCB design steps involved in product design
- 3. Simulation based on use of Simulator software
- 4. Working of an Emulator in Design step
- 5. Role of Pattern Generator in Design step
- 6. Debugging of the digital circuit based on Logic Analyzer
- 7. Application of the Spectrum analyzer
- 8. Demonstration of usefulness of the Arbitrary waveform generator
- 9. Setup for EMI and EMC test
- 10. Experiment based on calibration of the product.

Suggested topics for Case Study:

Faculty members can suggest topics pertaining above syllabus and ask students to submit complete report covering design issues, hardware and software details and applications.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned					
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total		
ELXL	Wireless	-	2		-	01		01		
DLO6023	Communication									
	Laboratory									

Subject	Subject Name		Examination Scheme									
Code			Tł	neory Marks		Term	Practical	Oral	Total			
		Inter	rnal as	sessment	End Sem.	Work						
		Test 1	Test	Ave. Of	Exam							
			2	Test 1 and								
				Test 2								
ELXL	Wireless	-	-	-	-	25		25	50			
DLO6023	Communication											
	Laboratory											

Laboratory Experiments:

Lab session includes seven experiments and a Case study(Power point Presentation)on any one of the suggested topics.

Note:

1. The experiments will be based on the syllabus contents.

2. Minimum seven experiments need to be conducted.(Scilab, MATLAB, LabVIEW, NS2/NS3 etc can be used for simulation).

3. Each student (in groups of 3/4) has to present a Case study (Power point Presentation) as a part of the laboratory work.

The topics for Presentation / Case-study may be chosen to be any relevant topic on emerging technology.

("Beyond the scope of the syllabus".)

Power point presentation should contain minimum of 15 slides and students should submit a report, (PPT+Report) carry minimum of 10 marks The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Course Code	Course Name	Tea	ching sche	me	Credit assigned					
ELVI	Computer	Theory	Pract.	Tut.	Theory	Pract.	Tut.	Total		
DLO6024	Organization and Architecture		02			01		01		

					Ε	xamina	ation Scheme					
			T	heory								
Course	Course	Internal Assessment			Dur	Taum			Ducat			
Code	Name	Test 1	Test 2	Av g	End sem	a tion (hrs)	work	Pract.	Oral	/ Oral	Total	
ELXL DLO60 24	Computer Organization and Architecture						25			25	50	

At least six experiments based on the entire syllabus of ELX DLO6024 (Computer Organization and Architecture) should be set to have well-defined inference and conclusion. Computation/simulation based experiments are also encouraged. The experiments should be student-centric and attempt should be made to make experiments more meaningful, interesting and innovative. Additionally, a Seminar on IEEE/ACM paper focussing on key areas of research in Computer Architecture/Organization to be part of the term-work which is duly graded. Suggested List of Experiments:

Expt. No.	Title of the Experiments
1	Implementation of Booth's Algorithm (using VHDL)
2	To create a control store for micro-programmed control unit (using VHDL)
3	Using a cache simulator, calculate the cache miss-rate for various mapping schemes
4	Implement various page replacement policies (LRU, FIFO, LFU)
5	Program to detect the type of hazard (RAW,WAR,WAW)for a set of instructions
6	Using a performance analyzer tool, extract various performance metrics

B.E. (Electronics Engineering)

Course Code	Course Name	T (eaching Sche Contact Hour	me ·s)	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELX701	Instrumentation System Design	04			04			04
ELX702	Power Electronics	04			04			04
ELX703	Digital signal processing	04			04			04
ELXDLO703X	Department Level Optional course	04			04			04
ILO701X	Institute Level Optional Course I#	03			03			03
ELXL701	Instrumentation System Design Lab.		02			01		01
ELXL702	Power Electronics Lab.		02			01		01
ELXL703	Digital signal processing Lab.		02			01		01
ELXL704	Project-I		06			03		03
ELXLDLO703 X	Dept. Level Optional course III Lab.		02			01		01
	TOTAL	19	14		19	07		26

Course Code	Course Name	Т. (0	eaching Scher Contact Hour	me ·s)	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELX801	Internet of Things	04			04			04
ELX 802	Analog and Mixed VLSI Design	04			04			04
ELXDLO804X	Department Level Optional course IV	04			04			04
ILO802X	Institute Level Optional course II#	03			03			03
ELX801	Internet of Things Lab.		02			01		01
ELXL802	Analog and Mixed VLSI Design Lab.		02			01		01
ELXL803	Project-II		12			06		06
ELXLDLO804 X	Department Level Optional Courses IV Lab.		02			01		01
	TOTAL	15	18		15	9		24

Course	Course Name	Те	aching Sche	me	Credits Assigned				
Code		Theory	Practical	Tutoria l	Theory	TW/Practica l	Tutorial	Total	
ELX 701	Instrumentation System Design	04			04			04	

Course		Examination Scheme								
	Course Name		Th	eory Marks	Towm	Oral &				
Code		Interna	l Assessm	ent (IA)	End Semester	Work	Practical	Total		
		Test I	Test II	Average	Examination					
ELX 701	Instrumentation System Design (ISD)	20	20	20	80			100		

Rationale :- For optimum operation & satisfactory performance of any industrial process control system, it is necessary to have a reliably engineered system with a thorough knowledge of the process conditions & requirements as per the system or design specifications. This subject introduces various nuances in the design of instrumentation systems, which is itself a synergy of sensors, transducers, actuators, process control & electronic systems to achieve the desired operation of a plant or the proper control of an industrial process. Students are exposed to principles of designing which enable them to design, build & implement such electronically controlled systems for measurement, signal conditioning & final control.

Course Objectives :-

- 1. To learn basic functions & working of pneumatic, hydraulic & electrical components used in process control
- 2. To understand principles of process parameter conversion & transmission in various forms
- 3. To gain familiarity with control system components & their applications in process control
- 4. To study various types of controllers used in process control & their tuning for different applications
- 5. To be aware of recent advances & technological developments in industrial instrumentation & process control

Course Outcomes :-

At the end of the course, students should gain the ability to :-

- ELX 701.1 :- Demonstrate the needs of advancement in instrumentation systems
- ELX 701.2 :- Select the proper components for pneumatic & hydraulic systems
- ELX 701.3 :- Choose the transmitter / controller for given process application
- ELX 701.4 :- Analyze the controller parameters for discrete or continuous type
- ELX 701.5 :- Design the controller (electronic) for a given process or application

Modul e No.	Topics	Hour s
1	ACTUATORS & PROCESS CONTROL VALVES	
1.1	Electrical actuators – relays, solenoids & electrical motors (DC, AC & stepper motor)	
1.2	Pneumatic actuators – basic pneumatic system, pneumatic compressors (piston, vane, screw) flapper nozzle, single & double acting cylinder, rotary actuator, filter-regulator-lubricator (FRL)	08
1.3	Hydraulic actuator – hydraulic pumps, control valves types (globe, ball, needle, butterfly, gate, diaphragm & pinch), cavitation & flashing with their remedies, pressure drop across valve & leakage, valve noise, flow characteristics on load changes, control valves parameters, control valves sizing, valve calibration, digital control valves, selecting control valves & applications	
2	DESIGN OF SIGNAL CONDITIONING CIRCUITS	
2.1	Principles of analog & digital signal conditioning – signal level & bias change, linearization, conversion, filtering & impedance matching, concept of loading, comparators & converters	
2.2	Design of operational amplifier based circuits in instrumentation – analysis of voltage divider circuits, bridge circuits, RC filters, inverting & non-inverting amplifier, instrumentation amplifier, V to I & I to V converter, integrator, differentiator & linearization (with numerical examples)	08
2.3	Transmitters – Introduction to telemetry & its basic block diagram, 2 wire, 3 wire & 4 wire transmitters, 4 mA to 20 mA current transmitter, electronic transmitters for temperature, level, pressure & flow, current to pressure (I to P) & pressure to current (P to I) converters	
3	PROCESS CONTROLLER PRINCIPLES	
3.1	Discontinuous controller – two position mode, multi-position mode & floating mode	
3.2	Continuous controller – single mode (P, I & D) & composite mode (PD, PI & PID), split range, auto select, ratio & cascaded controllers, selection criterion of controller for a process mode	08
3.3	Tuning of PID controller – process loop tuning, open loop transient response method, Ziegler – Nichols tuning method, frequency response methods (numerical examples on PID tuning)	
4	PROGRAMMABLE LOGIC CONTROLLERS (PLC)	
4.1	Discrete state process controller – discrete state variables, process specifications & event sequence description	10
4.2	Relay controller & ladder diagram – introduction to relay ladder diagram logic, ladder diagram elements & ladder diagram programming examples	

4.3	PLC – relay sequencers, programmable logic controller design, PLC operation, programming the PLC, PLC software functions (application examples on relay ladder logic programming)	
5	DIGITAL BASED PROCESS CONTROL	
5.1	Data acquisition system (DAS) – objectives, signal conditioning of inputs, single channel DAS, multi-channel DAS, computer based DAS, data logger, difference between DAS & data logger	
5.2	Computer aided process control – architecture, human machine interface (HMI), supervisory control & data acquisition (SCADA), standard interfaces (RS-232C, RS-422A & RS-485)	08
5.3	Supervisory control system (SCS), introduction to the Fieldbus & Profibus process controlled networks, overview of distributed control system (DCS), features & advantages of DCS	
6	CALIBRATION STANDARDS & ADVANCES IN INSTRUMENTATION	
6.1	PC & microcomputer based instrumentation, virtual instrumentation & LabVIEW introduction	
6.2	Calibration of instrumentation systems, representation of instrumentation control process with SAMA & ISA symbols, ISO/IEC 17025 General requirements for calibration standards	06
6.3	Instrumentation standards, ISA S82.01 – Safety Standard for Electrical and Electronic Test, Measuring, Controlling Related Equipment, ISA S84.01 – Application of Safety Instrumented Systems for the Process Industries, ANSI/NEMA 250 – Enclosures for Electrical Equipment	
1 – 6	TOTAL	48

Recommended Books :-

- 1. Curtis D. Johnson, Process Control Instrumentation Technology, 7th edition, PHI
- 2. S. K. Singh, Industrial Instrumentation & Control, 3rd edition, McGraw Hill
- 3. B.C. Nakra & K. K. Chaudhary, Instrumentation Measurement & Analysis, 3rd edition, McGraw Hill
- 4. Andrew Parr, Pneumatics & Hydraulics, 2nd edition, Jaico Publishing Co.
- 5. B. G. Liptak, Handbook of Process Control & Instrumentation, 4th edition, CRC Press
- 6. William C. Dunn, Fundamentals of Industrial Instrumentation & Process Control, 1st edition, McGraw Hill

Internal Assessment (IA) :- Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination :-

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Q.1 will be compulsory and based on entire syllabus.
- 4. Remaining questions (Q.2 to Q.6) will be set from all modules.

5. Weightage of each module in question paper will be proportional to the number of respective lecture hours mentioned in the syllabus.

		Teaching Scheme				Credits Assigned			
Subject Code	Subject Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELX702	Power Electronics	04	02		04			04	

Subject Code	Subject Name	ExaminationScheme									
			Т	Theory Ma	arks						
		t Internal assessment				Б	Term	Deve etter al	Oral	Tatal	
		Test 1	Test 2	Avg of Test 1 and Test 2	End Sem. Exam	Exam duration Hours	rractical	Urai	Total		
ELX702	Power Electronics	20	20	20	80	03				100	

\Course Pre-requisite:

- 1. ENAS
- 2. EDC-1
- **3.** EDC-2

Course Objectives:

- 1. To teach power electronic devices and their characteristics.
- 2. To highlight power electronics based rectifiers, inverters and choppers.

Course Outcomes:

After successful completion of the course students will be able to:

- 1. Discuss trade-offs involved in power semiconductor devices.
- 2. Design of triggering, commutation and protection circuits for SCRs.
- 3. Analyse different types of single-phase rectifiers and DC-DC converters.
- 4. Analyse different types of DC-AC converters (inverters).
- 5. Analyse different types of AC Voltage Controllers and Cycloconvertors.

Module	Unit	Contents	Hrs.
No.	No.		
		Power semiconductor devices	
1	1.1	Principle of operation of SCR, static and dynamic characteristics, gate Characteristics,	8
I		Principle of operation, characteristics, ratings and applications of:	
	1.2	TRIAC, DIAC, MOSFET and power BJT. IGBT: basic structure, principle of operation, equivalent circuit, latch-up in IGBT's and V-I characteristics.	
		SCR: Triggering, commutation and Protection Circuits	
2	2.1	Methods of turning ON SCR (types of gate signal), firing circuits (using R, RC, UJT, Ramp and pedestal, inverse cosine),	8
	2.2	Design of commutation circuits,	-
	2.3	Protection of SCR	-
		Single-phase Controlled Rectifiers	
	3.1	Introduction to uncontrolled rectifiers, Half wave controlled rectifiers with R, RL load, effect of free-wheeling diode	-
3	3.2	Full wave fully controlled rectifiers (centre-tapped, bridge configurations), full-wave half controlled (semi-converters) with R, RL load, effect of freewheeling diode and effect of source inductance.	8
	3.3	Calculation of performance parameters, input performance parameters (input power factor, input displacement factor (DF), input current distortion factors (CDF), input current harmonic factor (HF/THD), Crest Factor (CF)), output performance parameters.	-
		Inverters	
	4.1	Introduction to basic and improved series/parallel inverters, limitations.	-
4	4.2	Introduction, principle of operation, performance parameters of Single phase half / full bridge voltage source inverters with R and R-L load,	10
	4.3	Voltage control of single phase inverters using PWM techniques, harmonic neutralization of inverters, applications	-
		DC-DC converters	
5	5.1	Basic principle of step up and step down DC-DC converters, DC-DC switching mode regulators: Buck, Boost, Buck-Boost, Cuk Regulators (CCM mode only)	8
	5.2	Voltage commutated, current commutated and load commutated DC-DC	-

		converters	
	5.3	Applications in SMPS, Battery charging systems.	
		AC Voltage Controllers and Cycloconvertors	
6	6.1	Principle of On-Off control, principle of phase control, single phase bidirectional control with R and RL load	6
	6.2	Introduction, single phase and three phase Cyclo-converters, applications	
		Total	48

Recommended Books:

- 1. M. H. Rashid, "Power Electronics", Prentice-Hall of India
- 2. Ned Mohan, "Power Electronics", Undeland, Robbins, John Wiley Publication
- 3. P. S. Bhimbra, "Power Electronics", Khanna Publishers, 2012
- 4. M.D. Singh and K. B. Khanchandani, "Power Electronics", Tata McGraw Hill
- 5. Ramamurthy, "Thyristors and Their Applications"
- 6. P. C. Sen, "Modern Power Electronics", Wheeler Publication
- 7. S. Shrivastava, "Power Electronics", Nandu Publication, Mumbai.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Subject	Subject Name		Examination Scheme							
Code			The	ory Marks		Term	Practical	Oral	Total	
		Inte	rnal A	ssessment	End	Work				
		Test 1	Test	Ave. of	Sem.					
			2	Test 1 and	Exam					
				Test 2						
EXC703	Digital Signal	20	20	20	80				100	
	Processing									
	_									

Prerequisite Courses: Signals and Systems

Course Objectives:

- 1. To teach the design techniques and performance analysis techniques of digital filters
- 2. To introduce the students to advanced signal processing techniques, digital signal processors and applications

Course Outcomes:

After successful completion of this course students will be able to

- 1. Demonstrate an understanding of the discrete-time Fourier transform and the concept of digital frequency.
- 2. Design FIR and IIR digital filters to meet arbitrary specifications and Develop algorithms for implementation
- 3. Understand the effect of hardware limitations on performance of digital filters
- 4. Use advanced signal processing techniques and digital signal processors in various applications

Module No.	Unit No.	Topics	Hrs.				
		Discrete Fourier Transform and Fast Fourier Transform					
1.0	1.1	Definition and Properties of DFT,IDFT, circular convolution of sequences using DFT and IDFT, Relation between Z-transform and DFT Filtering of long data sequences: Overlap Save and Overlap Add Method Computation of DFT					
	1.2	Fast Fourier transforms(FFT),Radix-2decimationintime and decimation in frequency FFT algorithms, inverse FFT, and Introduction to composite FFT					
		IIR Digital Filters					
2.0	2.1	Types of IIR Filters (Low Pass, High Pass, Band Pass, Band stop and All Pass) Analog filter approximations: Butterworth, Chebyshev I and II					
	2.2	MappingofS-planetoZ-plane, impulse invariance method, bilinear transformation method, Design of IIR digital filters from analog filters with examples	10				
	2.3	Analog and digital frequency transformations with design examples					
3.0		FIR Digital Filters					
	3.1	Characteristics of FIR digital filters, Minimum Phase, Maximum Phase, Mixed Phase and Linear Phase Filters Frequency response, location of the zero sof linear phase FIR filters	10				

	3.2	Design of FIR filter susing window techniques (Rectangular, Hamming, Hanning,Blackmann, Barlet) Design of FIR filter susing Frequency Sampling technique Comparison of IIR and FIR filters								
		Finite Word Length Effects in Digital Filters								
4.0	4.1	Quantization, truncation and rounding, Effects due to truncation and rounding, Input quantization error, Product quantization error, Co-efficient quantization error, Zero- input limit cycle oscillations, Overflow limit cycle oscillations, Scaling								
	4.2	Quantization in Floating Point realization of IIR digital filtersFinite word length effects in FIR digital filters								
		Multirate DSPand FilterBanks								
5.0	5.1	Introduction and concept of Multirate Processing, Block Diagram of Decimator and Interpolator, Decimation and Interpolation by Integer numbers Multistage Approach to Sampling rate converters	06							
	5.2	Sample rate conversion using Polyphase filter structure, Type I and Type II Polyphase Decomposition								
6.0		DSP Processors and Applications								
	6.1	Introduction to General Purpose and Special Purpose DSP processors, fixed point and floating point DSP processor, Computer architecture for signal processing, Harvard Architecture, Pipelining, multiplier and accumulator(MAC), Special Instructions, Replication, On-chip memory, Extended Parallelism	06							
	6.2	General purpose digital signal processors, Selecting digital signal processors, Special purpose DSP hardware								
	6.3	Applications of DSP: Radar Signal Processing and Speech Processing								
	1	Total	48							

Text Books:

1. Emmanuel C. Ifeachor, Barrie W. Jervis, "*Digital Signal Processing*", A Practical Approach by, Pearson Education

2. Tarun Kumar Rawat, "Digital Signal Processing", Oxford University Press, 2015

Reference Books:

- 1. ProakisJ., Manolakis D., "Digital Signal Processing", 4th Edition, Pearson Education
- 2. Sanjit K. Mitra, Digital Signal Processing A Computer Based Approach edition 4e
- 3. McGraw Hill Education (India) Private Limited
- 4. OppenheimA., SchaferR., BuckJ., "DiscreteTimeSignalProcessing", 2ndEdition, Pearson Education...
- 5. B. VenkataRamaniand, M. Bhaskar, "*Digital Signal Processors, Architecture, Programming and Applications*", Tata McGraw Hill, 2004.
- 6. L.R.RabinerandB.Gold,"*TheoryandApplicationsofDigitalSignalProcessing*", Prentice-HallofIndia, 2006.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5markswill be asked.
- 4: Remaining questions will be selected from all the modules.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELXDLO7031	NEURAL	4	2		4			04	
	NETWORKS								
	& FUZZY								
	LOGIC								

Subject Code	Subject Name	Examination Scheme							
		Theory Marks				Term	Practical	Oral	Total
		Internal assessment End			Work				
		Test	Test	Ave. Of	Sem.				
		1	2	Test 1	Exam				
				and Test					
				2					
ELXDLO7031	NEURAL	20	20	20	80	-			100
	NETWORKS								
	& FUZZY								
	LOGIC								

Pre-requisite

- Knowledge of linear algebra, multivariate calculus, and probability theory
- Knowledge of a programming language (MATLAB /C/C ++ recommended)

Course Objectives:

- To study basics of biological Neural Network.
- To understand the different types of Artificial Neural Networks
- To know the applications of ANN .
- To study fuzzy logic and fuzzy systems.

Course outcomes:

At the end of completing the course of Neural Networks & Fuzzy Logic, a student will be able to:

- 1. Choose between different types of neural networks
- 2. Design a neural network for a particular application
- **3.** Understand the applications of neural networks
- 4. Appreciate the need for fuzzy logic and control

Module	Contents	Hours				
	Introduction: 1.1 Biological neurons, McCulloch and Pitts models <i>of</i> neuron, Types of activation function, Network architectures, Knowledge representation, Hebb net					
1	1.2 Learning processes: Supervised learning, Unsupervised learning and Reinforcement learning					
	1.3 Learning Rules : Hebbian Learning Rule, Perceptron Learning Rule, Delta Learning Rule, Widrow-Hoff Learning Rule, Correlation Learning Rule, Winner-Take-All Learning Rule					
	1.4 Applications and scope of Neural Networks					
	Supervised Learning Networks :					
	2.1 Perception Networks – continuous & discrete, Perceptron convergence theorem,					
2	Adaline, Madaline, Method of steepest descent, - least mean square algorithm,					
2	Linear & non-linear separable classes & Pattern classes,					
	2.2 Back Propagation Network,					
	2.3 Radial Basis Function Network.					
	Unsupervised learning network:					
2	3.1 Fixed weights competitive nets,	06				
3	3.2 Kohonen Self-organizing Feature Maps, Learning Vector Quantization,	00				
	3.3 Adaptive Resonance Theory – 1					
	Associative memory networks:					
	4.1 Introduction, Training algorithms for Pattern Association,					
4	4.2 Auto-associative Memory Network, Hetero-associative Memory Network, Bidirectional Associative Memory,	08				
	4.3 Discrete Hopfield Networks.					
5	Fuzzy Logic:					
	5.1 Fuzzy Sets, Fuzzy Relations and Tolerance and Equivalence					
	5.2 Fuzzification and Defuzzification					
	5.3 Fuzzy Controllers					
TOTAL	48					
-------	----	--				

Text- Books:

- Dr. S. N. Sivanandam, Mrs S.N. Deepa, "Principles of Soft computing", Wiley Publication.
- Jacek M. Zurada, "Introduction to Artificial Neural Systems, Jaico publishing house.

Reference books :

- Simon Haykin, "Neural Network a Comprehensive Foundation", Pearson Education.
- S. Rajsekaran, Vijaylakshmi Pai, "Neural Networks, Fuzzy Logic, and Genetic Algorithms", PHI.
- Thimothy J. Ross, "Fuzzy Logic with Engineering Applications", Wiley Publication.
- Christopher M Bishop, "Neural Networks For Pattern Recognition", Oxford Publication

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of total 6 questions, each of 20 marks.
- 2. Only 4 questions need to be solved.
- 3. Question number 1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.
- 5. No question should be asked from pre-requisite module

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ELXDLO7032	Advanced	4	2		4			04
	Networking							
	Technologies							

Subject Code	Subject Name	Examination Scheme							
			Th	eory Marks		Term	Practical	Oral	Total
		Internal assessment End				Work			
		Test	Test	Ave. Of	Sem.				
		1	2	Test 1	Exam				
				and Test					
				2					
ELXDLO7032	Advanced	20	20	20	80	-			100
	Networking								
	Technologies								

Course Pre-requisite: ELX405 Principles of Communication Engineering ELX602 Computer Communication Network ELXDLO-2 Wireless Communication

Course Objectives:

The objectives of this course are to:

- 1. Understand the characteristic features of Various Wireless networks
- 2. Understand Optical networking and significance of DWDM.
- 3. Introduce the need for network security and safeguards
- 4. Understand the principles of network management

Course Outcomes:

On successful completion of the course the students will be able to:

- 1. Appreciate the need for Wireless networks and study the IEEE 802.11 Standards
- 2. Comprehend the significance of Asynchronous Transfer Mode(ATM)
- 3. Understand the features of emerging wireless Networks: Bluetooth Networks, ZIGBEE, WSN
- 4. Analyze the importance of Optical networking
- 5. Demonstrate knowledge of network design and security and management
- 6. Understand the concept of Cloud Computing and its applications.

Module	Unit	Topics	Hrs.
No.	No.		
1.		Wireless LAN and WAN technologies	08
	1.1	Introduction to Wireless networks : Infrastructure networks, Ad-hoc networks,	
		IEEE 802.11 architecture and services, Medium Access Control sub-layers, CSMA/CA	
		Physical Layer, 802.11 Security considerations.	
	1.2	Asynchronous Transfer Mode (ATM): Architecture, ATM logical connections, ATM	

		cells, ATM Functional Layers, Congestion control and Quality of service	
2.		Emerging Wireless Technologies	10
	21	Window Dansonnal Ange Natural (WDAN), WDAN 902 15 1 architecture Divets oth	
	2.1	wireless rersonnel Area Network (wPAN): wPAN 802.15.1 arcmeeture, Bluetooth	
		Protocol Stack, Bluetooth Link Types, Bluetooth Security, Network Connection	
		Establishment in Bluetooth, Network Topology in Bluetooth, Bluetooth Usage	
		Models	
		002 15 2 11/ W 1 D 1 002 15 4 7 1 DED	
	2.2	802.15.3- Ultra Wide Band, 802.15.4- Zigbee, RFID	
	2.3	Wireless Sensor Networks: Introduction and Applications, Wireless Sensor Network	
		Model, Sensor Network Protocol Stack,	
3.0		Optical Networking	08
	- 2.1		
	3.1	SONET : SONET/SDH, Architecture, Signal, SONET devices, connections, SONET	
		layers, SONET frames, STS Multiplexing, SONET Networks	
	3.2	DWDM: Frame format, DWDM architecture, Optical Amplifier, Optical cross connect	
		Performance and design considerations	
4.0		Network Design, Security and Management	10
	4.1	3 tier Network design layers: Application layer, Access layer, Backbone layers,	
		Ubiquitous computing and Hierarchical computing	
	4.2	Network Security: Security goal, Security threats, security safeguards, firewall types and design.	
	4.3	Network management definitions, functional areas (FCAPS), SNMP, RMON	
5.0		Routing in the Internet:	06
	5.1	Intra and inter domain Routing, Unicast Routing Protocols: RIP, OSPF, BGP	
	5.2	Multicast Routing Protocols ,Drawbacks of traditional Routing methods	
6.0		Cloud computing:	06
	6.1	Cloud Computing Evolution, Definition, SPI framework of Cloud Computing, Cloud service delivery models,	
	6.2	Cloud deployment models, key drivers to adoption of cloud, impact of cloud computing on	
		users, examples of cloud service providers: Amazon, Google, Microsoft, Salesforce etc.	
		Total	48

Recommended Text Books:

- 1. Behrouz A. Forouzan, "Data communication and networking ", McGraw Hill Education, Fourth Edition.
- 2. Darren L. Spohn, "Data Network Design", McGraw Hill Education, Third edition
- 3. William Stallings, "Data and Computer communications", Pearson Education, 10th Edition.
- 4. Tim Mather , Subra Kumaraswamy & Shahed Latif, "Cloud security & Privacy: an enterprise Perspective", O'Reilly Media Inc.Publishers

Reference Books:

1. William Stallings, "Wireless Communications and Networks", Pearson Ed., 2nd Edition.

- 2. Vijay Garg ,"Wireless Communication and networking", Morgan Kaufmann Publishers
- 3. Carr and Snyder, "Data communication and network security", McGraw Hill ,1ST edition.
- 4. Upena Dalal & Manoj Shukla, "Wireless Communication and Networks", Oxford Press
- Deven Shah , Ambavade, "Advanced Communication Networking"
 Beherouz A Forouzan , "TCP /IP Protocol Suite" , Tata McGraw Hill Education ,4th edition.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of the syllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining questions will be selected from all the modules.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned			
		Theory Practical Tutorial			Theory	TW/Practical	Tutorial	Total
ELXDLO7033	Robotics	4	2		4			04

Subject Code	Subject Name		Examination Scheme								
			Th	eory Marks		Term	Practical	Oral	Total		
		Internal assessment End				Work					
		Test	Test	Ave. Of	Sem.						
		1	2	Test 1	Exam						
				and Test							
				2							
ELXDLO7033	Robotics	20	20	20	80	-			100		

Pre-requisite: Applied Mathematics III, Applied Mathematics IV, Linear Control Systems

Course Objectives:

- 1. To study basics of robotics
- 2. To familiarize students with kinematics & dynamics of robots
- 3 To familiarize students with Trajectory & task planning of robots.
- 4 To familiarize students with robot vision

Course outcomes:

At the end of completing the course of Robotics, a student will be able to:

- 1. understand the basic concepts of robotics
- 2. perform the kinematic and the dynamic analysis of robots
- 3. perform trajectory and task planning of robots
- 4. describe importance of visionary system in robotic manipulation

Module	Contents	Hours
1	Fundamentals of Robotics: 1.1 Robot Classification, Robot Components, Robot Specification, Joints, Coordinates, Coordinate frames, Workspace, Languages, Applications.	04
2	 Kinematics of Robots: 2.1 Homogeneous transformation matrices, Inverse transformation matrices, Forward and inverse kinematic equations – position and orientation 2.2 Denavit-Hatenberg representation of forward kinematics, Forward and inverse kinematic solutions of three and four axis robot 	10
3	 Velocity Kinematics & Dynamics: 3.1 Differential motions and velocities : Differential relationship, Jacobian, Differential motion of a frame and robot, Inverse Jacobian, Singularities, 3.2 Dynamic Analysis of Forces : Lagrangian mechanics, Newton Euler formulation, Dynamic equations of two axis robot 	10
4	Trajectory planning: 4.1 Basics of Trajectory planning, Joint-space trajectory planning, Cartesian-space trajectories	08
5	Robot Vision: 5.1 Image representation, Template matching, Polyhedral objects, Shape analysis, Segmentation, Iterative processing, Perspective transform, Camera Calibration	08
6	Task Planning: 6.1 Task level programming, Uncertainty, Configuration Space, Gross motion Planning; Grasp planning, Fine-motion Planning, Simulation of Planer motion, Source and goal scenes, Task planner simulation.	08
	TOTAL	48

Text- Books :

- Robert Shilling, "Fundamentals of Robotics Analysis and contro"l, Prentice Hall of India, 2009
- Saeed Benjamin Niku, "Introduction to Robotics Analysis, Control, Applications", Wiley India Pvt. Ltd., Second Edition, 2011

Reference books :

- John J. Craig, "Introduction to Robotics Mechanics & Control", Third Edition, Pearson Education, India, 2009
- Mark W. Spong , Seth Hutchinson, M. Vidyasagar, "Robot Modeling & Control ", Wiley India Pvt. Ltd., 2006
- Mikell P. Groover et.al, "Industrial Robots-Technology, Programming & applications", McGraw Hill, New York, 2008

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of the syllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining questions will be selected from all the modules.

Subject Code	Subject Name	Teaching Scheme						
		Theor y	Practica I	Tutoria l	Theor y	TW/Practical	Tutoria l	Tota l
ELXDLO70 34	IC Technology	04			04			04

Subject	Subject	Examination Scheme								
Code	Name			Theory 1	Marks	Term	Practical	Oral	Total	
		In as	Internal assessment		End Sem.	Wor k				
		Test 1	Test 2	Avg. of Test 1 and Test 2	Exam					
ELXDL	IC Technology	20	20	20	80				100	
O7034										

Course Pre-requisite:

- □ ELX302:Electronic Devices and Circuits I
- □ ELX303:Digital Circuit Design
- □ ELX603:VLSI Design

Course Objectives:

- 1. To provide knowledge of IC fabrication processes and advanced IC technologies.
- 2. To disseminate knowledge about novel VLSI devices and materials.

Course Outcomes:

After successful completion of the course student will be able to

- 1. Demonstrate a clear understanding of various MOS fabrication processes & CMOS fabrication flow.
- 2. Design layout of MOS based Circuits.
- 3. Demonstrate a clear understanding of Semiconductor Measurements & Testing.
- 4. Understand advanced technologies, Novel Devices and materials in Modern VLSI Technology.

Module No.	Unit No.	Topics	Hrs.
1.0		Crystal Growth, Wafer preparation and fabrication for VLSI Technology	8
	1.1	Semiconductor Manufacturing: Semiconductor technology trend, Clean rooms, Wafer cleaning and Gettering.	
	1.2	Semiconductor Substrate:	1
		Crystal structure, Crystal defects, Czochralski growth, Float Zone growth, Bridgman growth of GaAs, Wafer Preparation and specifications	
2.0		Fabrication Processes Part 1	12
	2.1	Epitaxy: Classification, Molecular Beam Epitaxy	
	2.2	Silicon Oxidation: Thermal oxidation process, Kinetics of growth, Properties of	1
		Silicon Dioxide, Oxide Quality.	-
	2.3	Device Isolation: LOCOS, Shallow Trench Isolation (STI).	-
		Deposition: Physical Vapor Deposition-Evaporation and Sputtering,	
	2.4	Chemical Vapor Deposition: APCVD, LPCVD, PECVD	
	2.4	Diffusion: Nature of diffusion, Diffusion in a concentration gradient, diffusion	1
		Equation, diffusion systems, problems in diffusion.	
	2.5	Ion Implantation: Penetration range-Nuclear& Electronic stopping and Range, implantation damage, Annealing-Rapid thermal annealing, ion implantation systems.	
3.0		Fabrication Process Part 2	12
	3.1	Etching &Lithography:	1
		Etching: Basic concepts and Classification	
		Lithography: Introduction to Lithography process, Types of Photoresist,	
		Types of Lithography: Electron beam, Ion beam and X-ray lithography	
	3.2	Metallization and Contacts: Introduction to Metallization, Schottky contacts and Ohmic contacts.	
	3.3	CMOS Process Flow: N well, P-well and Twin tub, CMOS Latch Up	1
	3.4	Design rules, Layout of MOS based circuits (gates and combinational logic). Buried	1

		and Butting Contact	
4.0		Measurement and Testing	06
	4.1	Semiconductor Measurements: Conductivity type, Resistivity, Hall Effect	
		Measurements, Drift Mobility,	
	4.2	Testing: Technology trends affecting testing, VLSI testing process and test	
		equipment, test economics and product quality	
		VLSI Technologies	05
	5.1	SOI Technology: SOI fabrication using SIMOX, Bonded SOI and Smart Cut ,PD	
		SOI and FD SOI Device structure and their features	
	5.2	Advanced Technologies: low κ and high κ , BiCMOS, H κ MG Stack, Strained Silicon.	
	5.3	GaAs Technologies: MESFET Technology, MMIC technologies, MODFET	
		Novel Devices and Materials	
	6.1	Multigate Devices: Various multigate device configurations-double gate, triple gate (FinFET) and Gate All Around (Nanowire).	05
		Nanowire: Concept, VLS method of fabrication, Nanowire FET, Types: Horizontal and Vertical Nanowires, III-V compound Materials in Nanowires.	
	6.2	2-D Materials and FET: Graphene& CNT FET, MOS2 and Black Phosphorous.	
			40
		Total	48

Recommended Books:

- 1. James D. Plummer, Michael D. Deal and Peter B. Griffin, "*Silicon VLSI Technology*", Pearson, Indian Edition.
- 2. Stephen A. Campbell, "*The Science and Engineering of Microelectronic Fabrication*", Oxford University Press, 2nd Edition.
- 3. Sorab K. Gandhi, "VLSI Fabrication Principles", Wiley, Student Edition.
- 4. G. S. May and S. M. Sze, "Fundamentals of Semiconductor Fabrication", Wiley, First Edition.
- 5. Kerry Bernstein and N. J. Rohrer, "SOI Circuit Design Concepts", Kluwer Academic Publishers, 1st edition.

- 6. Jean-Pierre Colinge, "FinFETs and Other Multigate Transistors", Springer, 1st edition
- 7. M. S. Tyagi, "Introduction to Semiconductor Materials and Devices", John Wiley and Sons, 1st edition.
- 8. James E. Morris and KrzysztolIniewski, "Nanoelectronic Device ApplicationsHandbook", CRC Press
- 9. Glenn R. Blackwell, "The electronic packaging", CRC Press
- 10. Michael L. Bushnell and Vishwani D. Agrawal, "Essentials of Electronic Testing fordigital, memory and mixed-signal VLSI circuits", Springer

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of the syllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining questions will be selected from all the modules.

Course Code	Course Name	Credits
ILO7011	Product Life Cycle Management	03

- 1. To familiarize the students with the need, benefits and components of PLM
- 2. To acquaint students with Product Data Management & PLM strategies
- 3. To give insights into new product development program and guidelines for designing and developing a product
- 4. To familiarize the students with Virtual Product Development

- 1. Gain knowledge about phases of PLM, PLM strategies and methodology for PLM feasibility study and PDM implementation.
- 2. Illustrate various approaches and techniques for designing and developing products.
- 3. Apply product engineering guidelines / thumb rules in designing products for moulding, machining, sheet metal working etc.
- 4. Acquire knowledge in applying virtual product development tools for components, machining and manufacturing plant

Module	Detailed Contents	Hrs
	Introduction to Product Lifecycle Management (PLM):Product Lifecycle	10
	Management (PLM), Need for PLM, Product Lifecycle Phases, Opportunities of	
	Globalization, Pre-PLM Environment, PLM Paradigm, Importance & Benefits of PLM,	
01	Widespread Impact of PLM, Focus and Application, A PLM Project, Starting the PLM	
	Initiative, PLM Applications	
	PLM Strategies: Industrial strategies, Strategy elements, its identification, selection and implementation, Developing PLM Vision and PLM Strategy, Change management for PLM	
	ProductDesign:Product Design and Development Process, Engineering Design,	09
	Organization and Decomposition in Product Design, Typologies of Design Process	
	Models, Reference Model, Product Design in the Context of the Product Development	
	Process, Relation with the Development Process Planning Phase, Relation with the Post	
	design Planning Phase, Methodological Evolution in Product Design, Concurrent	
02	Engineering, Characteristic Features of Concurrent Engineering, Concurrent	
	Engineering and Life Cycle Approach, New Product Development (NPD) and	
	Strategies, Product Configuration and Variant Management, The Design for X System,	
	Objective Properties and Design for X Tools, Choice of Design for X Tools and Their	
	Use in the Design Process	

02	Product Data Management (PDM):Product and Product Data, PDM systems	05
05	and importance, Components of PDM, Reason for implementing a PDM system,	
	financial justification of PDM, barriers to PDM implementation	
	Virtual Product Development Tools:For components, machines, and	05
04	manufacturing plants, 3D CAD systems and realistic rendering techniques,	
	Digital mock-up, Model building, Model analysis, Modeling and simulations in	
	Product Design, Examples/Case studies	
	Integration of Environmental Aspects in Product Design: Sustainable Development,	05
	Design for Environment, Need for Life Cycle Environmental Strategies, Useful Life	
05	Extension Strategies, End-of-Life Strategies, Introduction of Environmental Strategies	
	into the Design Process, Life Cycle Environmental Strategies and Considerations for	
	Product Design	
	Life Cycle Assessment and Life Cycle Cost Analysis: Properties, and Framework of	05
	Life Cycle Assessment, Phases of LCA in ISO Standards, Fields of Application and	
06	Limitations of Life Cycle Assessment, Cost Analysis and the Life Cycle Approach,	
	General Framework for LCCA, Evolution of Models for Product Life Cycle Cost	
	Analysis	

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper.Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. John Stark, "Product Lifecycle Management: Paradigm for 21st Century Product Realisation", Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, AntoninoRisitano, "Product Design for the environment-A life cycle approach", Taylor & Francis 2006, ISBN: 0849327229
- 3. SaaksvuoriAntti, Immonen Anselmie, "Product Life Cycle Management", Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, "Product Lifecycle Management: Driving the next generation of lean thinking", TataMcGrawHill,2006,ISBN:0070636265

Course Code	Course Name	Credits
ILO7012	Reliability Engineering	03

- 1. To familiarize the students with various aspects of probability theory
- 2. To acquaint the students with reliability and its concepts
- 3. To introduce the students to methods of estimating the system reliability of simple and complex systems
- 4. To understand the various aspects of Maintainability, Availability and FMEA procedure

- 1. Understand and apply the concept of Probability to engineering problems
- 2. Apply various reliability concepts to calculate different reliability parameters
- 3. Estimate the system reliability of simple and complex systems
- 4. Carry out a Failure Mode Effect and Criticality Analysis

Module	Detailed Contents	Hrs
	Probability theory: Probability: Standard definitions and concepts; Conditional Probability, Baye's Theorem.	
01	Probability Distributions: Central tendency and Dispersion; Binomial, Normal, Poisson, Weibull, Exponential, relations between them and their significance.	08
	Measures of Dispersion: Mean, Median, Mode, Range, Mean Deviation, Standard Deviation, Variance, Skewness and Kurtosis.	
	Reliability Concepts: Reliability definitions, Importance of Reliability, Quality Assurance and Reliability, Bath Tub Curve.	
02	Failure Data Analysis: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MTBF, Reliability Functions.	08
	Reliability Hazard Models: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, Weibull Model. Distribution functions and reliability analysis.	
03	System Reliability: System Configurations: Series, parallel, mixed configuration, k out of n structure, Complex systems.	05
04	Reliability Improvement: Redundancy Techniques: Element redundancy, Unit redundancy, Standby redundancies. Markov analysis.	08

	System Reliability Analysis – Enumeration method, Cut-set method, Success	
	Path method, Decomposition method.	
05	Maintainability and Availability:System downtime, Design for Maintainability:Maintenance requirements, Design methods:Fault Isolation and self-diagnostics, Partsstandardization and Interchangeability, Modularization and Accessibility, Repair VsReplacement.Availability – qualitative aspects.	05
06	Failure Mode, Effects and Criticality Analysis: Failure mode effects analysis, severity/criticality analysis, FMECA examples. Fault tree construction, basic symbols, development of functional reliability block diagram, Fault tree analysis and Event tree Analysis	05

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. L.S. Srinath, "Reliability Engineering", Affiliated East-Wast Press (P) Ltd., 1985.
- 2. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw Hill.
- 3. B.S. Dhillion, C. Singh, "Engineering Reliability", John Wiley & Sons, 1980.
- 4. P.D.T. Conor, "Practical Reliability Engg.", John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, "Reliability in Engineering Design", John Wiley & Sons.
- 6. Murray R. Spiegel, "Probability and Statistics", Tata McGraw-Hill Publishing Co. Ltd.

Course Code	Course Name	Credits
ILO7013	Management Information System	03

- 1. The course is blend of Management and Technical field.
- 2. Discuss the roles played by information technology in today's business and define various technology architectures on which information systems are built
- 3. Define and analyze typical functional information systems and identify how they meet the needs of the firm to deliver efficiency and competitive advantage
- 4. Identify the basic steps in systems development

- 1. Explain how information systems Transform Business
- 2. Identify the impact information systems have on an organization
- 3. Describe IT infrastructure and its components and its current trends
- 4. Understand the principal tools and technologies for accessing information from databases to improve business performance and decision making
- 5. Identify the types of systems used for enterprise-wide knowledge management and how they provide value for businesses

Module	Detailed Contents	Hrs
01	Introduction To Information Systems (IS): Computer Based Information Systems, Impact of IT on organizations, Imporance of IS to Society. Organizational Strategy, Competitive Advantages and IS.	4
02	Data and Knowledge Management: Database Approach, Big Data, Data warehouse and Data Marts, Knowledge Management. Business intelligence (BI): Managers and Decision Making, BI for Data analysis and Presenting Results	7
03	Ethical issues and Privacy: Information Security. Threat to IS, and Security Controls	7
04	Social Computing (SC): Web 2.0 and 3.0, SC in business-shopping, Marketing, Operational and Analytic CRM, E-business and E-commerce – B2B B2C. Mobile commerce.	7
05	Computer Networks Wired and Wireless technology, Pervasive computing, Cloud	6

	computing model.	
06	Information System within Organization: Transaction Processing Systems, Functional Area Information System, ERP and ERP support of Business Process. Acquiring Information Systems and Applications: Various System development life cycle models.	8

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Kelly Rainer, Brad Prince, Management Information Systems, Wiley
- 2. K.C. Laudon and J.P. Laudon, Management Information Systems: Managing the Digital Firm, 10th Ed., Prentice Hall, 2007.
- 3. D. Boddy, A. Boonstra, Managing Information Systems: Strategy and Organization, Prentice Hall, 2008

Course Code	Course Name	Credits
ILO7014	Design of Experiments	03

- 1. To understand the issues and principles of Design of Experiments (DOE)
- 2. To list the guidelines for designing experiments
- 3. To become familiar with methodologies that can be used in conjunction with experimental designs for robustness and optimization

- 1. Plan data collection, to turn data into information and to make decisions that lead to appropriate action
- 2. Apply the methods taught to real life situations
- 3. Plan, analyze, and interpret the results of experiments

Module	Detailed Contents	Hrs
01	Introduction 1.1 Strategy of Experimentation 1.2 Typical Applications of Experimental Design 1.3 Guidelines for Designing Experiments	06
	1.4 Response Surface Methodology	
02	 Fitting Regression Models 2.1 Linear Regression Models 2.2 Estimation of the Parameters in Linear Regression Models 2.3 Hypothesis Testing in Multiple Regression 2.4 Confidence Intervals in Multiple Regression 2.5 Prediction of new response observation 2.6 Regression model diagnostics 2.7 Testing for lack of fit 	08

	Two-Level Factorial Designs and Analysis	
	3.1 The 2^2 Design	
	3.2 The 2^3 Design	
	3.3 The General ^{2k} Design	
03	2.4 A Single Deplicate of the 2^k Design	07
	5.4 A Single Replicate of the 2 Design	
	3.5 The Addition of Center Points to the 2 ^k Design,	
	3.6 Blocking in the 2 ^k Factorial Design	
	3.7 Split-Plot Designs	
	Two-Level Fractional Factorial Designs and Analysis	
	4.1 The One-Half Fraction of the 2 ^k Design	
	4.2 The One-Quarter Fraction of the 2 ^k Design	
04	4.3 The General 2 ^{k-p} Fractional Factorial Design	07
	4.4 Resolution III Designs	
	4.5 Resolution IV and V Designs	
	4.6 Fractional Factorial Split-Plot Designs	
	Conducting Tests	
	5.1 Testing Logistics	
	5.2 Statistical aspects of conducting tests	
05	5.3 Characteristics of good and bad data sets	07
	5.4 Example experiments	
	5.5 Attribute Vs Variable data sets	
	Taguchi Approach	
06	6.1 Crossed Array Designs and Signal-to-Noise Ratios	04
	6.2 Analysis Methods	04
	6.3 Robust design examples	
		1

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rd edition, John Wiley & Sons, New York, 2001
- D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001
- 3. George E P Box, J Stuart Hunter, William G Hunter, Statics for Experimenters: Design, Innovation and Discovery, 2nd Ed. Wiley
- 4. W J Dimond, Peactical Experiment Designs for Engineers and Scintists, John Wiley and Sons Inc. ISBN: 0-471-39054-2
- 5. Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T.Voss
- 6. Phillip J Ross, "Taguchi Technique for Quality Engineering," McGrawHill
- 7. Madhav S Phadke, "Quality Engineering using Robust Design," Prentice Hall

Course Code	Course Name	Credits
ILO7015	Operations Research	03

- 1. Formulate a real-world problem as a mathematical programming model.
- 2. Understand the mathematical tools that are needed to solve optimization problems.
- 3. Use mathematical software to solve the proposed models.

- 1. Understand the theoretical workings of the simplex method, the relationship between a linear program and its dual, including strong duality and complementary slackness.
- 2. Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change.
- 3. Solve specialized linear programming problems like the transportation and assignment problems, solve network models like the shortest path, minimum spanning tree, and maximum flow problems.
- 4. Understand the applications of integer programming and a queuing model and compute important performance measures

Module	Detailed Contents	Hrs
	Introduction to Operations Research : Introduction, , Structure of the Mathematical Model, Limitations of Operations Research	
01	Linear Programming: Introduction, Linear Programming Problem, Requirements of LPP, Mathematical Formulation of LPP, Graphical method, Simplex Method Penalty Cost Method or Big M-method, Two Phase Method, Revised simplex method, Duality , Primal – Dual construction, Symmetric and Asymmetric Dual, Weak Duality Theorem, Complimentary Slackness Theorem, Main Duality Theorem, Dual Simplex Method, Sensitivity Analysis	14
	 Transportation Problem: Formulation, solution, unbalanced Transportation problem. Finding basic feasible solutions – Northwest corner rule, least cost method and Vogel's approximation method. Optimality test: the stepping stone method and MODI method. Assignment Problem: Introduction, Mathematical Formulation of the Problem, Hungarian Method Algorithm, Processing of n Jobs Through Two Machines and m 	
	Machines, Graphical Method of Two Jobs m Machines Problem Routing Problem,	

	Travelling Salesman Problem	
	Integer Programming Problem : Introduction, Types of Integer Programming Problems, Gomory's cutting plane Algorithm, Branch and Bound Technique. Introduction to Decomposition algorithms.	
02	Queuing models : queuing systems and structures, single server and multi-server models, Poisson input, exponential service, constant rate service, finite and infinite population	05
03	Simulation : Introduction, Methodology of Simulation, Basic Concepts, Simulation Procedure, Application of Simulation Monte-Carlo Method: Introduction, Monte-Carlo Simulation, Applications of Simulation, Advantages of Simulation, Limitations of Simulation	05
04	Dynamic programming . Characteristics of dynamic programming. Dynamic programming approach for Priority Management employment smoothening, capital budgeting, Stage Coach/Shortest Path, cargo loading and Reliability problems.	05
05	Game Theory . Competitive games, rectangular game, saddle point, minimax (maximin) method of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games without saddle point – mixed strategy for 2 X 2 games.	05
06	Inventory Models : Classical EOQ Models, EOQ Model with Price Breaks, EOQ with Shortage, Probabilistic EOQ Model,	05

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall, (7th Edition), 2002.
- 2. Ravindran, A, Phillips, D. T and Solberg, J. J. "Operations Research: Principles and Practice", John Willey and Sons, 2nd Edition, 2009.
- 3. Hiller, F. S. and Liebermann, G. J. "Introduction to Operations Research", Tata McGraw Hill, 2002.
- 4. Operations Research, S. D. Sharma, KedarNath Ram Nath-Meerut.
- 5. Operations Research, KantiSwarup, P. K. Gupta and Man Mohan, Sultan Chand & Sons.

Course Code	Course Name	Credits
ILO7016	Cyber Security and Laws	03

- 1. To understand and identify different types cybercrime and cyber law
- 2. To recognized Indian IT Act 2008 and its latest amendments
- 3. To learn various types of security standards compliances

- 1. Understand the concept of cybercrime and its effect on outside world
- 2. Interpret and apply IT law in various legal issues
- 3. Distinguish different aspects of cyber law
- 4. Apply Information Security Standards compliance during software design and development

Module	Detailed Contents	Hrs
01	Introduction to Cybercrime: Cybercrime definition and origins of the world, Cybercrime andinformation security, Classifications of cybercrime, Cybercrime and the Indian ITA 2000, A global Perspective on cybercrimes.	4
02	Cyber offenses & Cybercrime: How criminal plan the attacks, Social Engg, Cyber stalking, Cyber café and Cybercrimes, Botnets, Attack vector, Cloud computing, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, AuthenticationService Security, Attacks on Mobile/Cell Phones, Mobile Devices:Security Implications for Organizations, Organizational Measures forHandling Mobile, Devices-Related Security Issues, OrganizationalSecurity Policies and Measures in Mobile Computing Era, Laptops	9
03	Tools and Methods Used in Cyberline Phishing, Password Cracking, Keyloggers and Spywares, Virus and Worms, Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Over Flow, Attacks on Wireless Networks, Phishing, Identity Theft (ID Theft)	6
04	The Concept of Cyberspace E-Commerce , The Contract Aspects in Cyber Law ,The Security Aspect of Cyber Law	8

	,The Intellectual Property Aspect in Cyber Law , The Evidence Aspect in Cyber Law , The Criminal Aspect in Cyber Law, Global Trends in Cyber Law , Legal Framework for Electronic Data Interchange Law Relating to Electronic Banking , The Need for an Indian Cyber Law	
05	Indian IT Act. Cyber Crime and Criminal Justice : Penalties, Adjudication and Appeals Under the IT Act, 2000, IT Act. 2008 and its Amendments	6
06	Information Security Standard compliances SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI.	6

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination.

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Nina Godbole, Sunit Belapure, Cyber Security, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- 5. Nina Godbole, Information Systems Security, Wiley India, New Delhi
- 6. Kennetch J. Knapp, *Cyber Security & Global Information Assurance* Information Science Publishing.
- 7. William Stallings, Cryptography and Network Security, Pearson Publication

- 8. Websites for more information is available on : The Information Technology ACT, 2008-TIFR : https://www.tifrh.res.in
- 9. Website for more information , A Compliance Primer for IT professional : https://www.sans.org/reading-room/whitepapers/compliance/compliance-primerprofessionals-33538

Course Code	Course Name	Credits
ILO7017	Disaster Management and Mitigation Measures	03

- 1. To understand physics and various types of disaster occurring around the world
- 2. To identify extent and damaging capacity of a disaster
- 3. To study and understand the means of losses and methods to overcome /minimize it.
- 4. To understand role of individual and various organization during and after disaster
- 5. To understand application of GIS in the field of disaster management
- 6. To understand the emergency government response structures before, during and after disaster

- 1. Get to know natural as well as manmade disaster and their extent and possible effects on the economy.
- 2. Plan of national importance structures based upon the previous history.
- 3. Get acquainted with government policies, acts and various organizational structure associated with an emergency.
- 4. Get to know the simple do's and don'ts in such extreme events and act accordingly.

Module	Detailed Contents	Hrs
01	 Introduction 1.1 Definition of Disaster, hazard, global and Indian scenario, general perspective, importance of study in human life, Direct and indirect effects of disasters, long term effects of disasters. Introduction to global warming and climate change. 	03
02	 Natural Disaster and Manmade disasters: 2.1 Natural Disaster: Meaning and nature of natural disaster, Flood, Flash flood, drought, cloud burst, Earthquake, Landslides, Avalanches, Volcanic eruptions, Mudflow, Cyclone, Storm, Storm Surge, climate change, global warming, sea level rise, ozone depletion 2.2 Manmade Disasters: Chemical, Industrial, Nuclear and Fire Hazards. Role of growing population and subsequent industrialization, urbanization and changing lifestyle of human beings in frequent occurrences of manmade disasters. 	09
03	 Disaster Management, Policy and Administration 3.1 Disaster management: meaning, concept, importance, objective of disaster management policy, disaster risks in India, Paradigm shift in disaster management. 	06

	3.2 Policy and administration:	
	Importance and principles of disaster management policies, command and co- ordination of in disaster management, rescue operations-how to start with and how to proceed in due course of time, study of flowchart showing the entire process.	
	Institutional Framework for Disaster Management in India:	
04	4.1 Importance of public awareness, Preparation and execution of emergency management programme.Scope and responsibilities of National Institute of Disaster Management (NIDM) and National disaster management authority (NDMA) in India.Methods and measures to avoid disasters, Management of casualties, set up of emergency facilities, importance of effective communication amongst different agencies in such situations.	06
	4.2 Use of Internet and softwares for effective disaster management. Applications of GIS, Remote sensing and GPS in this regard.	
	Financing Relief Measures:	
05	5.1 Ways to raise finance for relief expenditure, role of government agencies and NGO's in this process, Legal aspects related to finance raising as well as overall management of disasters. Various NGO's and the works they have carried out in the past on the occurrence of various disasters, Ways to approach these teams.	09
	5.2 International relief aid agencies and their role in extreme events.	
	Preventive and Mitigation Measures:	
	6.1 Pre-disaster, during disaster and post-disaster measures in some events in general	
06	6.2 Structural mapping: Risk mapping, assessment and analysis, sea walls and embankments, Bio shield, shelters, early warning and communication	06
	6.3 Non Structural Mitigation: Community based disaster preparedness, risk transfer and risk financing, capacity development and training, awareness and education, contingency plans.	
	6.4 Do's and don'ts in case of disasters and effective implementation of relief aids.	

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. 'Disaster Management' by Harsh K.Gupta, Universities Press Publications.
- 2. 'Disaster Management: An Appraisal of Institutional Mechanisms in India' by O.S.Dagur, published by Centre for land warfare studies, New Delhi, 2011.
- 3. 'Introduction to International Disaster Management' by Damon Copolla, Butterworth Heinemann Elseveir Publications.
- 4. 'Disaster Management Handbook' by Jack Pinkowski, CRC Press Taylor and Francis group.
- 5. 'Disaster management & rehabilitation' by Rajdeep Dasgupta, Mittal Publications, New Delhi.
- 6. 'Natural Hazards and Disaster Management, Vulnerability and Mitigation R B Singh, Rawat Publications
- 7. Concepts and Techniques of GIS -C.P.Lo Albert, K.W. Yonng Prentice Hall (India) Publications.

(Learners are expected to refer reports published at national and International level and updated information available on authentic web sites)

Course Code	Course Name	Credits
ILO 7018	Energy Audit and Management	03

- 1. To understand the importance energy security for sustainable development and the fundamentals of energy conservation.
- 2. To introduce performance evaluation criteria of various electrical and thermal installations to facilitate the energy management
- 3. To relate the data collected during performance evaluation of systems for identification of energy saving opportunities.

- 1. To identify and describe present state of energy security and its importance.
- 2. To identify and describe the basic principles and methodologies adopted in energy audit of an utility.
- 3. To describe the energy performance evaluation of some common electrical installations and identify the energy saving opportunities.
- 4. To describe the energy performance evaluation of some common thermal installations and identify the energy saving opportunities
- 5. To analyze the data collected during performance evaluation and recommend energy saving measures

Module	Detailed Contents	Hrs
01	Energy Scenario: Present Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy Security, Energy Conservation and its Importance, Energy Conservation Act-2001 and its Features. Basics of Energy and its various forms, Material and Energy balance	04
02	Energy Audit Principles: Definition, Energy audit- need, Types of energy audit, Energy management (audit) approach-understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution. Elements of monitoring& targeting; Energy audit Instruments; Data and information-analysis. Financial analysis techniques: Simple payback period, NPV, Return on investment (ROI), Internal rate of return (IRR)	08
03	Energy Management and Energy Conservation in Electrical System: Electricity billing, Electrical load management and maximum demand Control;	10

	Power factor improvement, Energy efficient equipments and appliances, star ratings. Energy efficiency measures in lighting system, Lighting control: Occupancy sensors, daylight integration, and use of intelligent controllers.	
	Energy conservation opportunities in: water pumps, industrial drives, induction motors, motor retrofitting, soft starters, variable speed drives.	
04	Energy Management and Energy Conservation in Thermal Systems: Review of different thermal loads; Energy conservation opportunities in: Steam distribution system, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system. General fuel economy measures in Boilers and furnaces, Waste heat recovery, use of insulation- types and application. HVAC system: Coefficient of performance, Capacity, factors affecting Refrigeration and Air Conditioning system performance and savings opportunities.	10
05	Energy Performance Assessment: On site Performance evaluation techniques, Case studies based on: Motors and variable speed drive, pumps, HVAC system calculations; Lighting System: Installed Load Efficacy Ratio (ILER) method, Financial Analysis.	04
06	Energy conservation in Buildings: Energy Conservation Building Codes (ECBC): Green Building, LEED rating, Application of Non-Conventional and Renewable Energy Sources	03

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons
- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Management Principles, C.B.Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in

Course Code	Course Name	Teaching Scheme			Credits Assigned			
		Theory	Practical	Tutori al	Theory	TW/Practic al	Tutorial	Total
ELXL7 01	Instrumentation System Design Laboratory		02		04			04

Course Code	Course Name	Examination Scheme							
			The	eory Mark	Taum				
		Internal Assessment (IA)			End Semester	Work	Practical	Total	
		Test I	Test II	Average	Examination				
ELXL7 01	Instrumentation System Design Laboratory					25	25	50	

Term Work :-

At least 06 experiments covering entire syllabus of ELX 701 (Instrumentation System Design) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks.

Suggested List of Experiments :-

- 1. Study of pneumatic single acting & double acting cylinder
- 2. Study of hydraulic process control valves
- 3. Design of stepper motor interface & controller
- 4. Design of instrumentation amplifier for variable voltage gain
- 5. Design of signal conditioning circuits for LDR / thermistor / RTD / strain gauge
- 6. Design of linearization circuits for transducers
- 7. Design of temperature P+I+D controller
- 8. Tuning of P+I+D controller using MATLAB / Simulink
- 9. Implementation of PLC ladder diagram for given application
- 10. Study of SCADA & HMI
- 11. Designing of data acquisition system (DAS)
- 12. Simulating a simple process using LabVIEW

Course Code	Course Name	Teaching Scheme			Credits Assigned			
		Theory	Practical	Tutori al	Theory	TW/Practic al	Tutorial	Total
ELXL70 2	Power Electronics		02		04			04

Course	Course Name	Examination Scheme							
			The	eory Mark	Tour	Oral &			
Code		Internal Assessment (IA)			End Semester	Work	Practical	Total	
		Test I	Test II	Average	Examination				
ELXL7 02	Power Electronics					25	25	50	

Term Work :-

At least 06 experiments covering entire syllabus of ELX 702 (Power Electronics) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will

be based on the entire syllabus. Equal weightage should be given to laboratory experiments and project while assigning term work marks. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Suggested List of Experiments

- 1. Characteristics of SCR, DIAC, TRAIC.
- 2. Characteristics of IGBT, MOSFET and Power BJT.
- 3. Firing circuit for SCR using UJT.
- 4. Study of Half wave and Full wave rectifiers using diodes.
- 5. Study of Half wave and Full wave controlled rectifiers.
- 6. Buck converter, Boost converter and Buck-Boost converter.
- 7. Study of Cycloconverter.
- 8. Simulation of single phase Half wave and Full wave rectifier circuit.
- 9. Simulation of controlled rectifier with R and RL load.
- 10. Simulation of controlled rectifier with (i) Source Inductance (ii) Freewheeling diode.
| Course
Code | Course Name | Tea | aching Sche | eme | Credits Assigned | | | | |
|----------------|------------------------------|--------|-------------|--------------|------------------|------------------|----------|-------|--|
| | | Theory | Practical | Tutori
al | Theory | TW/Practic
al | Tutorial | Total | |
| ELXL7
03 | Digital Signal
Processing | | 02 | | 04 | | | 04 | |

Course	Course Name	Examination Scheme									
			The	eory Mark	Taum	Oral 6					
Code		Internal Assessment (IA)			End Semester	Work	Practical	Total			
		Test I	Test II	Average	Examination						
ELXL7 03	Digital Signal Processing					25	25	50			

Instructions

- 1. Minimum 6 experiments and one course project must be submitted by each student.
- 2. Simulation tools like Matlab/Scilab can be used.
- 3. Processor based experiments/mini projects can be included.

The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced

Tentative List of Experiments:

- 1. Study of Convolution, Series and Parallel Systems
- 2. Generation of Basic Signals
- 3. Computation of DFT and it's inverse
- 4. Computation of FFT and comparison of frequency response of DFT and FFT
- 5. Computation of DFT
- 6. IIR Butterworth filter design using IIT technique
- 7. IIR Chebyshev filter design using BLT technique
- 8. Design of FIR filter using hamming and hanning window, low pass and high pass filter

Course Code	Course Name	Teaching Scheme			Credits Assigned				
		Theory	Practical	Tutori al	Theory	TW/Practic al	Tutorial	Total	
ELXD OLO70 31	NEURAL NETWORKS & FUZZY LOGIC		02		04			04	

	Course Name	Examination Scheme									
Course			The	eory Mark							
Code		Internal Assessment (IA)			End Semester	Term Work	Oral & Practical	Total			
		Test I	Test II	Average	Examination						
ELXD OLO70 31	NEURAL NETWORKS & FUZZY LOGIC					25	25	50			

Term Work:

The term work shall consist of

- 1. At least *six experiments* using MATLAB Or C/C++ or Java covering the whole of syllabus, duly recorded and graded.
- 2. One seminar and Two assignments to be included covering at least 60% of the syllabus.

The distribution of marks for term work shall be as follows:

The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced *The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.*

Suggested List of experiments: using C/C++ or Matlab or java

- Activation functions
- McCulloch Pitts Neuron Model
- Hebbian learning
- Single layer perceptron neural network
- Multi-layer perceptron neural network

- Error Back propagation neural network
- Kohonen Self-organizing Feature Maps
- Associative memory network
- Fuzzy relations
- Defuzzification methods

Suggested List of seminar :

- Classification of upper case and lower case letters.
- Classification of numbers 0-9.
- BPN for training a hidden layer.
- Implement a heteroassociative memory network to implement any pattern.
- Implement discrete Hopfield network for letters A-E.
- Implement BAM for a pattern of 5X3 array.
- Fuzzy Logic controller design washing machine / vehicle speed control.

Oral Examination:

Oral will be based on any experiment performed from the list of experiment given in the syllabus and the entire syllabus.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELXLDLO7032	Advanced	-	2		-	01		01	
	Networking								
	Technologies								
	Laboratory								

Subject Code	Subject				Examinatio	on Scheme					
	Name		Th	eory Marks		Term	Practical	Oral	Total		
		Inter	rnal as	sessment	End	Work					
		Test Test Ave. Of S			Sem.						
		1 2 Test 1			Exam						
		and Test									
				2							
ELXLDLO7032	Advanced	-	-	-	-	25		25	50		
	Networking										
	Technologies										
	Laboratory										

Course Objectives:

Lab session includes **seven experiments plus one presentation** on any one of the suggested topics The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced

Suggested Experiments:

- 1. Evaluation of home/campus network
- 2. GSM-GPS protocol implementation
- 3. Bluetooth protocol implementation
- 4. ZigBee protocol implementation
- 5. Wi-Fi protocol implementation
- 6. Study of NMAP
- 7. Study of SNMP
- 8. Study of Ethernet.

Suggested topics for presentation:

- 1. MANET
- 2. VOFR
- 3. VOIP
- 4. X.25
- 5. Body area network
- 6. RFID
- 7. Web Security
- 8. Compression Techniques
- 9. Security attacks
- 10. NAT
- 11. College campus network

12. Fiber Optics types, advantages disadvantages13. WSN

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory Practical Tutorial			Theory	TW/Practical	Tutorial	Total	
ELXLDLO7033	Robotics	- 2			-	01		01	

Subject Code	Subject	Examination Scheme									
	Name		Th	eory Marks		Term	Practical	Oral	Total		
		Inte	rnal as	sessment	End	Work					
		Test Test Ave. Of			Sem.						
		1 2 Test 1			Exam						
		and Test									
				2							
ELXLDLO7033	Robotics	-	-	-	_	25		25	50		

Term Work:

The term work shall consist of

- **3.** At least *eight experiments* using MATLAB / Scilab covering the whole of syllabus, duly recorded and graded.
- 4. *Two assignments* to be included covering at least 60% of the syllabus.

The distribution of marks for term work shall be as follows:

The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced *The final certification and acceptance of term-work ensures the satisfactory performance of laboratory work and minimum passing in the term-work.*

Suggested List of experiments: using Matlab / Scilab

- Forward kinematics
- Inverse kinematic
- Dynamic analysis
- Joint-space trajectory
- Cartesian-space trajectory
- Template matching
- Iterative processing
- Segmentation

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELXLDLO7034	IC	-	2		-	01		01	
	Technology								

Subject Code	Subject				Examinatio	on Scheme					
	Name		Th	eory Marks		Term	Practical	Oral	Total		
		Inter	nal as	sessment	End	Work					
		Test Test Ave. Of Sem.									
		1 2 Test 1		Exam							
		and Test									
				2							
ELXLDLO7034	IC	-	-	-	-	25		25	50		
	Technology										

Course Objectives:

Lab session includes **seven experiments plus one presentation** on any one of the suggested topics. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced

Suggested Experiments:

Following list of experiments covers the complete syllabus prescribed in IC Technology course. It is formulated in such a way that it allows student to explore various process, layout and device simulation tools. Detail analysis of observations should be recorded in the project book. Tools to be used are Microwind, SUPREME, Electric, Visual TCAD, Mentor Graphics Pyxis and tools available on nanohub. Linux based operating system is preferred to do simulations.

1. Draw and simulate layout for the CMOS inverter. Carry out static as well as transient simulation. Analyze CMOS inverter for i) $(W/L)_{pmos} > (W/L)_{nmos}$ ii) $(W/L)_{pmos} = (W/L)_{nmos}$ iii) $(W/L)_{pmos} < (W/L)_{nmos}$. Do parasitic extraction. Feed these parasitic in circuit simulator and do layout versus schematic verification.

2. Draw and simulate layout for the following circuits. Size them with respect to reference inverter.

a. CMOS NAND

b. CMOS NOR

Also observe the effect of different types of design rules on above circuits and tabulate the comparative results.

[y=

3. Draw and simulate layout for the given equation (each student will get different equation $\overline{A.B + C.D}$) with the following design style

- a. Static CMOS
- b. Transmission gate
- c. Dynamic Logic

4. Draw and simulate layout for 6T SRAM cell. Size the SRAM cell for 1) lowest area 2) high reliability

5. Draw and simulate layout for the following circuits.

a. SR latch

b. D flip Flop

6. Simulate oxidation process with Deal-Grove model for different conditions (e.g. oxidation type, orientation, time, temperature, thickness etc.) and comment on the results obtained.

7. Simulate diffusion process for different conditions (e.g. source, time, temperature, dopant etc.) and comment on the results obtained.

8. Simulate Si PN junction for various structure and environmental conditions and comment on the results obtained. Repeat the entire simulation for Ge diode.

9. Simulate MOS capacitor (Classical Simulation) for single gate device for a typical value of fixed charge density and interface trap charge density in gate insulator. Do the AC analysis and comment on the results obtained.

10. Simulate MOS capacitor (Quantum Simulation) for single gate device for a typical value of fixed charge density and interface trap charge density in gate insulator. Do the AC analysis and comment on the results obtained.

Suggested topics for presentation:

Presentation on any Novel device or process.

`Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELX 801	Internet of Things	4	2		4			04	

B.E. (Electronics Engineering) – Semester VIII

Subject	Subject Name		Examination Scheme								
Code			T	heory Marks		Term	Practical	Oral	Total		
		Internal assessment End Sem.				Work					
		Test 1 Test Ave. Of Exa			Exam						
		2 Test 1 and									
				Test 2							
ELX 801	Internet of	20	20	20	80	-			100		
	Things										

Course Pre-requisite: ELX 501 :- Micro-controllers and Applications

ELX 601:- Embedded System and RTOS ELX602:- Computer Communication Network ELXDLO-2 Wireless Communication

Course Objectives:

The objectives of this course are to:

- 1. Understand the design features of Internet of Things(IoT)
- 2. Understand importance of data handling in IoT Way.
- 3. Introduce multiple way of data communication and networking.
- 4. Understand design issue in IoT

Course Outcomes:

On successful completion of the course the students will be able to:

- 1. Understand the concepts of Internet of Things
- 2. Analyze basic web connectivity in IoT
- 3. Understand Data handling in IoT
- 4. Design basic applications based on IoT using specific components

Module	Unit	Topics	Hrs.
No.	No.		
1.		Introduction to IoT	08
	1.1	Introduction;-Defining IoT, Characteristics of IoT, Physical design of IoT, Logical	
		design of IoT, Functional blocks of IoT, Sources of IoT, and M2MCommunication.	
	1.2	Iot and M2m:- IoT/M2M System layers and Design Standardization, Difference	
		between IoT and M2M	
2.		Network & Communication aspects	10

	2.1	Design Principles & Web Connectivity:- Web Communication Protocols for	
		connected devices, Web connectivity using Gateway, SOAP, REST, HTTP, RESTful	
		and WebSockets	
		(Publish –Subscribe),MQTT, AMQP, CoAP Protocols	
	2.2	Internet Connectivity: - Internet connectivity, Internet based communication, IP	
		addressing in IoT, Media Access Control, Application Layer Protocols.	
		LDWAN Fundamentals : LODA NDIST CAT I TE M1 SICEON	
		LPWAN Fundamentals LORA ,NBIOT,CAT LTE MI,SIGFOA	
3.0		IoT Platforms and Design Methodology	08
	3.1	Defining Specifications About:- Purpose & requirements, process, domain model,	
		information model, service, IoT level, Functional view, Operational view, Device and	
		Component Integration, (case studies)	
	3.2	IoT Levels:-IoT Levels and Deployment Templates	
4.0		Data Handling in IoT	10
	4.1	Data Acquiring, Organizing, Processing:- Data acquiring and storage, Organizing	
		the data, Transactions, Business Processes, Integration and Enterprise Systems,	
		Analytics.	
	4.2	Data Collection and Storage:- Cloud Computing Paradigm for Data Collection,	
		storage and computing, Cloud Service Models, Xively Cloud for Io I	
5.0		(AWS, Google APP engine , Dweet. IO, Fifebase)	0(
5.0			VO
	5.1	Exemplary Devices:- Raspberry Pi, R-Pi Interfaces, Programming R-Pi, Sensor Technology,	
		Sensor Data Communication Protocols, RFID, WSN Technology, Intel Galileo	
(0			0.6
6.0	(1		06
	6.1	Design Layers, complexity, Io1 Applications in Premises, Supply Chain and Customer	
	67	Home Automation Smart Cities Environment Agriculture IoT Printer	
	0.2	Tione Automation, Smart Cittes, Environment, Agriculture, 101 Finiter	
		Total	48

Recommended Text Books:

- 5. ArshdeepBahga and Vijay Madisetti, "Internet of Things: A Hands-on Approach, Universities Press.
- 6. Raj Kamal, "Internet of Things: Architecture and Design Principles", McGraw Hill Education ,First edition
- 7. David Hanes ,Gonzalo salgueiro"IoT Fundamentals Networking Technologies,Protocols and Use Cases for Internet of Things", Cisco Press, Kindle 2017 Edition
- 8. Andrew Minteer ,"Analytics for the Internet of Things(IoT)",Kindle Edition

Reference Books:

- 1. Adrian McEwen, Hakim Cassimally, : Designing the Internet of Things", Paperback, First Edition
- 2. <u>Yashavant Kanetkar</u>, <u>Shrirang Korde</u>:Paperback "21 Internet of Things (IOT) Experiments"
 - a. BPB Publications

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of thesyllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

2. Total 4 questions need to be solved.

3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.

4: Remaining questions will be selected from all the modules.

Subject Code	Subjec Name	t	Τ	eaching Scl	heme		Credits Assigned							
		ſ	heory	Practical	ractical Tutorial		Theory	y	T/W Practica		Tutoria		Total	
ELX802	Analog and Mixed VLSI Design		04	02	-	-			-		-		04	
		Exan	nination	Scheme										
		Theo Inter	ry Marl nal Asse	End	nd Exam		Tour							
		Marl Test 1	cs Test 2	Average	Sem Exam (Marks)	Dı (H	Duration (Hrs)		Term work		ractical	Ora	Total	
ELX802	Analog and Mixed VLSI Design	20	20	20	80		03		-		-	-	100	

Course Pre-requisite:

- □ ELX302: Electronic Devices and Circuits I
- □ ELX303: Digital Circuit Design
- □ ELX402: Electronic Devices and Circuits II
- □ ELX504: Design With Linear Integrated Circuits
- □ ELX603: VLSI Design
- □ ELX DLO-3: IC Technology

Course Objectives:

- 1. To teach analysis and design of building blocks of CMOS Analog VLSI Circuits.
- 2. To highlight the issues associated with the CMOS analog VLSI circuit design.
- 3. To emphasize upon the issues related to mixed signal layout design.

Course Outcomes:

After successful completion of the course student will be able to

- 1. Discuss tradeoffs involved in analog VLSI Circuits.
- 2. Analyze building blocks of CMOS analog VLSI circuits.
- 3. Design building blocks of CMOS analog VLSI circuits
- 4. Carry out verifications of issues involved in analog and mixed signal circuits

Module No	Unit No	Topics	Hrs
		Analog building blocks	
1.0	1.1	Need for CMOS analog and mixed signal designs, MOS Transistor as sampling switch, active resistances, current source and sinks, current mirror.	8
-	1.2	Voltage References: Band Gap References, General Considerations, Supply-independent biasing, Temperature independent references, PTAT	

		current generation and Constant Gm biasing	
		Amplifier Fundamentals	
		Single Stage Amplifiers: Basic concepts, Gain Bandwidth (GBW),	
	21	Common-source stage (with resistive load, diode connected load, current-	
	2.1	source load, triode load, source degeneration), source follower, common-	
		gate stage, cascode stage, folded cascade stage.	
2.0		Differential Amplifiers: Single ended and differential operation, Basic	
2.0	2.2	differential pair, large signal and small signal behaviours, Common-mode	12
		response, Differential pair with MOS loads.	
		Noise: Statistical Characteristics of Noise, Types of Noise, Representation	
	• •	of Noise in circuits, Noise in Single stage amplifiers (CS, CD, CG stages),	
	2.3	noise in differential pairs, noise bandwidth, noise figure, noise	
		temperature.	
		MOS Operational Amplifiers	
		Stability and Frequency Compensation: General Considerations,	
	3.1	Multipole systems, Phase margin, Frequency compensation, compensation	-
		of two stage op- amps	
3.0		Op-amp Design: General Considerations, performance parameters, One-	8
		stage op- amps, Two-stage op-amps, Gain Boosting, Common-mode	
	3.2	teedback, Input range limitations(ICMR), Slew Rate, Power supply	
		rejection, Noise in op-amps. Design of single ended and double ended two	
		stage Op-amps	
		Mixed Signal Circuits Dasia Concents: AMS design flow, ASIC Full system design Semi-	
	4 1	basic Concepts: AMS design now, ASIC, Full custom design, Semi-	
	4.1	custom design, system on Chip, system in package, Haldware software	Q
4.0		Oscillators: General considerations Ring oscillators IC oscillators	0
	4.2	VCO	
		Phase-Locked Loop: Simple PLL, Charge pump PLL, Non-ideal effects	
	4.3	in PLL, Delay locked loops and applications of PLL in integrated circuits	
		Data Converter Fundamentals	
		Switch Capacitor Circuits: MOSFETs as switches, Speed considerations,	
5.0	5.1	Precision Considerations, Charge injection cancellation, Unity gain buffer,	4
		Non- inverting amplifier and integrator.	4
	5.2	Basic CMOS comparator Design, Adaptive biasing, Analog multipliers.	
		Data Converter Fundamentals and Architectures	
		Fundamentals: Analog versus discrete time signals, converting analog	
	6.1	signals to data signals, sample and hold characteristics. DAC	
		specifications, ADC specifications.	
6.0		DAC architectures: Digital input code, resistors string, R-2R ladder	8
		networks, current steering, charge scaling DACs, Cyclic DAC, pipeline	Ŭ
	6.2		
		ADC architectures: Flash, Two Step Flash, Pipeline ADC, Integrating	
		IALL'S NUCCESSIVE approximation ALL'S	
			40

Recommended Books:

- 1. B Razavi, "Design of Analog CMOS Integrated Circuits", Tata McGraw Hill, 1st Edition.
- 2. R. Jacaob Baker, Harry W. Li, David E. Boyce, "CMOS Circuit Design, Layout, and Simulation", Wiley, Student Edition
- 3. P. E. Allen and D. R. Holberg, "*CMOS Analog Circuit Design*", Oxford University Press, 3rd Edition.
- 4. Gray, Meyer, Lewis, Hurst, "Analysis and design of Analog Integrated Circuits", Willey, 5th Edition

Internal Assessment (IA)

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

2. Total 4 questions need to be solved.

3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.

4: Remaining questions will be selected from all the modules.

Subject Code	Subject Name	Г	eachin	ig Sch	eme		Credits Assigned						
		Theory	Pra	Practical Tutorial			ry	Practic	al Tu	Tutorial		Total	
ELX DLO8041	Advanced Power Electronics	04)4 02 04					04					
		Exami	nation	Schen	ne								
Subject	Subject	Theory											
Code	Name	Internal assessment		ssment I		End	End E		Term Work	Prac	tical	Oral	Total
		Test 1	Test 2	Avg (and]	of Test 1 Fest 2	Sem. Exam	H	lours					
ELX DLO8041	Advanced Power Electronics	20	20	20		80	0.	3					100

Course Pre-requisite:

- 4. Power Electronics.
- 5. Linear Control System.
- **6.** BEE

Course Objectives:

- 3. To enhance the ideas of students for more complex power electronic system.
- 4. To teach the analytical methods in power electronic systems.
- 5. To expose the students to various applications of power electronics in electronics equipment, drives and non-conventional energy systems.

Course Outcomes:

After successful completion of the course students will be able to:

- 1. Thoroughly understand the modern methods of analysis and control of power electronic systems.
- 2. Carry out the theoretical analysis of the power electronic systems from the 'Systems Theory' point of view.
- 3. Appreciate the ubiquity of power electronic systems in engineering fields.
- 4. Simulate and analyse power electronic systems.

Module No.	Unit No.	Contents	Hrs.
1		Three-phase Rectifiers	8
	1.1	3-phase half-wave and full-wave controlled rectifiers with R and RL load, Effect of source inductance,	
	1.2	Distortion in line current, calculation of performance parameters.	
2		Three-phase inverters and control	8
	2.1	Three phase bridge inverters (120° and 180° conduction mode) with R and RL load	
	2.2	PWM for 3-phase voltage source inverters, Space Vector Modulation (SVM) technique for 3-phase voltage source inverters, hysteresis control.	
3		DC-DC Converters	10
	3.1	Average model, linearized and transfer function models, state-space average models of basic buck, boost and buck-boost converters.	
	3.2	Feedback control of these converters (PI and PID).	
4		Power Electronic Applications in DC Drives	8
	4.1	Introduction to DC motors, speed control of DC motor, drives with semi converters, full converters and dual converters.	
	4.2	Chopper-based drive.	
	4.3	Electric braking of DC motors.	
5		Power Electronic Applications in AC Drives	10
	5.1	Introduction to three-phase induction motor, speed control methods for three-phase induction motor :	
		i) Stator voltage	
		ii) Variable frequency	
		iii) Rotor resistance	
		iv) V/f control	
		v) Slip power recovery schemes	
6		Power Electronic Applications	4
	6.1	Induction heating, dielectric heating, solid state relays,	

6.2	Energy conversion interface in renewable energy system.	
	Total	48

Recommended Books:

- 1. M. Rashid, Power Electronics: Circuits, Devices, and Applications, PHI, 3rd Edition.
- 2. R. W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, Springer, 2nd Edition.
- 3. Mohan, Undeland and Robbins, Power Electronics: Converters, Applications and Design, Wiley (Student Edition), 2nd Edition.
- 4. P. S. Bimbhra, Power Electronics, Khanna Publishers, 2012.
- 5. M. D. Singh, K. B. Khanchandani, Power Electronics, Tata McGraw Hill, 2nd Edition.
- 6. J. P. Agrawal, Power Electronics Systems: Theory and Design, Pearson Education, 2002.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. Total 4 questions need to be solved.
- 3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.
- 4: Remaining questions will be selected from all the modules.

Subject Code	Subject Name	Т	eachin	ng Sch	eme	Credits Assigned								
		Theory	Pra	ctical	Tutorial	Theor	ry	Practic	al Tu	Tutorial		Total		
ELX DLO8042	MEMS Technology	04	()2		04						04		
	Subject Name	Examination Scheme												
Subject		Theory	y Mark	KS										
Code		Intern	End	End Ex		Term Work	Practical		Oral	Total				
		Test 1	Test 2	Avg of and T	of Test 1 Test 2	Sem. Exam	H	lours		-				
ELX DLO8042	MEMS Technology	20	20	20		80	0.	3					100	

Course Pre –requisite: VLSI Design an IC Technology

Course Objectives:

- 1. To provide knowledge of MEMS processing steps and processing modules
- 2. To provide knowledge of MEMS Materials with respect to applications.
- 3. To demonstrate the use of semiconductor based processing modules used in the fabrication of variety of sensors and actuators (e.g. pressure sensors, accelerometers, etc.) at the micro-scale.
- 4. To provide an understanding of basic design and operation of MEMS sensors, actuators and structures.

Course Outcomes:

- 1. Understand the underlying fundamental principles of MEMS devices including physical operation and material properties.
- 2. Design and simulate MEMS devices using standard simulation tools.
- 3. Develop different concepts of micro system sensors and actuators for real-world applications.
- 4. Understand the rudiments of Micro-fabrication techniques.

Module No.	Unit No.	Contents	Hrs.
1		Introduction to MEMS	4
	1.1	Introduction to MEMS, Comparison with Micro Electronics Technology,	
	1.2	Real world examples (Air-Bag, DMD, Pressure Sensors), MEMS Challenges, MEMS Sensors in Internet of Things (IoT), Bio-medical applications	
2		MEMS Materials and Their Properties	8
	2.1	Materials (eg. Si, SiO ₂ , SiN, SiC, Cr, Au, Al, Ti, SU8, PMMA, Pt)	
	2.2	Important properties: Young modulus, Poisson's ratio, density, piezoresistive coefficients, TCR, Thermal Conductivity, Material Structure.	
3		MEMS Sensors, Actuators and Structures	8
	3.1	MEMS Sensing (Capacitive, Piezo electric Piezo resistive)	
	3.2	Micro Actuation Techniques (Thermal, Piezo electric, Electro static, Shape Memory Alloys, LORENTZ FORCE ACTUATION), Micro Grippers, Micro Gears, Micro Motors, Micro Valves, Micro Pumps.	
4		MEMS Fab Processes	10
	4.1	MEMS Processes & Process parameters: Bulk & Surface Micromachining, High Aspect Ratio Micro	
	4.2	Machining (LIGA, Laser), X-Ray Lithography, Photolithography, PVD techniques, Wet, Dry, Plasma	
	4.3	etching, DRIE, Etch Stop Techniques. Die, Wire & Wafer Bonding, Dicing, Packaging(with Metal	
5		MEMS Devices	12
	5.1	Architecture, working and basic behaviour of Cantilevers, Micro heaters, Accelerometers, Pressure Sensor types, Micromirrors in DMD, Inkjet printer- head. Steps involved in Fabricating above devices	
6		MEMS Device Characterization	6

6.1	Piezo-resistance, TCR, Stiffness, Adhesion, Vibration, Resonant frequency, & importance of these measurements in studying device behavior MEMS Failure Mechanisms and Reliability.	
	Total	48

Recommended Books:

- 1. MEMS and MICROSYSTEMS Design and Manufacture by Tai Ran Hsu : McGraw Hill Education
- 2. An Introduction to Micro-electromechanical Systems Engineering; 2nd Ed by N. Maluf, K Williams; Publisher: Artech House Inc
- 3. Micro machined Transducers Sourcebook by G. Kovacs; Publisher: McGraw-Hill
- 4. Practical MEMS by Ville Kaajakari; Publisher: Small Gear Publishing
- 5. Micro-system Design by S. Senturia; Publisher: Springer
- 6. Analysis and Design Principles of MEMS Devices MinhangBao; Publisher: Elsevier Science
- 7. Fundamentals of Micro-fabrication by M. Madou; Publisher: CRC Press; 2 edition
- 8. Micro machined Transducers Sourcebook by G. Kovacs; Publisher: McGraw-Hill

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the test will be considered as final IA marks

End Semester Examination:

1. Question paper will comprise of 6 questions, each carrying 20 marks.

2. Total 4 questions need to be solved.

3: Question No.1 will be compulsory and based on entire syllabus wherein sub questions of 2 to 5 marks will be asked.

4. Remaining questions will be selected from all the modules.

Course Code	Course Name	Te	aching Sche	me	Credits Assigned					
		Theory	Practical	Tutoria l	Theory	TW/Practica l	Tutorial	Total		
ELXDLO 8043	Virtual Instrumentation	04			04			04		

		Examination Scheme							
Course	Course Name	Theory Marks				Tarres	Oral 8		
Code		Internal Assessment (IA)			End Semester	Work	Practical	Total	
		Test I	Test II	Average	Examination				
ELXDL O8043	Virtual Instrumentation	20	20	20	80	-	-	100	

<u>Rationale</u> :- Virtual instrumentation combines mainstream commercial technologies such as the PC, with flexible software and a wide variety of measurement hardware, so one can create user-defined systems that meet their exact application needs. Virtual instrumentation has led to a simpler way of looking at measurement systems. Instead of using several stand-alone instruments for multiple measurement types and performing rudimentary analysis by hand, engineers now can quickly and cost-effectively create a system equipped with analysis software and a single measurement device that has the capabilities of a multitude of instruments for various applications & measurements.

Course Objectives :-

- 1. To understand virtual instrumentation (VI) & to realize its architecture
- 2. To familiarize with VI software & learn programming in VI
- 3. To study various instruments interfacing & data acquisition methods
- 4. To understand various analysis tools & develop programs for different measurement applications

Course Outcomes :-

At the end of the course, students should gain the ability to :-

- **CO-1** :- Explain the concepts of virtual instrumentation
- **CO-2** :- Select the proper data acquisition hardware
- **CO-3 :-** Configure the data acquisition hardware using LabVIEW
- **CO-4** :- Use LabVIEW to interface related hardware like transducers
- CO-5 :- Design virtual instruments for practical applications

Modul e No.	Topics	Hour s
1	INTRODUCTION TO VIRTUAL INSTRUMENTATION (VI)	
1.1	Historical perspective – Need for VI – Advantages of VI – Definition of VI – Block diagram & architecture of VI – Data flow techniques – Graphical programming in data flow – Comparison with conventional programming	06
2	PROGRAMMING TECHNIQUES	
2.1	VI & sub-VI – Loops & charts – Arrays – Clusters – Graphs – Case & sequence structures – Formula nodes – Local & global variables – String & files inputs	08
3	APPLICATION DEVELOPMENT SOFTWARE (LabVIEW)	
3.1	Creating virtual instrument in LabVIEW – Implementing dataflow programming in LabVIEW – VI, sub-VI & modular code creation in LabVIEW – Arrays & file I/O in LabVIEW – Textual math integration in LabVIEW – Interfacing external instruments to PC using LabVIEW	10
4	DATA ACQUISITION BASICS	
4.1	Digital I/O – Counters & timers – PC hardware structure – Timing – Interrupts – DMA – Software & hardware installation – IEEE GPIB 488 concepts – Embedded system buses – PCI – EISA – CPCI	08
5	COMMON INSTRUMENT INTERFACES	
5.1	Current loop – RS 232C / RS 485 – Interface basics – USB – PCMCIA – VXI – SCXI – PXI – Networking basics for office & industrial application VISA & IVI – Image acquisition & process – Motion control – Digital multimeter (DMM) – Waveform generator	08
6	USING ANALYSIS TOOLS & APPLICATION OF VI	
6.1	Fourier transform – Power spectrum – Correlation method – Windowing & filtering – Pressure control system – Flow control system – Level control system – Temperature control system – Motion control employing stepper motor – PID controller toolbox	08
1-6	TOTAL	48

<u>Recommended Books</u> :-

1. Dr. Sumathi S. & Surekha P, LabVIEW Based Advanced Instrumentation System, PHI, 2nd edition (2007)

Cary Johnson, LabVIEW Graphical Programming, McGraw Hill, 2nd edition (2006)
 Lisa K. Wells & Jeffrey Travis, LabVIEW for Everyone, PHI, 3rd edition (2009)

4. Robert H. Bishop, Learning with LabVIEW 7 Express, Pearson Education, 1st edition (2005)
5. Jovitha Jerome, Virtual Instrumentation using LabVIEW, PHI, 2nd edition (2010)

Internal Assessment (IA) :-

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination :-

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Q.1 will be compulsory and based on entire syllabus.
- 4. Remaining questions (Q.2 to Q.6) will be set from all modules.

5. Weightage of each module in question paper will be proportional to the number of respective lecture hours mentioned in the syllabus.

Course		Teaching Scheme			Credits Assigned			
Code	Course Name	Theory	Practical	Tutoria l	Theory	TW/Practica l	Tutorial	Total
ELXDLO 8044	Digital Image Processing	04			04			04

				Ex	amination Schem	ie				
Course Code	Course Name	Theory Marks								
		Interna	Internal Assessment (IA) End Semest		End Semester	Work Practical	Total			
		Test I	Test II	Average	Examination					
ELXDL O 8044	Digital Image Processing	20	20	20	80	-	-	100		

Course Pre-requisite:

- □ Applied Mathematics
- □ Signals and Systems

Course Objectives:

- 1. To learn the fundamental concepts of Digital Image Processing through basic spatial and frequency domain techniques.
- 2. To learn Image Compression and Decompression Techniques and compression standards.

Course Outcomes:

After successful completion of the course student will be able to

- 1. Understand the fundamentals of Digital Image representation and simple pixel relations.
- 2. Explain spatial domain and frequency domain techniques for digital image enhancement.
- 3. Perform segmentation and morphological operations.
- 4. Apply compression and decompression techniques to different digital images.

Module No.	Unit No.	Topics	Hrs.
	1.1	Digital Image Processing FundamentalsIntroduction: Background, Representation of a Digital Image, Fundamental Steps inImage Processing, Elements of a Digital Image Processing System	-
1	1.2	Digital Image Fundamentals: Elements of Visual Perception, A Simple Image Model, Two dimensional Sampling and Quantization, Tonal and Spatial Resolutions, Some Basic Relationships between Pixels, Image File Formats : BMP, TIFF and JPEG. Color Models (RGB, HSI, YUV)	04
2	2.1	Image Enhancement in Spatial DomainEnhancement in the spatial domain: Some Simple Intensity Transformations,Histogram Processing, Image Subtraction, Image Averaging,Spatial domain filters: Smoothing Filters, Sharpening Filters, High boost filter	_08
3	3.1	Image Segmentation and Representation Detection of Discontinuities, Edge Linking using Hough Transform, Thresholding, Region based Segmentation, Split and Merge Technique	08
	3.2	Shape Number, Two Dimensional Moments.	-
4	4.1	Binary Image Processing Binary Morphological Operators, Dilation and Erosion, Opening and Closing, Hit-or-Miss Transformation, Boundary Extraction, Region Filling, Thinning and Thickening, Medial Axis Transform, Connected Component Labeling	06
5	5.1	Image Transforms and frequency domain processingIntroduction to 2 Dimensional Fourier Transform, Discrete Fourier Transform, Properties of the Two-Dimensional Fourier Transform, Fast Fourier Transform(FFT), Computation of 2 DFFTDiscrete Hadamard Transform(DHT), Fast Hadamard Transform(FHT) Discrete	12

		Cosine Transform(DCT), Introduction to Discrete Wavelet Transform (DWT)	
	5.3	Enhancement in the frequency domain: Frequency Domain Filtering Lowpass Filtering, Highpass Filtering, Homomorphic Filtering, Generation of Spatial Masks from Frequency Domain Specifications	
		Image Compression:	
	6.1	Fundamentals : Coding Redundancy, Interpixel Redundancy, Psycho visual	10
		Redundancy	
6		Image Compression Models : The Source Encoder and Decoder, Lossless	
	6.2	Compression Techniques : Run Length Coding, Arithmetic Coding, Huffman	
		Coding, Differential PCM,	-
	6.3	Lossy Compression Techniques: Predictive Coding, Delta modulation, Improved Gray Scale Quantization, Transform Coding, JPEG, MPEG-1., Fidelity Criteria.	
Total	I		48

Text Books:

- 1. Rafel C. Gonzalez and Richard E. Woods, 'Digital Image Processing', Pearson Education Asia, Third Edition, 2009,
- 2. Anil K. Jain, "Fundamentals and Digital Image Processing", Prentice Hall of India Private Ltd, Third Edition

Reference Books:

- 1. S. Jayaraman, E.Esakkirajan and T.Veerkumar, "Digital Image Processing" TataMcGraw Hill Education Private Ltd, 2009,
- Milan Sonka, Vaclay Hlavac, and Roger Boyle, "Image Processing, Analysis, and Machine Vision", Second Edition, Thomson Learning, 2001
 William K. Pratt, "Digital Image Processing", Third Edition, John Wiley & Sons, Inc., 2001 Internal Assessment (IA) :-

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of both the tests will be considered as final IA marks.

End Semester Examination :-

- 1. Question paper will comprise of 6 questions, each carrying 20 marks.
- 2. The students need to solve total 4 questions.
- 3. Q.1 will be compulsory and based on entire syllabus.
- 4. Remaining questions (Q.2 to Q.6) will be set from all modules.

5. Weightage of each module in question paper will be proportional to the number of respective lecture hours mentioned in the syllabus.

e Code	Course Name	Credits
ILO8021	Project Management	03

Objectives:

- 1. To familiarize the students with the use of a structured methodology/approach for each and every unique project undertaken, including utilizing project management concepts, tools and techniques.
- 2. To appraise the students with the project management life cycle and make them knowledgeable about the various phases from project initiation through closure.

Outcomes: Learner will be able to...

- 1. Apply selection criteria and select an appropriate project from different options.
- 2. Write work break down structure for a project and develop a schedule based on it.
- 3. Identify opportunities and threats to the project and decide an approach to deal with them strategically.
- 4. Use Earned value technique and determine & predict status of the project.
- 5. Capture lessons learned during project phases and document them for future reference

Module	Detailed Contents	Hrs
01	Project Management Foundation: Definition of a project, Project Vs Operations, Necessity of project management, Triple constraints, Project life cycles (typical & atypical) Project phases and stage gate process. Role of project manager. Negotiations and resolving conflicts. Project management in various organization structures. PM knowledge areas as per Project Management Institute (PMI).	5
02	Initiating Projects: How to get a project started, Selecting project strategically, Project selection models (Numeric /Scoring Models and Non-numeric models), Project portfolio process, Project sponsor and creating charter; Project proposal. Effective project team, Stages of team development & growth (forming, storming, norming & performing), team dynamics.	6
03	 Project Planning and Scheduling: Work Breakdown structure (WBS) and linear responsibility chart, Interface Co-ordination and concurrent engineering, Project cost estimation and budgeting, Top down and bottoms up budgeting, Networking and Scheduling techniques. PERT, CPM, 	8

	GANTT chart. Introduction to Project Management Information System (PMIS).	
04	Planning Projects:Crashing project time, Resource loading and leveling, Goldratt's critical chain, ProjectStakeholders and Communication plan.Risk Management in projects: Risk management planning, Risk identification and riskregister. Qualitative and quantitative risk assessment, Probability and impact matrix.Risk response strategies for positive and negative risks	6
05	 5.1 Executing Projects: Planning monitoring and controlling cycle. Information needs and reporting, engaging with all stakeholders of the projects. Team management, communication and project meetings. 5.2 Monitoring and Controlling Projects: Earned Value Management techniques for measuring value of work completed; Using milestones for measurement; change requests and scope creep. Project audit. 5.3 Project Contracting Project procurement management, contracting and outsourcing, 	8
06	 6.1 Project Leadership and Ethics: Introduction to project leadership, ethics in projects. Multicultural and virtual projects. 6.2 Closing the Project: Customer acceptance; Reasons of project termination, Various types of project terminations (Extinction, Addition, Integration, Starvation), Process of project termination, completing a final report; doing a lessons learned analysis; acknowledging successes and failures; Project management templates and other resources; Managing without authority; Areas of further study. 	6

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- Jack Meredith & Samuel Mantel, Project Management: A managerial approach, Wiley India, 7thEd.
- 2. A Guide to the Project Management Body of Knowledge (PMBOK[®] Guide), 5th Ed, Project Management Institute PA, USA
- 3. Gido Clements, Project Management, Cengage Learning.
- 4. Gopalan, Project Management, , Wiley India
- 5. Dennis Lock, Project Management, Gower Publishing England, 9 th Ed.

Course Code	Course Name	Credits
ILO8022	Finance Management	03

Objectives:

- 1. Overview of Indian financial system, instruments and market
- 2. Basic concepts of value of money, returns and risks, corporate finance, working capital and its management
- 3. Knowledge about sources of finance, capital structure, dividend policy

Outcomes: Learner will be able to...

- 1. Understand Indian finance system and corporate finance
- 2. Take investment, finance as well as dividend decisions

Module	Detailed Contents	Hrs
	Overview of Indian Financial System: Characteristics, Components and Functions of Financial System.	
	Financial Instruments: Meaning, Characteristics and Classification of Basic Financial	
01	Instruments — Equity Shares, Preference Shares, Bonds-Debentures, Certificates of Deposit, and Treasury Bills.	06
	Financial Markets: Meaning, Characteristics and Classification of Financial Markets — Capital Market, Money Market and Foreign Currency Market	
	Financial Institutions: Meaning, Characteristics and Classification of Financial Institutions — Commercial Banks, Investment-Merchant Banks and Stock Exchanges	
	Concepts of Returns and Risks: Measurement of Historical Returns and Expected	
	Returns of a Single Security and a Two-security Portfolio; Measurement of Historical	
02	Risk and Expected Risk of a Single Security and a Two-security Portiolio.	06
	Due: Present Value of a Lump Sum, Ordinary Annuity, and Annuity Due: Continuous	
	Compounding and Continuous Discounting.	
	Overview of Corporate Finance: Objectives of Corporate Finance; Functions of	
03	Corporate Finance—Investment Decision, Financing Decision, and Dividend Decision.	09
	Financial Ratio Analysis: Overview of Financial Statements-Balance Sheet, Profit	
	and Loss Account, and Cash Flow Statement; Purpose of Financial Ratio Analysis;	

	Liquidity Ratios; Efficiency or Activity Ratios; Profitability Ratios; Capital Structure	
	Ratios; Stock Market Ratios; Limitations of Ratio Analysis.	
	Capital Budgeting: Meaning and Importance of Capital Budgeting; Inputs for Capital	
	Budgeting Decisions; Investment Appraisal Criterion—Accounting Rate of Return,	
	Payback Period, Discounted Payback Period, Net Present Value(NPV), Profitability Index Internal Pate of Pature (IPP), and Madified Internal Pate of Pature (MIPP)	
04	Index, Internal Rate of Return (IRR), and Modified Internal Rate of Return (MIRR)	10
	Working Capital Management: Concepts of Meaning Working Capital; Importance of	10
	Working Capital Management; Factors Affecting an Entity's Working Capital Needs;	
	Estimation of Working Capital Requirements; Management of Inventories;	
	Management of Receivables; and Management of Cash and Marketable Securities.	
	Sources of Finance: Long Term Sources-Equity, Debt, and Hybrids; Mezzanine	
	Finance; Sources of Short Term Finance-Trade Credit, Bank Finance, Commercial	
	Paper; Project Finance.	
05	Canital Structure: Factors Affecting an Entity's Canital Structure: Overview of	05
	Capital Structure Theories and Approaches— Net Income Approach. Net Operating	
	Income Approach; Traditional Approach, and Modigliani-Miller Approach. Relation	
	between Capital Structure and Corporate Value; Concept of Optimal Capital Structure	
	Dividend Balian Maning and Importance of Dividend Balian Easters Affecting on	
06	Entity's Dividend Decision: Overview of Dividend Policy Theories and Approaches	03
50	Gordon's Approach, Walter's Approach, and Modigliani-Miller Approach	00

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. Fundamentals of Financial Management, 13th Edition (2015) by Eugene F. Brigham and Joel F. Houston; Publisher: Cengage Publications, New Delhi.
- Analysis for Financial Management, 10th Edition (2013) by Robert C. Higgins; Publishers: McGraw Hill Education, New Delhi.
 Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education,
- Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education, New Delhi.
- 4. Financial Management, 11th Edition (2015) by I. M. Pandey; Publisher: S. Chand (G/L) & Company Limited, New Delhi.

Course Code	Course Name	Credits
ILO8023	Enterpreneurship Development and Management	03

Objectives:

- 1. To acquaint with entrepreneurship and management of business
- 2. Understand Indian environment for entrepreneurship
- 3. Idea of EDP, MSME

Outcomes: Learner will be able to...

- 1. Understand the concept of business plan and ownerships
- 2. Interpret key regulations and legal aspects of entrepreneurship in India
- 3. Understand government policies for entrepreneurs

Module	Detailed Contents	Hrs
01	Overview Of Entrepreneurship: Definitions, Roles and Functions/Values of Entrepreneurship, History of Entrepreneurship Development, Role of Entrepreneurship in the National Economy, Functions of an Entrepreneur, Entrepreneurship and Forms of Business Ownership	04
	Role of Money and Capital Markets in Entrepreneurial Development: Contribution of Government Agencies in Sourcing information for Entrepreneurship	
02	 Business Plans And Importance Of Capital To Entrepreneurship: Preliminary and Marketing Plans, Management and Personnel, Start-up Costs and Financing as well as Projected Financial Statements, Legal Section, Insurance, Suppliers and Risks, Assumptions and Conclusion, Capital and its Importance to the Entrepreneur Entrepreneurship And Business Development: Starting a New Business, Buying an Existing Business, New Product Development, Business Growth and the Entrepreneur Law and its Relevance to Business Operations 	09
03	Women's Entrepreneurship Development, Social entrepreneurship-role and need, EDP cell, role of sustainability and sustainable development for SMEs, case studies, exercises	05
04	Indian Environment for Entrepreneurship: key regulations and legal aspects, MSMED Act 2006 and its implications, schemes and policies of the Ministry of MSME, role and responsibilities of various government organisations, departments, banks etc., Role of State governments in terms of infrastructure developments and support etc.,	08

	Public private partnerships, National Skill development Mission, Credit Guarantee	
	Fund, PMEGP, discussions, group exercises etc	
05	Effective Management of Business: Issues and problems faced by micro and small enterprises and effective management of M and S enterprises (risk management, credit availability, technology innovation, supply chain management, linkage with large industries), exercises, e-Marketing	08
06	Achieving Success In The Small Business: Stages of the small business life cycle, four types of firm-level growth strategies, Options – harvesting or closing small business Critical Success factors of small business	05

Assessment: Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. Poornima Charantimath, Entrepreneurship development- Small Business Enterprise, Pearson
- 2. Education Robert D Hisrich, Michael P Peters, Dean A Shapherd, Entrepreneurship, latest edition, The McGrawHill Company
- 3. Dr TN Chhabra, Entrepreneurship Development, Sun India Publications, New Delhi
- 4. Dr CN Prasad, Small and Medium Enterprises in Global Perspective, New century Publications, New Delhi
- 5. Vasant Desai, Entrepreneurial development and management, Himalaya Publishing House
- 6. Maddhurima Lall, Shikah Sahai, Entrepreneurship, Excel Books
- 7. Rashmi Bansal, STAY hungry STAY foolish, CIIE, IIM Ahmedabad
- 8. Law and Practice relating to Micro, Small and Medium enterprises, Taxmann Publication Ltd.
- 9. Kurakto, Entrepreneurship- Principles and Practices, Thomson Publication
- 10. Laghu Udyog Samachar
- 11. www.msme.gov.in
- 12. www.dcmesme.gov.in
- 13. www.msmetraining.gov.in

Course Code	Course Name	Credits
ILO8024	Human Resource Management	03

Objectives:

- 1. To introduce the students with basic concepts, techniques and practices of the human resource management.
- 2. To provide opportunity of learning Human resource management (HRM) processes, related with the functions, and challenges in the emerging perspective of today's organizations.
- 3. To familiarize the students about the latest developments, trends & different aspects of HRM.
- 4. To acquaint the student with the importance of inter-personal & inter-group behavioral skills in an organizational setting required for future stable engineers, leaders and managers.

Outcomes: Learner will be able to...

- 1. Understand the concepts, aspects, techniques and practices of the human resource management.
- 2. Understand the Human resource management (HRM) processes, functions, changes and challenges in today's emerging organizational perspective.
- 3. Gain knowledge about the latest developments and trends in HRM.
- 4. Apply the knowledge of behavioral skills learnt and integrate it with in inter personal and intergroup environment emerging as future stable engineers and managers.

Module	Detailed Contents	Hrs
01	 Introduction to HR Human Resource Management- Concept, Scope and Importance, Interdisciplinary Approach Relationship with other Sciences, Competencies of HR Manager, HRM functions. Human resource development (HRD): changing role of HRM – Human resource Planning, Technological change, Restructuring and rightsizing, Empowerment, TQM, Managing ethical issues. 	5
02	 Organizational Behavior (OB) Introduction to OB Origin, Nature and Scope of Organizational Behavior, Relevance to Organizational Effectiveness and Contemporary issues Personality: Meaning and Determinants of Personality, Personality development, Personality Types, Assessment of Personality Traits for Increasing Self Awareness 	7
	• Perception: Attitude and Value, Effect of perception on Individual Decision-	

		making, Attitude and Behavior.	
		• Motivation: Theories of Motivation and their Applications for Behavioral Change (Maslow, Herzberg, McGregor);	
		• Group Behavior and Group Dynamics: Work groups formal and informal groups and stages of group development. Team Effectiveness: High performing teams, Team Roles, cross functional and self-directed team.	
		• Case study	
		Organizational Structure & Design	
	03	 Structure, size, technology, Environment of organization; Organizational Roles & conflicts: Concept of roles; role dynamics; role conflicts and stress. 	6
	05	• Leadership: Concepts and skills of leadership, Leadership and managerial roles, Leadership styles and contemporary issues in leadership.	0
		• Power and Politics: Sources and uses of power; Politics at workplace, Tactics and strategies.	
		Human resource Planning	
	04	• Recruitment and Selection process, Job-enrichment, Empowerment - Job- Satisfaction, employee morale.	5
		• Performance Appraisal Systems: Traditional & modern methods, Performance Counseling, Career Planning.	
		Training & Development: Identification of Training Needs, Training Methods	
		Emerging Trends in HR	
05	05	• Organizational development; Business Process Re-engineering (BPR), BPR as a tool for organizational development , managing processes & transformation in HR. Organizational Change, Culture, Environment	6
		• Cross Cultural Leadership and Decision Making: Cross Cultural Communication and diversity at work, Causes of diversity, managing diversity with special reference to handicapped, women and ageing people, intra company cultural difference in employee motivation.	
ľ		HR & MIS	
06		Need, purpose, objective and role of information system in HR, Applications in HRD in various industries (e.g. manufacturing R&D, Public Transport, Hospitals, Hotels and service industries	10
	06	Strategic HRM	10
		Role of Strategic HRM in the modern business world, Concept of Strategy, Strategic Management Process, Approaches to Strategic Decision Making; Strategic Intent – Corporate Mission, Vision, Objectives and Goals	
1			
Labor Laws & Industrial Relations			
---	--		
Evolution of IR, IR issues in organizations, Overview of Labor Laws in India; Industrial Disputes Act, Trade Unions Act, Shops and Establishments Act			

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. Stephen Robbins, Organizational Behavior, 16th Ed, 2013
- 2. V S P Rao, Human Resource Management, 3rd Ed, 2010, Excel publishing
- 3. Aswathapa, Human resource management: Text & cases, 6th edition, 2011
- 4. C. B. Mamoria and S V Gankar, Dynamics of Industrial Relations in India, 15th Ed, 2015, Himalaya Publishing, 15thedition, 2015
- 5. P. Subba Rao, Essentials of Human Resource management and Industrial relations, 5th Ed, 2013, Himalaya Publishing
- 6. Laurie Mullins, Management & Organizational Behavior, Latest Ed, 2016, Pearson Publications

Course Code	Course Name	Credits
ILO8025	Professional Ethics and Corporat Social Responsibility (CSR)	03

Objectives:

- 1. To understand professional ethics in business
- 2. To recognized corporate social responsibility

Outcomes: Learner will be able to...

- 1. Understand rights and duties of business
- 2. Distinguish different aspects of corporate social responsibility
- 3. Demonstrate professional ethics
- 4. Understand legal aspects of corporate social responsibility

Module	Detailed Contents	Hrs
	Professional Ethics and Business: The Nature of Business Ethics; Ethical Issues in	
01	Business; Moral Responsibility and Blame; Utilitarianism: Weighing Social Costs and	04
	Benefits; Rights and Duties of Business	
	Professional Ethics in the Marketplace: Perfect Competition; Monopoly Competition;	
	Oligopolistic Competition; Oligopolies and Public Policy	
02		08
	Professional Ethics and the Environment: Dimensions of Pollution and Resource	
	Depletion; Ethics of Pollution Control; Ethics of Conserving Depletable Resources	
	Professional Ethics of Consumer Protection: Markets and Consumer Protection;	
	Contract View of Business Firm's Duties to Consumers; Due Care Theory; Advertising	
03	Ethics; Consumer Privacy	06
05		00
	Professional Ethics of Job Discrimination: Nature of Job Discrimination; Extent of	
	Discrimination; Reservation of Jobs.	
	Introduction to Corporate Social Responsibility: Potential Business Benefits-Triple	
	bottom line, Human resources, Risk management, Supplier relations; Criticisms and	
04	concerns—Nature of business; Motives; Misdirection.	05
	Trainstant of Corporate Social Responsibility in India	
	real real of the social responsionity in mula	
05	Corporate Social Responsibility: Articulation of Gandhian Trusteeship	08

	Corporate Social Responsibility and Small and Medium Enterprises (SMEs) in India,	
	Corporate Social Responsibility and Public-Private Partnership (PPP) in India	
	Corporate Social Responsibility in Globalizing India: Corporate Social	
06	Responsibility Voluntary Guidelines, 2009 issued by the Ministry of Corporate Affairs,	08
	Government of India, Legal Aspects of Corporate Social Responsibility-Companies	
	Act, 2013.	

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. Business Ethics: Texts and Cases from the Indian Perspective (2013) by Ananda Das Gupta; Publisher: Springer.
- 2. Corporate Social Responsibility: Readings and Cases in a Global Context (2007) by Andrew Crane, Dirk Matten, Laura Spence; Publisher: Routledge.
- 3. Business Ethics: Concepts and Cases, 7th Edition (2011) by Manuel G. Velasquez; Publisher: Pearson, New Delhi.
- 4. Corporate Social Responsibility in India (2015) by BidyutChakrabarty, Routledge, New Delhi.

Course Code	Course Name	Credits
ILO8026	Research Methodology	03

Objectives:

- 1. To understand Research and Research Process
- 2. To acquaint students with identifying problems for research and develop research strategies
- 3. To familiarize students with the techniques of data collection, analysis of data and interpretation

Outcomes: Learner will be able to...

- 1. Prepare a preliminary research design for projects in their subject matter areas
- 2. Accurately collect, analyze and report data
- 3. Present complex data or situations clearly
- 4. Review and analyze research findings

Module	Detailed Contents	Hrs
	 Introduction and Basic Research Concepts 1.1 Research – Definition: Concept of Construct, Postulate, Proposition, Thesis, 	
	Hypothesis, Law, Principle.Research methods vs Methodology	
01	1.2 Need of Research in Business and Social Sciences1.3 Objectives of Research	09
	1.4 Issues and Problems in Research	
	1.5 Characteristics of Research:Systematic, Valid, Verifiable, Empirical and Critical	
	Types of Research	
	2.1. Basic Research	
	2.2. Applied Research	
02	2.3. Descriptive Research	07
	2.4. Analytical Research	
	2.5. Empirical Research	
	2.6 Qualitative and Quantitative Approaches	

	Research Design and Sample Design	
03	3.1 Research Design – Meaning, Types and Significance	07
	3.2 Sample Design – Meaning and Significance Essentials of a good sampling Stages in	
	Sample Design Sampling methods/techniques Sampling Errors	
	Research Methodology	
	4.1 Meaning of Research Methodology	
	4.2 . Stages in Scientific Research Process:	
	a. Identification and Selection of Research Problem	
	b. Formulation of Research Problem	
	c. Review of Literature	
04	d. Formulation of Hypothesis	08
	e. Formulation of research Design	
	f. Sample Design	
	g. Data Collection	
	h. Data Analysis	
	i. Hypothesis testing and Interpretation of Data	
	j. Preparation of Research Report	
	Formulating Research Problem	
05	5.1 Considerations: Relevance, Interest, Data Availability, Choice of data, Analysis of	04
	data, Generalization and Interpretation of analysis	
	Outcome of Research	
	6.1 Preparation of the report on conclusion reached	
06	6.2 Validity Testing & Ethical Issues	04
	6.3 Suggestions and Recommendation	

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or at least 6 assignment on complete syllabus or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS Publishers Distributors.
- 2. Kothari, C.R., 1985, Research Methodology-Methods and Techniques, New Delhi, Wiley Eastern Limited.
- Kumar, Ranjit, 2005, Research Methodology-A Step-by-Step Guide for Beginners, (2nded), Singapore, Pearson Education

Course Code	Course Name	Credits
ILO8027	IPR and Patenting	03

Objectives:

- 1. To understand intellectual property rights protection system
- 2. To promote the knowledge of Intellectual Property Laws of India as well as International treaty procedures
- 3. To get acquaintance with Patent search and patent filing procedure and applications

Outcomes: Learner will be able to...

- 1. understand Intellectual Property assets
- 2. assist individuals and organizations in capacity building
- 3. work for development, promotion, protection, compliance, and enforcement of Intellectual Property and Patenting

Module	Detailed Contents	Hr
01	 Introduction to Intellectual Property Rights (IPR): Meaning of IPR, Different category of IPR instruments - Patents, Trademarks, Copyrights, Industrial Designs, Plant variety protection, Geographical indications, Transfer of technology etc. Importance of IPR in Modern Global Economic Environment: Theories of IPR, Philosophical aspects of IPR laws, Need for IPR, IPR as an instrument of development 	05
02	 Enforcement of Intellectual Property Rights: Introduction, Magnitude of problem, Factors that create and sustain counterfeiting/piracy, International agreements, International organizations (e.g. WIPO, WTO) active in IPR enforcement Indian Scenario of IPR:Introduction, History of IPR in India, Overview of IP laws in India, Indian IPR, Administrative Machinery, Major international treaties signed by India, Procedure for submitting patent and Enforcement of IPR at national level etc. 	07
03	Emerging Issues in IPR: Challenges for IP in digital economy, e-commerce, human genome, biodiversity and traditional knowledge etc.	05
04	Basics of Patents: Definition of Patents, Conditions of patentability, Patentable and non-patentable inventions, Types of patent applications (e.g. Patent of addition etc), Process Patent and Product Patent, Precautions while patenting, Patent specification Patent claims, Disclosures and non-disclosures, Patent rights and infringement, Method	07

	of getting a patent	
05	Patent Rules: Indian patent act, European scenario, US scenario, Australia scenario, Japan scenario, Chinese scenario, Multilateral treaties where India is a member (TRIPS agreement, Paris convention etc.)	08
06	 Procedure for Filing a Patent (National and International): Legislation and Salient Features, Patent Search, Drafting and Filing Patent Applications, Processing of patent, Patent Litigation, Patent Publicationetc, Time frame and cost, Patent Licensing, Patent Infringement Patent databases: Important websites, Searching international databases 	07

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or at least 6 assignments on complete syllabus or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCE BOOKS:

- 1. Rajkumar S. Adukia, 2007, A Handbook on Laws Relating to Intellectual Property Rights in India, The Institute of Chartered Accountants of India
- 2. Keayla B K, Patent system and related issues at a glance, Published by National Working Group on Patent Laws
- 3. T Sengupta, 2011, Intellectual Property Law in India, Kluwer Law International
- 4. Tzen Wong and Graham Dutfield, 2010, Intellectual Property and Human Development: Current Trends and Future Scenario, Cambridge University Press
- Cornish, William Rodolph & Llewelyn, David. 2010, Intellectual Property: Patents, Copyrights, Trade Marks and Allied Right, 7th Edition, Sweet & Maxwell
- Lous Harns, 2012, The enforcement of Intellactual Property Rights: A Case Book, 3rd Edition, WIPO
- 7. Prabhuddha Ganguli, 2012, Intellectual Property Rights, 1st Edition, TMH
- R Radha Krishnan & S Balasubramanian, 2012, Intellectual Property Rights, 1st Edition, Excel Books

- 9. M Ashok Kumar and mohd Iqbal Ali, 2-11, Intellectual Property Rights, 2nd Edition, Serial Publications
- 10. Kompal Bansal and Praishit Bansal, 2012, Fundamentals of IPR for Engineers, 1st Edition, BS Publications
- 11. Entrepreneurship Development and IPR Unit, BITS Pilani, 2007, A Manual on Intellectual Property Rights,
- 12. Mathew Y Maa, 2009, Fundamentals of Patenting and Licensing for Scientists and Engineers, World Scientific Publishing Company
- 13. N S Rathore, S M Mathur, Priti Mathur, Anshul Rathi, IPR: Drafting, Interpretation of Patent Specifications and Claims, New India Publishing Agency
- 14. Vivien Irish, 2005, Intellectual Property Rights for Engineers, IET
- 15. Howard B Rockman, 2004, Intellectual Property Law for Engineers and scientists, Wiley-IEEE Press

Course Code	Course Name	Credits
ILO8028	Digital Business Management	03

Objectives:

- 1. To familiarize with digital business concept
- 2. To acquaint with E-commerce
- 3. To give insights into E-business and its strategies

Outcomes: The learner will be able to

- Identify drivers of digital business
 Illustrate various approaches and techniques for E-business and management
- 3. Prepare E-business plan

Module	Detailed content	Hours
1	 Introduction to Digital Business- Introduction, Background and current status, E-market places, structures, mechanisms, economics and impacts Difference between physical economy and digital economy, Drivers of digital business- Big Data & Analytics, Mobile, Cloud Computing, Social media, BYOD, and Internet of Things(digitally intelligent machines/services) Opportunities and Challenges in Digital Business, 	09
2	 Overview of E-Commerce E-Commerce- Meaning, Retailing in e-commerce-products and services, consumer behavior, market research and advertisement B2B-E-commerce-selling and buying in private e-markets, public B2B exchanges and support services, e-supply chains, Collaborative Commerce, Intra business EC and Corporate portals Other E-C models and applications, innovative EC System-From E-government and learning to C2C, mobile commerce and pervasive computing EC Strategy and Implementation-EC strategy and global EC, Economics and Justification of EC, Using Affiliate marketing to promote your e-commerce business, Launching a successful online business and EC project, Legal, Ethics and Societal impacts of EC 	06

3	Digital Business Support services: ERP as e –business backbone, knowledge Tope Apps, Information and referral system Application Development: Building Digital business Applications and Infrastructure	06
4	Managing E-Business-Managing Knowledge, Management skills for e-business, Managing Risks in e –business Security Threats to e-business -Security Overview, Electronic Commerce Threats, Encryption, Cryptography, Public Key and Private Key Cryptography, Digital Signatures, Digital Certificates, Security Protocols over Public Networks: HTTP, SSL, Firewall as Security Control, Public Key Infrastructure (PKI) for Security, Prominent Cryptographic Applications	06
5	 E-Business Strategy-E-business Strategic formulation- Analysis of Company's Internal and external environment, Selection of strategy, E-business strategy into Action, challenges and E-Transition (Process of Digital Transformation) 	04
6	Materializing e-business: From Idea to Realization -Business plan preparation Case Studies and presentations	08

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or at least 6 assignment on complete syllabus or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

References:

- 1. A textbook on E-commerce, Er Arunrajan Mishra, Dr W K Sarwade, Neha Publishers & Distributors, 2011
- 2. E-commerce from vision to fulfilment, Elias M. Awad, PHI-Restricted, 2002
- 3. Digital Business and E-Commerce Management, 6th Ed, Dave Chaffey, Pearson, August 2014
- 4. Introduction to E-business-Management and Strategy, Colin Combe, ELSVIER, 2006
- 5. Digital Business Concepts and Strategy, Eloise Coupey, 2nd Edition, Pearson
- 6. Trend and Challenges in Digital Business Innovation, VinocenzoMorabito, Springer
- 7. Digital Business Discourse Erika Darics, April 2015, Palgrave Macmillan
- 8. E-Governance-Challenges and Opportunities in : Proceedings in 2nd International Conference theory and practice of Electronic Governance
- 9. Perspectives the Digital Enterprise –A framework for Transformation, TCS consulting journal Vol.5
- 10. Measuring Digital Economy-A new perspective -DOI:<u>10.1787/9789264221796-en</u>OECD Publishing

Course Code	Course Name	Credits
ILO8029	Environmental Management	03

Objectives:

- 1. Understand and identify environmental issues relevant to India and global concerns
- 2. Learn concepts of ecology
- 3. Familiarise environment related legislations

Outcomes: Learner will be able to...

- 1. Understand the concept of environmental management
- 2. Understand ecosystem and interdependence, food chain etc.
- 3. Understand and interpret environment related legislations

Module	Detailed Contents	Hrs
01	Introduction and Definition of Environment: Significance of Environment Management for contemporary managers, Career opportunities. Environmental issues relevant to India, Sustainable Development, The Energy scenario.	10
02	Global Environmental concerns : Global Warming, Acid Rain, Ozone Depletion, Hazardous Wastes, Endangered life-species, Loss of Biodiversity, Industrial/Man- made disasters, Atomic/Biomedical hazards, etc.	06
03	Concepts of Ecology: Ecosystems and interdependence between living organisms, habitats, limiting factors, carrying capacity, food chain, etc.	05
04	Scope of Environment Management, Role & functions of Government as a planning and regulating agency. Environment Quality Management and Corporate Environmental Responsibility	10
05	Total Quality Environmental Management, ISO-14000, EMS certification.	05
06	General overview of major legislations like Environment Protection Act, Air (P & CP) Act, Water (P & CP) Act, Wildlife Protection Act, Forest Act, Factories Act, etc.	03

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. Environmental Management: Principles and Practice, C J Barrow, Routledge Publishers London, 1999
- 2. A Handbook of Environmental Management Edited by Jon C. Lovett and David G. Ockwell, Edward Elgar Publishing
- 3. Environmental Management, T V Ramachandra and Vijay Kulkarni, TERI Press
- 4. Indian Standard Environmental Management Systems Requirements With Guidance For Use, Bureau Of Indian Standards, February 2005
- 5. Environmental Management: An Indian Perspective, S N Chary and Vinod Vyasulu, Maclillan India, 2000
- 6. Introduction to Environmental Management, Mary K Theodore and Louise Theodore, CRC Press
- 7. Environment and Ecology, Majid Hussain, 3rd Ed. Access Publishing.2015

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELXL 801	Internet of Things Laboratory	-	2		-	01		01	

Subject	Subject Name				Examinatio	n Scheme					
Code			TI	heory Marks		Term	Practical	Oral	Total		
		Internal assessment End Sem.				Work					
		Test 1	Test 1 Test Ave. Of								
		2 Test 1 and									
				Test 2							
ELXL 801	Internet of	-	-	-	-	25		25	50		
	Things										
	Laboratory										

Course Objectives:

Lab session includes **seven experiments plus one presentation on case study.** The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Suggested Experiments:

(Programming using C, Embedded C, Pyhton is to be encouraged)

- 1. Minimum two Experiments using any hardware platform (Arduino/Raspberry Pi/BeagleBone/Galileo) for data handling and storage.
- 2. Minimum three experiments using any hardware platform (Arduino/Raspberry Pi/BeagleBone/Galileo) for interfacing various sensors and communicating data using Internet using various Protocols.
- 3. Minimum two experiments using any hardware platform (Arduino/Raspberry Pi/BeagleBone/Galileo) and wireless communication protocol (802.11 and 802.14.5 IEEE standard)
- 4. Minimum one experiment using Cloud Storage.

Suggested topics for Case Study:

Faculty members can suggest topics pertaining above syllabus and ask students to submit complete report covering design issues, hardware and software details and applications.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELXL 802	Analog and Mixed VLSI Design	-	2		-	01		01	

Subject	Subject Name				Examinatio	n Scheme					
Code			T	heory Marks		Term	Practical	Oral	Total		
		Internal assessment End Sem.			Work						
		Test 1	Test 1 Test Ave. Of								
			2	Test 1 and							
				Test 2							
ELXL 802	Analog and	-	-	-	-	25		25	50		
	Mixed VLSI										
	Design										

Course Objectives:

Lab session includes **seven experiments plus one presentation on case study.** The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Suggested Experiments:

Use of Online Tools to study analog VLSI circuits

- 2. Analysis of MOSFETs for analog performance
- 3. Design and simulate various types of current mirror circuits
- 4. Design and simulate various common source amplifier circuits
- 5. Design and simulate various types of single stage amplifiers
- 6. Design and simulate differential amplifier
- 7. Design and simulate operational tran-sconductance amplifier
- 8. Design and simulate switch capacitor circuits
- 9. Design and simulate various types of oscillators
- 10. Design and simulate mixed mode circuit
- 11. Generate layout for the simple and cascode current mirror
- 12. Generate layout for common source amplifier
- 13. Generate layout for the differential amplifier

14. Generate layout for the Oscillator

15. Generate layout for Phase Detector

Suggested topics for Case Study:

Faculty members can suggest topics pertaining above syllabus and ask students to submit proper report covering the latest advances in the field of Mixed VLSI Design.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELXDLO	Advanced	-	2		-	01		01	
8041	Power								
	Electronics								
	Lab.								

Subject	Subject Name		Examination Scheme							
Code			T	heory Marks		Term	Practical	Oral	Total	
		Inte	rnal as	sessment	End Sem.	Work				
		Test 1	Test	Ave. Of	Exam					
			2 Test 1 and							
				Test 2						
ELXDLO	Advanced	-	-	-	-	25		25	50	
8041	Power									
	Electronics									
	Lab.									

Course Objectives:

Lab session includes **seven experiments plus one presentation on case study.** The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Suggested Experiments:

- 1. Single Phase Full Controlled Bridge Rectifier.
- 2. Speed control of Separately excited DC motor using Armature Voltage Control
- 3. Speed control of 3-phase Induction Motor using V/F control.
- 4. Simulation of 3-phase fully controlled Bridge rectifier with R and RL load.
- 5. Simulation of 1-phase fully controlled Bridge rectifier and study of various parameters.
- 6. Simulation of 1-phase Inverter and study of various Performance parameters.
- 7. Simulation of SVM Inverter.
- 8. Simulation of Closed loop dc-dc converter
- 9. Study High Frequency Induction heating & Dielectric heating.

10. Study of operation and control of solid state relays.

Suggested topics for Case Study:

Faculty members can suggest topics pertaining above syllabus and ask students to submit complete report covering design issues, hardware and software details and applications.

Subject Code	Subject Name	Teach	ing Scheme	e (Hrs.)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total	
ELXDLO	MEMS	-	2		-	01		01	
8042	Technology								
	Lab.								

Subject	Subject Name		Examination Scheme								
Code			T	heory Marks		Term	Practical	Oral	Total		
		Internal assessment End Sem.			End Sem.	Work					
		Test 1 Test Ave. Of			Exam						
		2 Test 1 and									
				Test 2							
ELXDLO	MEMS	-	-	-	-	25		25	50		
8042	Technology										
	Lab.										

Course Objectives:

Lab session includes **seven experiments plus one presentation on case study.** The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Suggested Experiments:

- 1. Design electro-statically actuated cantilever
- 2. Design bimorph cantilever which act as pressure sensor.
- 3. Dynamic analysis of Beam
- 4. Find the tip deflection of the cantilever with different types of load
- 5. Find the tip deflection of the cantilever in sweep analysis
- 6. Model and simulate Electro-mechanical actuator. Do dc and transient analysis

7. Design the geometry of MEMS and find performance characteristics such as resonant frequency, deflection per voltage or temperature

- 8. Simulate the harvested electrical power from mechanical vibrations using piezoelectric cantilever beam
- 9. Model and simulate of accelerometer
- 10. Case study of MEMS based device

Suggested topics for Case Study:

Faculty members can suggest topics pertaining above syllabus and ask students to submit complete report covering fabrication issues, materials, characterization and applications of the MEMS devices.

Course		Te	eaching So	cheme		Credits Assigned							
Code	Course Name	Theory	Practic	al Tutoria l	¹ Theory	TW/Practica l	Tutorial	Total					
ELXDL O8043	Virtual Instrumentation Laboratory		02		04			04					
			Examination Scheme										
Course	Course Name		Th	eory Marks	T								
Code		Interna	l Assessm	ent (IA)	End Semeste	er Work	Practical	Total					
		Test I	Test II	Average	Exam								
ELXDL O8043	Virtual Instrumentatio n					25	25	50					
	Laboratory												

Term Work :-

At least 6 experiments covering entire syllabus of ELXDLO8043 (Virtual Instrumentation) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. One presentation on a case study based on the topic in Virtual Instrumentation need to be submitted. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced

Suggested List of Experiments :-

- 1. Verification of arithmetic operations
- 2. Verification of Boolean Expressions / half-adder & full-adder
- 3. Implementation of array functions
- 4. Program to convert Celsius into Fahrenheit & vice-versa
- 5. Program for implementing seven segment display
- 6. Program for calculating body mass index (BMI) using cluster

- 7. Program to control temperature using thermistor / RTD & DAQ
- 8. Program to control liquid flow using DAQ
- 9. Program to control liquid level using DAQ
- 10. Program to control pressure using DAQ
- 11. Program for DC motor speed control using PID toolbox

R2016 University	of Mumbai B.	E. Electronics	Engineering]

Course		Te	Teaching Scheme				Credits Assigned			
Code	Course Name	Theory	Practica	al Tutoria	¹ Theory	TW/Practica l	Tutorial	Total		
ELXDL O8044	Digital Image Processing		02		04			04		
		Examination Scheme								
Course	Course Name		Th	eory Marks			0.14			
Code		Interna	l Assessm	ent (IA)	End Semeste	er Vork	Oral & Practical	Total		
		Test I	Test II	Average	Exam					
ELXDL O8044	Digital Image Processing					25	25	50		

Term Work :-

At least 7 experiments covering entire syllabus of ELXDLO8044 (Digital Image Processing) should be set to have well predefined inference and conclusion. The experiments should be student centric and attempt should be made to make experiments more meaningful, interesting. Simulation experiments are also encouraged. Experiment must be graded from time to time. One presentation on a case study based on the topic in Digital Image Processing need to be submitted. The grades should be converted into marks as per the Credit and Grading System manual and should be added and averaged. The grading and term work assessment should be done based on this scheme. The final certification and acceptance of term work ensures satisfactory performance of laboratory work and minimum passing marks in term work. Practical and Oral exam will be based on the entire syllabus. The Term work assessment can be carried out based on the different tools and the rubrics decided by the concerned faculty members and need to be conveyed to the students well in advanced.

Subject Code	Subject Name	Teaching Scheme (Hrs.)			Credits Assigned			
		Theory	Practical	Tutorial	Theory	TW/Practical	Tutorial	Total
ELXL704	Project I	-	06		-	03		09
ELXL803	Project II		12			06		

Objectives:

- 1. To acquaint with the process of undertaking literature survey/industrial visit and identifying the problem
- 2. To familiarize the process of problem solving in a group
- 3. To acquaint with the process of applying basic engineering fundamental in the domain of practical applications
- 4. To inculcate the process of research Outcomes

Outcome:

Learner will be able to:

- 1. Do literature survey/industrial visit and identify the problem
- 2. Apply basic engineering fundamental in the domain of practical applications
- 3. Cultivate the habit of working in a team
- 4. Attempt a problem solution in a right approach
- 5. Correlate the theoretical and experimental/simulations results and draw the proper inferences
- 6. Prepare report as per the standard guidelines.

Students should do literature survey/visit industry/analyse current trends and identify the problem for Project and finalize in consultation with Guide/Supervisor Students should use multiple literatures and understand the problem. Students should attempt solution to the problem by experimental/simulation methods. The solution is to be validated with proper justification and the report needs to be compiled in standard format.

Guidelines for Assessment of Project I

Project I should be assessed based on following points

- a) Quality of problem selected
- b) Clarity of Problem definition and Feasibility of problem solution
- c) Relevance to the specialization
- d) Clarity of objective and scope
- e) Breadth and depth of literature survey

Project I should be assessed through a presentation by the student project group to a panel of Internal examiners appointed by the Head of the Department/Institute of respective Programme.

Guidelines for Assessment of Project II

Project II should be assessed based on following points

- a) Quality of problem selected
- b) Clarity of Problem definition and Feasibility of problem solution
- c) Relevance to the specialization / Industrial trends
- d) Clarity of objective and scope
- e) Quality of work attempted
- f) Validation of results
- g) Quality of Written and Oral Presentation

Project Report has to be prepared strictly as per University of Mumbai report writing guidelines. Project II should be assessed through a presentation by the student project group to a panel of Internal and External Examiner approved by the University of Mumbai Students should be motivated to publish a paper in Conferences/students competitions based on the work

AC 14/07/2016 Item No. 4.22

From Co-ordinator's Desk:-

To meet the challenge of ensuring excellence in engineering education, the issue of quality needs to be addressed, debated taken forward in a systematic manner. Accreditation is the principal means of quality assurance in higher education. The major emphasis of accreditation process is to measure the outcomes of the program that is being accredited. In line with this Faculty of Technology of University of Mumbai has taken a lead in incorporating philosophy of outcome based education in the process of curriculum development.

Faculty of Technology, University of Mumbai, in one of its meeting unanimously resolved that, each Board of Studies shall prepare some Program Educational Objectives (PEO's) give freedom to affiliated Institutes to add few (PEO's) course objectives course outcomes to be clearly defined for each course, so that all faculty members in affiliated institutes understand the depth approach of course to be taught, which will enhance learner's learning process. It was also resolved that, maximum senior faculty from colleges experts from industry to be involved while revising the curriculum. I am happy to state that, each Board of studies has adhered to the resolutions passed by Faculty of Technology, developed curriculum accordingly. In addition to outcome based education, **Choice Based Credit and Grading System** is also introduced to ensure quality of engineering education.

Choice Based Credit and Grading System enables a much-required shift in focus from teacher-centric to learner-centric education since the workload estimated is based on the investment of time in learning not in teaching. It also focuses on continuous evaluation which will enhance the quality of education. University of Mumbai has taken a lead in implementing the system through its affiliated Institutes. Faculty of Technology has devised a transparent credit assignment policy adopted ten points scale to grade learner's performance. Credit grading based system was implemented for Master of Engineering from the academic year 2016-2017.

Dr. S. K. Ukarande Co-ordinator, Faculty of Technology, Member - Academic Council University of Mumbai, Mumbai

Preamble:

Quality of education is one of the major factors to contribute to the growth of a nation and subsequently quality of education is largely decided by the syllabi of the Educational Programme and its proper implementation. In order to make M.E (Electronics) Engineering programme of University of Mumbai rich in quality, revision of the syllabi is being undertaken as per the guidelines of University of Mumbai. While deciding the core courses and department level optional courses, inputs from various stake holders were taken into account. The exposure to the latest technology and tools used all over the world is given by properly selecting courses and their hierarchy in the programme curriculum. Thus this syllabus is made to groom the postgraduate students to be made competent in all respect with best possible efforts put in by the experts in framing detailed contents of individual courses.

I, as Chairman, Board of Studies in Electronics Engineering University of Mumbai, am happy to state here that, heads of the department and senior faculty from various institutes took timely and valuable initiative to frame the Program Educational Objectives as listed below as per National Board of Accreditation (NBA) guidelines.

1. To provide students with a strong foundation in the mathematical, scientific and engineering fundamentals necessary to formulate, solve and analyze engineering problems and to prepare them for graduate studies.

2. To prepare students to demonstrate an ability to identify, formulate and solve electronics engineering problems.

3. To prepare students to demonstrate ability to design electrical and electronics systems and conduct experiments, analyze and interpret data.

4. To prepare students to demonstrate for successful career in industry to meet needs of Indian and multinational companies.

5. To develop the ability among students to synthesize data and technical concepts from applications to product design.

6. To provide opportunity for students to work as part of teams on multidisciplinary projects.

7. To promote awareness among students for the life-long learning and to introduce them to professional ethics and codes of professional practice.

These are the suggested and expected main objectives and individual affiliated institute may add further in the list. In addition to Program Educational Objectives, for each course of undergraduate program, objectives and expected outcomes from learner's point of view are also included in the curriculum to support the philosophy of outcome based education. I strongly believe that small step taken in right direction will definitely help in providing quality education to the stake holders.

Finally, I express my sincere gratitude to all experts who contributed to make curriculum competent at par with latest technological development in the field of electronics engineering.

Dr. Sudhakar S Mande Chairman BOS Electronics Engineering

Programme Structure for Master of Engineering– Electronics Engineering (With effect from Academic Year 2016 – 2017)

Course Code	Course Name	Т (eaching Sche Contact Hou	eme rs)	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELXC1011	Advanced Digital Communication	04			04			04
ELXC1012	Mixed Signal VLSI Design	04			04			04
ELXC1013	Power Electronics System Design	04			04			04
ELXDLO101X	Department Level Optional Course-I	04			04			04
ILO101X	Institute Level Optional Course -I	03			03			03
ELXL1011	Laboratory-I Advanced Digital Communication		02			01		01
ELXL1012	Laboratory-II Mixed Signal VLSI Design		02			01		01
T	OTAL	19	04		19	02		21

SEMESTER – I

		EXAMINATION SCHEME – SEMESTER I							
		THEORY				MAX	XIMUM MA	RKS	
Course Code	Course Name	IN ASS	TERN SESSMI (IA)	AL ENT	End Semester Examination (Marks)	Exam Duration (Hours)			
		Test I	Test II	Avg.			Term Work	Practical / Oral	Total
ELXC1011	Advanced Digital Communication	20	20	20	80	03			100
ELXC1012	Mixed Signal VLSI Design	20	20	20	80	03			100
ELXC1013	Power Electronics System Design	20	20	20	80	03			100
ELXDLO101X	Department Level Optional Course-I	20	20	20	80	03			100
ILO101X	Institute Level Optional Course-I	20	20	20	80	03			100
ELEXL1011	Laboratory-I Advanced Digital Communication						25	25	50
ELEXL1012	Laboratory-II Mixed Signal VLSI Design						25	25	50
TC	DTAL	100	100	100	400		50	50	600

SEMESTER – II

Course Code	Course Name	Te (C	aching Scho Contact Hou	eme Irs)	Credits Assigned			
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELXC2021	Digital Design with Reconfigurable Architecture	04			04			04
ELXC2022	Real Time System Design	04			04			04
ELXC2023	Advanced Signal Processing	04			04			04
ELXDLO202X	Department Level Optional Course II	04			04			04
ILO202X	Institute Level Optional Course-II	03			03			03
ELXL2021	Laboratory-III Digital Design with Reconfigurable Architecture		02			01		01
ELXL2022	Laboratory-IV Advanced Signal Processing (ASP)		02			01		01
T	OTAL	19 04 19 02		21				

				EXA	MINATION SC	EMESTER II			
				Т	HEORY				
Course Code	Course Name	INTERNAL ASSESSMENT (IA)		End Semester	Exam Duration	MAXIMUM MARKS			
		Test I	Test II	Avg.	Examination (Marks)	(Hours)	Term Work	Practical / Oral	Total
ELXC2021	Digital Design with Reconfigurable Architecture	20	20	20	80	03			100
ELXC2022	Real Time System Design	20	20	20	80	03			100
ELXC2023	Advanced Signal Processing	20	20	20	80	03			100
ELXDLO202X	Department Level Optional Course-II	20	20	20	80	03			100
ILO202X	Institute Level Optional Course -II	20	20	20	80	03			100
ELXL2021	Laboratory-III Digital Design with Reconfigurable Architecture						25	25	50
ELXL2022	Laboratory-IV Advanced Signal Processing (ASP)						25	25	50
T	OTAL	100	100	100	400		50	50	600

Course	Department Level Optional	Course Code	Department Level Optional
Code	Course-I (ELXDLO101X)		Course-II (EXCDLO202X)
ELXDLO1011	Advanced Processor Architecture-I	ELXDLO2021	Advanced Processor
			Architecture-II
ELXDLO1012	Network & System Administration	ELXDLO2022	Wireless & Mobile Networking
ELXDLO1013	Microelectronics Devices	ELXDLO2023	Nanoelectronics
ELXDLO1014	Modeling & Simulations	ELXDLO2024	Mechatronics
ELXDLO1015	Advanced Digital Image Processing	ELXDLO2025	Virtual Instrumentation

Course	Institute Level Optional Course-I	Course	Institute Level Optional Course-II
Code	(ILO101X)	Code	(ILO202X)
ILO1011	Product Lifecycle Management	ILO2021	Project Management
ILO1012	Reliability Engineering	ILO2022	Finance Management
ILO1013	Management Information System	ILO2023	Entrepreneurship Development and
			Management
ILO1014	Design of Experiments	ILO2024	Human Resource Management
ILO1015	Operation Research	ILO2025	Professional Ethics and CSR
ILO1016	Cyber Security and Laws	ILO2026	Research Methodology
ILO1017	Disaster Management and Mitigation	ILO2027	IPR and Patenting
	Measures		
ILO1018	Energy Audit and Management	ILO2028	Digital Business Management
		ILO2029	Environmental Management

SEMESTER III

Course	Course Nome	Course Name Teaching		(Hours)	Credits Assigned			
Code	Course Maine	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELXS3031	Seminar		06			03		03
ELXD3031	Dissertation-I		24			12		12
TOTAL			30			15		15

			Examination Scheme									
Course			Theo	ory Marks								
Course Code	Course Name	Internal Assessment			End	Term	Drastical	01	T (1)			
		Test	Test	A	Sem	Work	Practical	Urai	Total			
		1	2	Average	Exam							
ELXS3031	Seminar					50		50	100			
ELXD3031	Dissertation-I					100			100			
				T	TOTAL	150		50	200			

SEMESTER IV

Course		Teachin	g Scheme (Hours)	Credits Assigned			
Code	Course Name	Theory	Practica l	Tutorial	Theory	Practical	Tutorial	Total
ELXD4041	Dissertation-II		30			15		15
TOTAL			30			15		15

Course Code	Course Name	Examination Scheme								
			Theor	y Marks						
		Inter	nal Asse	ssment	End	Term	Practical	Oral	Total	
		Test 1 Test 2	Test 2	Average	Sem	Work		Orai		
			1651 2		Exam					
ELXD4041	Dissertation-II					100		100	200	
				r	TOTAL	100		100	200	

Note:

- In case of Seminar (ELXS3031), 01 Hour / week / student should be considered for the calculation of load of a teacher
- In case of Dissertation I (ELXD3032) and Dissertation II (ETXD4041), 02 Hour / week / student should be considered for the calculation of load of a teacher

Course Code	Course Name	Teach	ing Scheme	(Hours)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELXC1011	Advanced Digital Communication	04			04			04	

Course Code	Course Name	Examination Scheme									
			The	ory Marks							
		Internal Assessment			End	Term	Dractical	Oral	Total		
		Test	Test	Average	Sem	Work	Tactical	Orai	Total		
		1	2	Average	Exam						
ELXC1011	Advanced Digital Communication	20	20	20	80				100		

Course Pre-requisites:-

1. Digital Communication

Course Objectives:-

- 1. To understand the concepts of random processes in communication systems.
- 2. To comprehend the error correcting codes and fundamental limits of their performance
- 3. To analyze different equalization techniques for channels with ISI and AWGN
- 4. To understand signal diversity and explore MIMO systems
- 5. To study multichannel and multicarrier systems

Course Outcomes:-

- 1. Ability to understand the nature of random processes and its statistical characteristics.
- 2. Ability to appreciate the importance of error correcting codes-Turbo and LDPC
- 3. Ability to analyze various equalizers and their use in communication systems.
- 4. Ability to identify the drawbacks of multipath systems and methods to overcome them.
- 5. Ability to understand and analyze multichannel and multicarrier systems.

Module	Unit	Topics	Hrs.
N0.	No.	Pariow of Dandom Processos	06
	11	Definition of random processes	UO
	1.1	Specifying random process	
01	1.2	Examples of discrete time and continuous time random processes	
	1.5	Stationary random process	
	1.4	Time Averages of random processes	
	1.5	Freer Control Coding	12
	2.1	Concept of Convolutional codes and its representation, transfer	14
	2.1	function. Convolutional Interleaving, Decoding of Convolutional	
		codes (Viterbi decoding) and their performance in communication	
02	22	systems	
02	2.2	Turbo codes:-concepts log-likelihood algebra product code	
	23	Encoding with recursive systematic codes. Trallis decoding	
	2.3	Low-density Parity-check codes:-construction_minimum distance of	
		Low-density rainty-eneck codesconstruction, minimum distance of	
		Signaling over Band limited channel	08
	31	Optimum receiver for channels with ISI and AWGN Optimum	00
	J.1	maximum likelihood receiver discrete time model for a channel with	
	32	ISI	
03	5.4	Linear Equalization: Peak distortion criteria mean square error	
05	34	criterion Performance characteristics of MSE equalizer	
	5.4	Decision feedback equalization: Co-efficient optimization	
		performance characteristics of Decision feedback equalizer. Iterative	
		Equalization and Decoding-Turbo equalization	
		Adaptive Equalizer	06
	4.1	Adaptive linear Equalizer -Zero forcing algorithm LMS algorithm	
04		convergence properties of LMS algorithm	
•••	4.2	Self recovering (Blind) equalization based on maximum likelihood	
		criterion.	
		Signaling over fading channels	10
	5.1	Channel model for Time variant multipath channels, classification of	10
		multipath channels. Signal design for fading multipath channels.	
	5.2	Performance Improvement through signal diversity. Rake receiver and	
05		multipath diversity, recombining techniques.	
	5.3	MIMO systems- Basic considerations. Channel Models for Multiple	
		antenna system, signal transmission through slow fading frequency	
		nonselective and frequency selective MIMO Channels.	
		Multichannel and Multicarrier system	10
	6.1	Multiple access techniques: TDMA, FDMA, CDMA, Multichannel	
		Digital Communication in AWGN Channels.	
	6.2	Multicarrier Communication: Single carrier versus Multicarrier	
04		modulation, Capacity of Non-ideal linear filter channel, OFDM	
VO		modulation and demodulation in an OFDM system, Spectral	
		Characteristics of Multicarrier signals, Bit and Power allocation in	
		Multicarrier modulation, Peak to Average ratio in multicarrier	
		modulation, Channel coding considerations in Multicarrier	
		modulation. An Overview of multi-carrier CDMA.	
		TOTAL	52

<u>Reference Books</u> :-

- 1. Alberto-Leon Garcia, "Probability and Random Processes for Electrical Engineering", Pearson Education
- 2. Simon Haykin, "Digital Communication Systems", Wiley 2014
- 3. Bernard Sklar, "Digital Communications: Fundamentals & Applications", Pearson Education 2nd Ed.
- 4. Dr. Kamilo Feher, "Wireless Digital Communication", Prentice Hall Publication
- 5. John G Proakis, Masoud Salehi, "Communication Systems Engineering", Pearson Education, 2nd Ed.
- 6. John Proakis & Masoud Salehi, "Digital Communication", McGraw-Hill Education, 5th Ed
- 7. Simon Haykin "Adaptive Filter Theory", Prentice Hall Publication 4th Ed.

Research Publications :-

1. Andrew J. Viterbi, "Convolutional codes and their performance in communication systems", IEEE Transactions on Communications Technology, October 1971, Pages 751 - 772

2. Y. Sato, "A Method of Self-Recovering Equalization for Multilevel Amplitude-Modulation Systems", IEEE Transactions on Communications June 1975,vol:23,Issue: 6, Page(s): 679 - 682

3. Seung Hee Han & Jae Hong Lee, "An Overview of Peak-To-Average Power Ratio Reduction Techniques for Multi Carrier Transmission", IEEE Wireless Communications Journal, April 2005, Pages : 56-65, vol:12 Issue:2

4. R. Prasad & S. Hara, "An overview of multi-carrier CDMA", Proc. of IEEE 4th International Symposium on Spread Spectrum Techniques and Applications Publication Year: 1996, Page(s):107-114, vol.1

Internal Assessment (IA) :-

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

End Semester Examination:-

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub-questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

Course	Course Name	Teachi	ng Scheme	(Hours)	Credits Assigned				
Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELXC1012	Mixed Signal VLSI Design	04			04			04	

Course Code	Course Name	Examination Scheme									
			The	ory Marks	5						
		Internal Assessment			End	Term	Drastical	Oral	Total		
		Tes	Test	Averag	Sem	Work	Fractical	Orai	10181		
		t 1	2	e	Exam						
ELXC1012	Mixed Signal VLSI Design	20	20	20	80				100		

Course Pre-requisites:-

1. VLSI Design

2. IC Technology

3. CMOS VLSI Design

Course Objectives:-

1. To make students understand & appreciate analytical approach for design of analog VLSI Design

2. To make students ready for design of coexistence of analog and digital circuit and the system level issues

Course Outcomes:-

- 1. Tackle with the system level issues for mixed VLSI design
- 2. Explain working of certain basic analog building blocks
- 3. Design different data converters
- 4. Implement and comment on performance of Memory devices.
- 5. State the significance of PLL in mixed VLSI design.
| Module | Unit
No | Topics | Hrs. | | | | | | |
|--------|--|---|------|--|--|--|--|--|--|
| 110. | Analog | g and discrete-time signal processing | 06 | | | | | | |
| 01 | Mixed
Issues | d-Signal Layout Issues, <i>Floor-planning</i> , <i>Power Supply and Grounding</i>
<i>Guard Rings</i> | | | | | | | |
| | Analo | g integrated continuous-time and discrete-time filters | 10 | | | | | | |
| 02 | MOSF
Charge
integra | ETs as switches, Speed considerations, Precision Considerations,
e injection cancellation, Unity gain buffer, Non-inverting amplifier and
ator, Analog multipliers, Loop Filters, Switched Capacitor filter | | | | | | | |
| | Specia | l-purpose CMOS circuits. | 08 | | | | | | |
| 03 | Schmi | tt trigger, Multi-vibrator Circuits, Ring oscillators, VCO, Voltage | | | | | | | |
| | Genera | ators | | | | | | | |
| 04 | Data C
Basics
conver
High-s
High-r | Charge injection cancellation, Unity gain buffer, Non-inverting amplifier and Integrator, Analog multipliers, Loop Filters, Switched Capacitor filter Special-purpose CMOS circuits. Gehmitt trigger, Multi-vibrator Circuits, Ring oscillators, VCO , Voltage Generators Data Converters Data Converters | | | | | | | |
| | Memo | ry | 08 | | | | | | |
| 05 | ROM, and op | EPROM, F-N model, RAM Memory structure Array Design, sensing beration of memory cell. | | | | | | | |
| | Phase | Lock Loop | 10 | | | | | | |
| 06 | Mixed
Simple
loops a | -Signal layout Interconnects Phase locked loops Delay locked loops.
e PLL, Charge pump PLL, Non ideal effects in PLL, Delay locked
and applications of PLL in integrated circuits | | | | | | | |
| | | TOTAL | 52 | | | | | | |

<u>Reference Books</u>:-

- 1. CMOS mixed-signal circuit design by R. Jacob Baker, Wiley India, IEEE press, reprint 2008.
- 2. Design of analog CMOS integrated circuits by Behzad Razavi, McGraw-Hill, 2003.
- 3. CMOS circuit design, layout and simulation by R. Jacob Baker, Revised second edition, IEEE press, 2008.
- 4. CMOS Integrated ADCs and DACs by Rudy V. dePlassche, Springer, Indian edition, 2005.
- 5. Electronic Filter Design Handbook by Arthur B. Williams, McGraw-Hill, 1981.
- 6. Design of analog filters by R. Schauman, Prentice-Hall 1990 (or newer additions)
- 7. An introduction to mixed-signal IC test and measurement by M. Burns et al., Oxford university press, first Indian edition, 2008.

Research Publication:-

- 1. Lanny L. Lewyn, Trond Ytterda, Carsten Wulff, and Kenneth Martin, "Analog circuit Design in Nanoscale Technologies", Proceedings of the IEEE Vol.97, No.10, October 2009
- 2. Chi-Sheng Lin, Bin-Da Liu, "A new successive approximation architecture for low-power low-cost CMOS A/D converter," IEEE Journal of Solid State Circuits, Vol.30, Issue. 1, Pages:54-62, 2003.

Internal Assessment (IA) :-

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

End Semester Examination:-

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub-questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

Course	Course Nome	Teachi	ng Scheme	(Hours)	Credits Assigned				
Code	Course maine	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELXC1013	Power Electronics System Design	04			04			04	

Course Code	Course Name	Examination Scheme									
			The	ory Marks	5						
		Internal Assessment			End	Term	Ducation	Oral	Total		
		Tes	Test	Averag	Sem	Work	Tactical	Urai	Total		
		t 1	2	e	Exam						
	Power										
ELXC1013	Electronics	20	20	20	80				100		
	System Design										

1. Single phase & three phase AC fundamentals

- 2. Basic understanding of power electronic devices like SCR, IGBT etc. & commutation techniques
- 3. Basic working of controlled DC-DC, DC-AC & AC-DC converters, PWM technique for control

Course Objectives:-

1. To make students understand & appreciate analytical approach for design of power electronic systems 2. To make students ready for research & development oriented jobs in academia & industry by introducing recent research advancements in power electronic converters & their applications in distributed generation & smart grids

Course Outcomes:-

- 1. Ability to apply mathematical modeling concepts to power electronic systems
- 2. Ability to understand unique nature of computer simulations of power electronic systems
- 3. Ability to understand new topologies of DC-AC inverters like multi-level & 4-leg inverters

4. Ability to gain in-depth knowledge of AC voltage controllers

5. Ability to understand various issues involved in parallel operation of inverters as part of the distributed generation system

6. Be aware of vital role played by power electronic converters in distributed generation & smart grids

Module No. Detailed contents	Hours
 Analysis of Power Devices Power transistor, Power MOSFET, SCR, IGBT, design of driver circuits for SC BJT, IGBT, MOSFET, selection criteria for switching devices, EMI-EMC issue protection circuits: Anti saturation protection for BJT and IGBT, overlo protection, thermal protection. 	R, os, 06 ad
 Simulation of Power Electronic Converters and Systems Brief overview of solving stiff differential equations using ODE solvers li Euler's method, Heun's Method, Trapeziodal rule, introduction to circuit orient simulators like SPICE, MATLAB, SCILAB, comparison of these simulato study of transformations from 3-phase to stationary reference frame (Clar transform) and rotating reference frame, decoupled closed-loop control strategie for converters based on these transformations. 	ce ed rs, 10 ce es
 Modeling and Control of Power Electronic Systems Concept of zero-order hold (ZOH), first-order hold (FOH) and second-order hol (SOH) elements, energy factor, models of AC-DC, DC-AC, AC-AC and DC-E converters as simple ZOH, FOH and SOH, PI control for AC-DC converters, control for DC-AC converters and AC-AC (AC-DC-AC) converters, PID control for DC-DC converters, closed-loop stability analysis. 	ld C PI ol
 Inverters (DC-AC Converters) Multilevel inverters topologies and switching, introduction to 4-leg inverter (basic working without SVM techniques), neutral point clamped inverter, study inverter topologies: online, line-interactive, stand-by, methods of paral operation of inverters: droop, and master & slave control. 	rs of 10 el
 AC Voltage Controllers On-Off control, phase control, single-phase full wave analysis with R & R-L loa input power factor, three-phase full wave controller with R-load, static switches 	d, 08
 Grid Interface of Renewable Energy Sources Inverter interfacing control strategies for transferring wind and solar energy grid, instantaneous power theory, reactive power control, synchronization wigrid using phase-locked loop, concept of distributed generation systemicrogrids, smart grids. 	to th 10 n, L 52

<u>Reference Books</u> :-

1. N. Mohan, T. M. Undeland, W. P. Robbins, Power Electronics: Converters Application and Design, John Wiley & Sons, USA, 2003.

2. M. H. Rashid, Power Electronics: Circuits, Devices, and Applications, Pearson Education India, 2009.

3. R. W. Erickson, D. Maksimovic, Fundamentals of Power Electronics, Springer USA, 2001.

4. F. L. Luo, H. Ye, M. H. Rashid, Digital Power Electronics & Applications, Elsevier Academic Press, USA, 2005.

5. H. Akagi, E. H. Watanabe, M. Aredes, Instantaneous Power Theory and Applications to Power Conditioning, IEEE Press/John Wiley & Sons Ltd., USA, 2007.

6. Q.-C. Zhong, T. Hornik, Control of Power Inverters in Renewable Energy And Smart Grid Integration, IEEE Press/John Wiley & Sons, Ltd., USA, 2013.

<u>Research Publications</u> :-

1. J.-S. Lai & F. Z. Peng, Multilevel converters – A new breed of power converters, IEEE Transactions on Industry Applications, vol. 32, no. 3, pp. 509-517, May/Jun 1996.

2. T. Kawabata and S. Higashino, Parallel operation of voltage source inverters, IEEE Transactions on Industry Applications, vol. 24, no. 2, pp. 281–287, 1988.

3. W. C. Lee, T. K. Lee, S. H. Lee, K. H. Kim, D. S. Hyun, and I. Y. Suh, A master and slave control strategy for parallel operation of three-phase UPS systems with different ratings, Proceedings of the 19th Annual IEEE Applied Power Electronics Conference & Exposition, (Anaheim, California, USA), pp. 456–462, Feb. 2004.

Internal Assessment (IA) :-

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

End Semester Examination:-

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.

3. Question No.1 will be compulsory and based on entire syllabus wherein sub-questions of 2 to 5 marks will be asked.

4. Remaining questions will be selected from all the modules.

Course Code	Course Name	Teachi	ng Scheme	(Hours)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
	Advanced								
ELXDLO1011	Processor	04			04			04	
	Architectures-I								

	Course Name	Examination Scheme									
Course Code			The	ory Marks							
		Internal Assessment			End	Term	Deve effect	Oral	T-4-1		
		Test	Test	Average	Sem	Work	Tactical	Ulai	Total		
		1	2	Average	Exam						
	Advanced										
ELXDLO1011	Processor	20	20	20	80				100		
	Architectures-I										

1. Computer Organization

Course Objectives:-

- 1. To outline the various factors that contributes to processor performance.
- 2. To understand the hardware & software enhancements that lead to improved computing experience.
- 3. To elaborate on the importance of parallelism in processor systems.
- 4. To analyze issues that present constraints to increasing processor power.

Course Outcomes:-

- 1. Explain the protection mechanism employed in advanced processors.
- 2. Describe various enhancements in advanced processor architectures leading to high performance
- 3. Analyze the complexities in pipeline design
- 4. Describe issues dealing with parallelism in computing systems.

Module	Unit	Topics	Hrs
No.	No.		
		Performance Metrics	04
	1.1	Processor performance equation	
1	1.2	Energy and power within a microprocessor and power-reduction techniques	1
	1.3	Designing for increasing performance of a Computer	1
	1.4	Trends in Cost, Dependability, Benchmarking	1
		X86 Protection Mechanism	12
	2.1	Protected mode register set	
	2.2	Segmentation in protected mode, Segment Descriptors	1
2	2.3	Virtual memory management, Address Translation	1
	2.4	Privilege levels, Protection rules, Gate descriptors	
	2.5	Multi-tasking and task switching mechanisms	
	2.6	Paging	1
		Architectural Enhancements	12
	3.1	CISC and RISC processors	
	3.2	Pipelined processors	1
3	3.3	Superscalar Architectures	1
	3.4	Out-of-Order Execution	1
	3.5	VLIW processors	1
	3.6	Super-pipelining, Branch Prediction logic	1
		Case Study on the Pentium processor	08
	4.1	Architecture	
1	4.2	Register Organization	
4	4.3	Instruction pairing, Split-line access mechanism	
	4.4	Branch Prediction logic	
	4.5	On-chip cache organizations, Write-Once policy, Cache coherence	
		Pipelining concepts	08
	5.1	Pipeline performance	
5	5.2	Arithmetic pipelines	
3	5.3	Hazards, Detection logic and minimization techniques	
	5.4	Dynamic Instruction scheduling	
	5.5	Pipeline scheduling theory	
		Parallelism	08
	6.1	Amdahl's law	
	6.2	Instruction-level parallelism (ILP), Thread-level parallelism (TLP)	
6	6.3	Symmetric multi-processors(SMP),Multi-threading	
	6.4	Multi-processor Organizations, Multi-core processors (CMP)	
	6.5	Clusters, Non-Uniform memory access (NUMA)	
	6.6	Vector Computation, Graphic processing units(GPU)	
		TOTAL	52

<u>Reference Books</u> :-

1. J.L. Hennessy, and D.A. Patterson, Computer Architecture: A quantitative approach, Fifth Edition, Morgan Kaufman Publication, 2012.

2. Walter A. Triebel, The 80386DX Microprocessor, Prentice-Hall International Editions.

3. William Stallings, Computer Organization and Architecture: Designing for Performance, Eighth Edition, Pearson Publications.

4. Don Anderson, Tom Shanley, Pentium Processor System Architecture, Second Edition, Mindshare Inc.

5. M.R. Bhujade, Parallel Computing, Second Edition, New-Age International.

6. Daniel Tabak, Advanced Microprocessors, Second Edition, McGraw-Hill Publications.

<u>Research Publications</u> :-

1. M.D. Hill, Michael Marty, "Amdahl's Law in the Multi-core era", Computer, Volume 41, Issue 7, 2008, ISSN :0018-9162, Pgs. 33-38.

2. J.L. Hennessy, "VLSI Processor Architecture", IEEE Transactions on Computers_, Volume C-33, Issue:12 Pgs. 1221-1246.

Internal Assessment (IA) :-

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

End Semester Examination:-

1. Question paper will comprise of 6 questions, each of 20 marks.

2. Total 4 questions need to be solved.

3. Question No.1 will be compulsory and based on entire syllabus wherein sub-questions of 2 to 5 marks will be asked.

4. Remaining questions will be selected from all the modules.

Course Code	Course Name	Teachi	ing Scheme	(Hours)	Credits Assigned				
Course Coue		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
	Network &								
	System	04			04			04	
ELADLO1012	Administration								

Subject Code	Subject Name	Examination Scheme									
			The	ory Marks							
		Internal Assessment			End	Term	Deresteral	Oral	Total		
		Test	Test	Average	Sem	Work	Tactical	Utal	10141		
		1	2	Average	Exam						
	Network &										
ELXDLO1012	System	20	20	20	80				100		
	Administration										

1. Computer Communication Networks

Course Objectives:-

- 1. To create ability for designing, administrating small & medium networks
- 2. To create ability for automating system administration tasks

Course Outcomes:-

- 1. Ability to manage users, files & software on computer system installation consisting of clients & servers
- 2. Ability to install & configure networking services for intranet & internet domains
- 3. Ability to administer network security policies in LINUX
- 4. Ability to design small & medium size IT infrastructure organization
- 5. Ability to develop scripting mechanisms & automated scripts to perform complicated administration tasks
- 6. Ability to deploy systems to manage large amounts of data for wide variety of users

Module No.	Topics	Hrs.					
	Foundation Elements						
1	Hardware components, capacity planning, namespaces, data integrity,	08					
	policies and ethics						
	Service Provisioning						
2	Domain name services, collaborative communication, backups and	10					
	restoration, remote access, remote deployment, web services						
	Network Security						
3	Organizational profile, SMA segment, large company e-commerce	08					
	web sites, large universities, case studies based on above						
	System Scripting						
4	Shell scripting, BASH, CSH, python scripting for system	12					
	administration, PHP scripting for web interfaces						
	Data Centers						
5	Locational preferences, security concerns in physical and remote	08					
	access, power and temperature concerns, tools, supplies and SLA						
6	Case Studies	06					
0	Case studies based on capacity planning and data centers						
	TOTAL	52					

<u>Reference Books</u> :-

- The practice of System and Network Administration (2nd Edition), Thomas A Limoncelli, Christina J Hogan, and Strata R Chalup, Addison Wesley, ISBN 0-321-49266-8
- 2. Unix and Linux System Administration Handbook (4th Edition), Evi Nemeth, Garth Snyder, Trent R Hein, Ben Whaley, Prentice Hall, 2011, ISBN: 10: 0-13-148005-7
- 3. Essential System Administration (3rd Edition), A Frisch, O'Reilly, 2002, ISBN: 10: 0-596-00342-9
- 4. Linux Administration A Beginners Guide, (6th Edition), Wale Sayinka, McGraw Hill, 2012, ISBN: 10:0-07-176758-4
- 5. TCP/IP Network Administration (3rd Edition) C Hunt, O'Reilly, 2002, ISBN: 10: 0-596-00297-1
- 6. Learning Python, 5th Edition Mark Lutz, O'Reilly, ISBN-13: 978-1449355739

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks.

End Semester Examination :-

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.

3. Question No.1 will be compulsory and based on entire syllabus wherein sub-questions of 2 to 5 marks will be asked.

4. Remaining questions will be selected from all the modules.

Course Code	Course Name	Teach	ing Scheme	(Hours)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
	Modeling of								
ELXDLO1013	Microelectronics	04			04			04	
	Devices								

	Course Name	Examination Scheme									
			The	ory Marks							
Course Code		Internal Assessment			End	Term	Dere efferel	Oral	Total		
		Test	Test	Avorago	Sem	Sem Work Exam	Tacucai	Orai	Total		
		1	2	Average	Exam						
	Modeling of										
ELVDI 01013	Microelectronics	20	20	20	80				100		
ELADLO1013	Devices										

1. Electronic devices: Operation and Characteristics

Course Objectives:-

- 1. To learn & apply basic concepts of semiconductor physics relevant to electronic devices
- 2. To analyze & explain operation of semiconductor devices in terms of their physical structure
- 3. To estimate various device parameters & their measurement
- 4. To describe & use the device & circuit models of semiconductor devices of varying level of complexity

Course Outcomes:-

- 1. Ability to apply & explain basic semiconductor concepts applicable to the devices
- 2. Ability to describe the underlying physics & principles of operation of various devices
- 3. Ability to create & apply linear incremental equivalent circuit models for BJT & MOSFET
- 4. Ability to determine parameter values for large signal & incremental linear equivalent circuit models for the p n diadae. BIT & MOSEET based on knowledge of device structure, dimensions & bias conditions

the p-n diodes, BJT & MOSFET based on knowledge of device structure, dimensions & bias conditions

Module	Unit No	Topics	Hrs.
INO.	NO. Bosio	Somiconductor Physics	
		Review of quantum mechanics	
	1.1	Electrons in periodic lattices. Ek diagrams, Quasi-particles in semiconductors	
	1.2	electrons holes and phonons	
1		Boltzmann transport equation and solution in the presence of low electric and	10
	1.3	magnetic fields - mobility and diffusivity	
		Carrier statistics: Continuity equation. Poisson's equation and their solution: High	
	1.4	field effects: velocity saturation, hot carriers and avalanche breakdown	
	Semio	conductor Junction	
	2.1	p-n junction action, Abrupt junction, Linearly graded junction, Static IV	
	2.2	Characteristics of p-n junction, Electrical breakdown in p-n junctions	
2	2.2	Majority corrige diodes	10
	$\frac{2.3}{2.4}$	Schottly, home, and hatere junction hand diagrams and I.V. characteristics	
	2.4	Schottky, homo- and hetero-junction band diagrams and 1-V characteristics	
	2.5	Two terminal and surface states devices based on semiconductor junctions	
	Z.0	ling Bipolar Davice Phonomona	
	3.1	Injection and Transport Model	
3	3.2	Continuity Equation	08
5	33	Transistor Models: Ebers - Moll and Gummel Poon Model	00
	3.4	SPICE modeling, temperature and area effects	
	MOS	FET Modeling	
	4.1	Introduction, Inversion Layer,	
	4.2	Threshold Voltage	
	4.3	Gradual Channel Approximation, MOS Transistor Current	
4	4.4	Temperature, Short channel and Narrow Width Effect	10
4	4.5	Characterization of MOS capacitors: HF and LF CVs	10
	4.6	Models for Enhancement, Depletion Type MOSFET	
	4.7	CMOS Models in SPICE	
	4.8	Quasi-static compact models of MOS transistors;	
	4.9	Measurement of MOS transistor parameters	
	Mode	ling of Hetero Junction Devices	
	5.1	Band gap Engineering	
5	5.2	Band gap Offset at abrupt Hetero-junction	08
	5.3	Modified current continuity equations	
	5.4	Hetero Junction bipolar transistors (HBTs), Si-Ge	
-	Mont	e Carlo Particle Modeling of Semiconductor Devices	
6	6.1	The Monte Carlo method	06
	6.2	Application of Monte Carlo techniques to device modeling	
		TOTAL	52

<u>Reference Books</u> :-

- 1. M. S. Tyagi, "Introduction to Semiconductor Materials and Device", John Wiley & sons, 1991
- 2. Ben G. Streetman & S. K. Bannerjee, "Solid State Electronic Devices" 6th edition, Prentice Hall
- Richard S. Muller & Theodore I. Kummins, "Device Electronics for Integrated Circuits", John Wiley & Sons, 2nd edition (1986)
- 4. A. S. Grove, "Physics & Technology for Semiconductor Devices", McGraw Hill, 3rd edition (2007)
- 5. Donald A. Neamen, "Semiconductor Devices & Physics", McGraw Hill, 3rd edition (2007)
- 6. M. H. Rashid, "SPICE for Circuits & Electronics", Prentice Hall (1995)
- 7. A. Vladimirescu, "The SPICE Book", John Wiley & Sons, New York (1994)

Research Publications :-

1. Christopher M. Snowden, "Semiconductor Device Modeling" Rep. Prog. Phys. Vol. 48, pp. 223-275

2. C. Moglestue, 'Monte Carlo particle modeling of small semiconductor devices' Computer Methods in Applied Mechanics & Engineering Vol. 30 (1982) pp. 173-208; North – Holland Publishing

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks.

End Semester Examination :-

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub-questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

Course Code	Course Name	Teacl	hing Scheme	e (Hrs)	Credits Assigned			
Course Code		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELXDLO1014	Modeling & Simulation	04			04			04

	Course Name	Examination Scheme								
		Theory Marks								
Course Code		Internal Assessment			End	Town				
		Test	Test	Averag	Sem	Work	Practical	Oral	Total	
		1	2	e	Exam	WORK				
ELXDLO1014	Modeling & Simulation	20	20	20	80				100	

- 1. Laplace & Inverse Laplace Transform with their properties
- 2. Z-transform & Inverse Z-transform with their properties
- 3. Fourier & Inverse Fourier Transform with their properties
- 4. Concept of transfer function
- 5. Fundamentals of linear ordinary differential equations (ODEs)

Course Objectives:-

- 1. To present concepts of modeling & simulation applicable to various domains of engineering & science
- 2. To provide theoretical concepts, methods & simulation
- 3. To gain solid foundation & associated experience for constructing, simulating & analyzing models

Course Outcomes:-

- 1. Ability to model deterministic systems and differentiate between nonlinear and linear models
- 2. Ability to understand and appreciate the modeling of distributed parameter systems
- 3. Ability to understand the definition of simulation & how to develop & analyze simulation model
- 4. Ability to numerically simulate ordinary differential equations and deterministic systems
- 5. Ability to correctly design, analyze and interpret the results using simulation

Module	Торіс	Hrs.
	Introduction to Philosophy of Modeling	
1	Concept of system; Classification of Systems: Linear Systems, Time-Varying vs. Time-Invariant Systems, Lumped vs. Distributed Parameter Systems, Continuous- and Discrete-Time Systems, Deterministic vs. Stochastic Systems, Hard and Soft Systems; Analysis of Systems; Large and Complex Applied System Engineering: A Generic Modeling; Necessity of System Modeling; Characteristics of Models; Trade-offs involved in modeling process; model benchmarking and validation; brief introduction to different types of Modeling methods: First principles, data-driven models, static and dynamic modeling, Linear Regression, Least Squares Method.	08
	First Principles Modeling of Deterministic Systems	
2	Lumped parameter modeling using ordinary differential equations; physical understanding of initial conditions and their effects on system response; natural and forced response, transfer functions; stability; dynamic properties using transfer function approach; State space models; Solution of State Equations; Controllability; Observability, examples of systems RLC circuits; Modeling of diodes and transistors; Modeling of power electronics circuits; Mechanical systems: Translational and rotational; electromechanical systems.	10
	Data Driven Modeling of Deterministic Systems	
3	System as a black box; comparison between first principles and data-driven modeling; necessity for data-driven modeling; time-domain identification of linear systems; concept of difference equation and discrete transfer function; sampling time; various excitation signals like impulse, step, ramp, sinusoidal, pseudo-random binary signal, their statistical properties; concept of persistently exciting signals, de-trended data; various methods/structures of system identification: ARX, ARMAX, and output error, least-squares method, model validation, frequency-domain identification using Bode plot, application of these techniques to simple RLC and mechanical systems.	10
	Modeling of Distributed Parameter Systems	
4	Examples of distributed parameter systems: heat conduction, turbulence, diffusion, transport in semiconductors, polymers; concept of infinite-dimensional systems; introduction to linear partial differential equations (PDEs); initial boundary value problem (IBVP); solution using separation of variables method for simple diffusion and other processes with simple geometry; finite difference method for numerical solution of PDEs; concept of multiphysics systems, necessity for multiphysics modeling, examples, introduction to various multiphysics simulation tools.	10
	Simulation of Physical Systems	
5	Introduction; need for simulation; difference between simulation and emulation; Advantages of Simulation; When to Use Simulations; How Simulations Improve Analysis and Decision Making; Applications of Simulation; Numerical Methods for Simulation; The Characteristics of Numerical Methods; Comparison of Different Numerical Methods; Errors during Simulation Numerical Methods, introduction to different type of simulation software.	08
	Verification & Validation of Simulation Models & Optimization	
6	Model building, verification and validation; concept of model benchmarking; Verification of simulation models; Calibration and validation of models; difference between the best model and the feasible model; various optimization techniques used for Simulation and model validation.	06
	TOTAL	52

<u>Reference Books</u> :-

1. D. K. Chaturvedi, Modeling and Simulation of Systems using Matlab / Simulink, CRC Press, USA, 2009.

2. D. G. Luenberger, Introduction to Dynamic Systems: Theory, Models, & Applications, First Edition, John Wiley & Sons, USA, 1979.

3. R. L. Burden and J. D. Faires, Numerical Analysis, 9th Edition, Cengage Learning, 1993.

4. J. Lewis, Modeling Engineering Systems: PC-Based Techniques and Design Tools (Engineering Mentor Series), Surber Press, USA.

5. Y. W. Kwon, Multiphysics and Multiscale Modeling: Techniques & Applications, CRC Press, USA, 1996

6. L. Ljung, System Identification: Theory for the User, Prentice Hall, USA, 1999.

Research Publications :-

1. Report by Argonne National Laboratory (Mathematics & Computer Science Division), USA, Multiphysics Simulations: Challenges and opportunities, 2012.

2. S. Farlow, Partial Differential Equations for Scientists and Engineers, Dover Publications, USA, 1993

3. L. Ljung, Perspectives on system identification, Annual Review in Control (ScienceDirect) Vol. 34, Issue 1, pp. 1-12 (2010)

4. T. Lingefaard, Faces of mathematical modeling, Zentralblatt für Didaktik der Mathematik (ZDM) – Mathematics Education, Vol. 38, Issue 2, pp. 96-112, April 2006.

Internal Assessment (IA) :-

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

End Semester Examination:-

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub-questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

~ ~ .	Course	Teach	ing Scheme	(Hours)	Credits Assigned			
Course Code	Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELXDLO1015	Advanced Digital Image Processing	04			04			04

		Examination Scheme								
		Theory Marks				Tom				
Course Code	Course Name	Internal Assessment			End	Won	Ducation	Oral	Tatal	
		Test	Test		Sem		r Practical	Ural	Total	
		1	2	Average	Exam	K				
	Advanced									
ELXDLO1015	Digital Image	20	20	20	80				100	
	Processing									

1. Digital Image Processing

Course Objectives:-

- 1. To understand the principles of advanced digital image processing
- 2. To understand the concepts of latest image compression standards
- 3. To study advanced techniques of image classification & restoration
- 4. To learn & appreciate image reconstruction & computer tomography (CT)
- 5. To acquire working knowledge in the field of remote sensing & steganography

Course Outcomes:-

- 1. Ability to understand & appreciate latest image compression standards for still & video images
- 2. Ability to gain adequate knowledge of image classification techniques
- 3. Ability to understand working principles of several important applications of digital image processing
- 4. Ability to interpret & analyze information from remote sensed images

Module	Unit	Topics	Hrs.
NO.	NO.	Commenceion Techniques	
	Image	Compression Lechniques	40
1	1.1	Compression based on DCT and wavelet transform	10
	1.2	Description for the business of standards	
	Image		-
2	2.1	Patterns and pattern classes	10
	2.2	Minimum distance classifier	
	2.3	Optimum statistical Bayes classifier for Gaussian pattern classes	
	Image	Restoration	
	3.1	Image degradation models, Noise models	
3	3.2	Noise probability density functions	08
	3.3	Estimation of noise parameters	_
	3.4	Inverse filter and Wiener filter	
	Image	Reconstruction	
	4.1	Image reconstruction from projections	
4	4.2	Principle of computer tomography	10
	4.3	Radon transform and Fourier slice theorem	
	4.4	Reconstruction using parallel beam filtered back propagation	
	Introdu	action to remote sensing, information extraction from remote sensing images	
	5.1	Characteristics of Multispectral Scanner System (MSS)	
5	5.2	Image centered and data centered information extraction	08
5	5.3	Spectral factors in remote sensing	
	5.4	Spectral signatures	
	5.5	Types of remote sensing systems and scanners	
	Applic	ations of Image Processing	
6	6.1	Image Fusion	06
	6.2	Steganography]
		TOTAL	52

Reference Books :-

- 1. Rafael C. Gonzalez & Richard E. Woods, "Digital Image Processing", 3rd Edition, Pearson Education
- 2. Robert Schowengerdt, "Remote sensing modules and methods for Image processing" Elsevier
- 3. Anil K. Jain, "Fundamentals of Digital Image Processing", Prentice-Hall India, 2007
- 4. Milan Sonka, Vaclav Hlavac & Roger Boyle, "Image Processing, Analysis, Machine Vision", 3rd edition, Brooks Cole

Research Publications :-

1. A. J. Roses, W. K. Pratt, G. S. Robinson "Interframe cosine transform image coding" IEEE Transactions on Communications, vol. COM-25, Nov. 1977, pp. 1329-1339.

2. Valdimir S. Petrovic Costas S. Xydeas, Gradient-Based Multiresolution Image Fusion, IEEE Transactions on Image Processing, Vol. 13, No. 2, February 2004, pp. 228-237

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks.

End Semester Examination :-

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub-questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

Course Code	Course Name	Credits
ILO1011	Product Life Cycle Management	03

- 1. To familiarize the students with the need, benefits and components of PLM
- 2. To acquaint students with Product Data Management & PLM strategies
- 3. To give insights into new product development program and guidelines for designing and developing a product
- 4. To familiarize the students with Virtual Product Development

- 1. Gain knowledge about phases of PLM, PLM strategies and methodology for PLM feasibility study and PDM implementation.
- 2. Illustrate various approaches and techniques for designing and developing products.
- 3. Apply product engineering guidelines / thumb rules in designing products for moulding, machining, sheet metal working etc.
- 4. Acquire knowledge in applying virtual product development tools for components, machining and manufacturing plant

Module	Detailed Contents	Hrs
01	Introduction to Product Lifecycle Management (PLM):Product Lifecycle Management (PLM), Need for PLM, Product Lifecycle Phases, Opportunities of Globalization, Pre-PLM Environment, PLM Paradigm, Importance & Benefits of PLM, Widespread Impact of PLM, Focus and Application, A PLM Project, Starting the PLM Initiative, PLM Applications PLM Strategies:Industrial strategies, Strategy elements, its identification, selection and implementation, Developing PLM Vision and PLM Strategy , Change management for PLM	10
02	ProductDesign: Product Design and Development Process, Engineering Design, Organization and Decomposition in Product Design, Typologies of Design Process Models, Reference Model, Product Design in the Context of the Product Development Process, Relation with the Development Process Planning Phase, Relation with the Post design Planning Phase, Methodological Evolution in Product Design, Concurrent Engineering, Characteristic Features of Concurrent Engineering, Concurrent Engineering and Life Cycle Approach, New Product Development (NPD) and Strategies, Product Configuration and Variant Management, The Design for X System, Objective Properties and Design for X Tools, Choice of Design for X Tools and Their Use in the Design Process	09
03	Product Data Management (PDM): Product and Product Data, PDM systems and importance, Components of PDM, Reason for implementing a PDM system, financial justification of PDM, barriers to PDM implementation	05
04	Virtual Product Development Tools: For components, machines, and manufacturing plants, 3D CAD systems and realistic rendering techniques, Digital mock-up, Model building, Model analysis, Modeling and simulations in Product Design, Examples/Case studies	05
05	Integration of Environmental Aspects in Product Design: Sustainable Development, Design for Environment,Need for Life Cycle Environmental Strategies, Useful Life Extension Strategies, End-of-Life Strategies, Introduction	05

	of Environmental Strategies into the Design Process, Life Cycle Environmental					
	Strategies and Considerations for Product Design					
	Life Cycle Assessment and Life Cycle Cost Analysis: Properties, and	05				
	Framework of Life Cycle Assessment, Phases of LCA in ISO Standards, Fields					
06	of Application and Limitations of Life Cycle Assessment, Cost Analysis and the					
	Life Cycle Approach, General Framework for LCCA, Evolution of Models for					
	Product Life Cycle Cost Analysis					

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper.Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. John Stark, "Product Lifecycle Management: Paradigm for 21st Century Product Realisation", Springer-Verlag, 2004. ISBN: 1852338105
- 2. Fabio Giudice, Guido La Rosa, AntoninoRisitano, "Product Design for the environment-A life cycle approach", Taylor & Francis 2006, ISBN: 0849327229
- 3. SaaksvuoriAntti, Immonen Anselmie, "Product Life Cycle Management", Springer, Dreamtech, ISBN: 3540257314
- 4. Michael Grieve, "Product Lifecycle Management: Driving the next generation of lean thinking", TataMcGrawHill,2006,ISBN:0070636265

Course Code	Course Name	Credits
ILO1012	Reliability Engineering	03

- 1. To familiarize the students with various aspects of probability theory
- 2. To acquaint the students with reliability and its concepts
- 3. To introduce the students to methods of estimating the system reliability of simple and complex systems
- 4. To understand the various aspects of Maintainability, Availability and FMEA procedure

- 1. Understand and apply the concept of Probability to engineering problems
- 2. Apply various reliability concepts to calculate different reliability parameters
- 3. Estimate the system reliability of simple and complex systems
- 4. Carry out a Failure Mode Effect and Criticality Analysis

Module	Detailed Contents	Hrs
01	 Probability theory: Probability: Standard definitions and concepts; Conditional Probability, Baye's Theorem. Probability Distributions: Central tendency and Dispersion; Binomial, Normal, Poisson, Weibull, Exponential, relations between them and their significance. Measures of Dispersion: Mean, Median, Mode, Range, Mean Deviation, Standard Deviation, Variance, Skewness and Kurtosis. 	08
02	 Reliability Concepts: Reliability definitions, Importance of Reliability, Quality Assurance and Reliability, Bath Tub Curve. Failure Data Analysis: Hazard rate, failure density, Failure Rate, Mean Time To Failure (MTTF), MTBF, Reliability Functions. Reliability Hazard Models: Constant Failure Rate, Linearly increasing, Time Dependent Failure Rate, Weibull Model. Distribution functions and reliability analysis. 	08
03	System Reliability: System Configurations: Series, parallel, mixed configuration, k out of n structure, Complex systems.	05
04	Reliability Improvement: Redundancy Techniques: Element redundancy, Unit redundancy, Standby redundancies. Markov analysis. System Reliability Analysis – Enumeration method, Cut-set method, Success Path method, Decomposition method.	08
05	Maintainability and Availability: System downtime, Design for Maintainability: Maintenance requirements, Design methods: Fault Isolation and self-diagnostics, Parts standardization and Interchangeability, Modularization and Accessibility, Repair Vs Replacement. Availability – qualitative aspects.	05
06	Failure Mode, Effects and Criticality Analysis: Failure mode effects analysis, severity/criticality analysis, FMECA examples. Fault tree construction, basic symbols, development of functional reliability block diagram, Fault tree analysis and Event tree Analysis	05

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. L.S. Srinath, "Reliability Engineering", Affiliated East-Wast Press (P) Ltd., 1985.
- 2. Charles E. Ebeling, "Reliability and Maintainability Engineering", Tata McGraw Hill.
- 3. B.S. Dhillion, C. Singh, "Engineering Reliability", John Wiley & Sons, 1980.
- 4. P.D.T. Conor, "Practical Reliability Engg.", John Wiley & Sons, 1985.
- 5. K.C. Kapur, L.R. Lamberson, "Reliability in Engineering Design", John Wiley & Sons.
- 6. Murray R. Spiegel, "Probability and Statistics", Tata McGraw-Hill Publishing Co. Ltd.

Course Code	Course Name	Credits
ILO1013	Management Information System	03

- 1. The course is blend of Management and Technical field.
- 2. Discuss the roles played by information technology in today's business and define various technology architectures on which information systems are built
- 3. Define and analyze typical functional information systems and identify how they meet the needs of the firm to deliver efficiency and competitive advantage
- 4. Identify the basic steps in systems development

- 1. Explain how information systems Transform Business
- 2. Identify the impact information systems have on an organization
- 3. Describe IT infrastructure and its components and its current trends
- 4. Understand the principal tools and technologies for accessing information from databases to improve business performance and decision making
- 5. Identify the types of systems used for enterprise-wide knowledge management and how they provide value for businesses

Module	Detailed Contents	Hrs
01	Introduction To Information Systems (IS): Computer Based Information Systems, Impact of IT on organizations, Imporance of IS to Society. Organizational Strategy, Competitive Advantages and IS.	4
02	Data and Knowledge Management: Database Approach, Big Data, Data warehouse and Data Marts, Knowledge Management. Business intelligence (BI): Managers and Decision Making, BI for Data analysis and Presenting Results	7
03	Ethical issues and Privacy: Information Security. Threat to IS, and Security Controls	7
04	Social Computing (SC): Web 2.0 and 3.0, SC in business-shopping, Marketing, Operational and Analytic CRM, E-business and E-commerce – B2B B2C. Mobile commerce.	7
05	Computer Networks Wired and Wireless technology, Pervasive computing, Cloud computing model.	6
06	Information System within Organization: Transaction Processing Systems, Functional Area Information System, ERP and ERP support of Business Process. Acquiring Information Systems and Applications: Various System development life cycle models.	8

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Kelly Rainer, Brad Prince, Management Information Systems, Wiley
- 2. K.C. Laudon and J.P. Laudon, Management Information Systems: Managing the Digital Firm, 10th Ed., Prentice Hall, 2007.
- 3. D. Boddy, A. Boonstra, Managing Information Systems: Strategy and Organization, Prentice Hall, 2008

Course Code	Course Name	Credits
ILO1014	Design of Experiments	03

- 1. To understand the issues and principles of Design of Experiments (DOE)
- 2. To list the guidelines for designing experiments
- 3. To become familiar with methodologies that can be used in conjunction with experimental designs for robustness and optimization

- 1. Plan data collection, to turn data into information and to make decisions that lead to appropriate action
- 2. Apply the methods taught to real life situations
- 3. Plan, analyze, and interpret the results of experiments

Module	Detailed Contents	Hrs
	Introduction	
	1.1 Strategy of Experimentation	
01	1.2 Typical Applications of Experimental Design	06
	1.3 Guidelines for Designing Experiments	
	1.4 Response Surface Methodology	
	Fitting Regression Models	
	2.1 Linear Regression Models	
	2.2 Estimation of the Parameters in Linear Regression Models	
02	2.3 Hypothesis Testing in Multiple Regression	00
02	2.4 Confidence Intervals in Multiple Regression	08
	2.5 Prediction of new response observation	
	2.6 Regression model diagnostics	
	2.7 Testing for lack of fit	
	Two-Level Factorial Designs and Analysis	
	3.1 The 2^2 Design	
	3.2 The 2^3 Design	
02	3.3 The General2 ^k Design	07
03	3.4 A Single Replicate of the 2^k Design	07
	3.5 The Addition of Center Points to the 2^k Design,	
	3.6 Blocking in the 2 ^k Factorial Design	
	3.7 Split-Plot Designs	
	Two-Level Fractional Factorial Designs and Analysis	
	4.1 The One-Half Fraction of the 2 ^k Design	
	4.2 The One-Quarter Fraction of the 2^{k} Design	
04	4.3 The General 2 ^{k-p} Fractional Factorial Design	07
	4.4 Resolution III Designs	
	4.5 Resolution IV and V Designs	
	4.6 Fractional Factorial Split-Plot Designs	
	Conducting Tests	
	5.1 Testing Logistics	
	5.2 Statistical aspects of conducting tests	
05	5.3 Characteristics of good and bad data sets	07
	5.4 Example experiments	
	5.5 Attribute Vs Variable data sets	

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- Raymond H. Mayers, Douglas C. Montgomery, Christine M. Anderson-Cook, Response Surface Methodology: Process and Product Optimization using Designed Experiment, 3rd edition, John Wiley & Sons, New York, 2001
- D.C. Montgomery, Design and Analysis of Experiments, 5th edition, John Wiley & Sons, New York, 2001
- 3. George E P Box, J Stuart Hunter, William G Hunter, Statics for Experimenters: Design, Innovation and Discovery, 2nd Ed. Wiley
- W J Dimond, Peactical Experiment Designs for Engineers and Scintists, John Wiley and Sons Inc. ISBN: 0-471-39054-2
- 5. Design and Analysis of Experiments (Springer text in Statistics), Springer by A.M. Dean, and D. T.Voss
- 6. Phillip J Ross, "Taguchi Technique for Quality Engineering," McGrawHill
- 7. Madhav S Phadke, "Quality Engineering using Robust Design," Prentice Hall

Course Code	Course Name	Credits
ILO1015	Operations Research	03

- 1. Formulate a real-world problem as a mathematical programming model.
- 2. Understand the mathematical tools that are needed to solve optimization problems.
- 3. Use mathematical software to solve the proposed models.

- 1. Understand the theoretical workings of the simplex method, the relationship between a linear program and its dual, including strong duality and complementary slackness.
- 2. Perform sensitivity analysis to determine the direction and magnitude of change of a model's optimal solution as the data change.
- 3. Solve specialized linear programming problems like the transportation and assignment problems, solve network models like the shortest path, minimum spanning tree, and maximum flow problems.
- 4. Understand the applications of integer programming and a queuing model and compute important performance measures

Module	Detailed Contents	Hrs
01	 Introduction to Operations Research: Introduction, , Structure of the Mathematical Model, Limitations of Operations Research Linear Programming: Introduction, Linear Programming Problem, Requirements of LPP, Mathematical Formulation of LPP, Graphical method, Simplex Method Penalty Cost Method or Big M-method, Two Phase Method, Revised simplex method, Duality, Primal – Dual construction, Symmetric and Asymmetric Dual, Weak Duality Theorem, Complimentary Slackness Theorem, Main Duality Theorem, Dual Simplex Method, Sensitivity Analysis Transportation Problem: Formulation, solution, unbalanced Transportation problem. Finding basic feasible solutions – Northwest corner rule, least cost method and Vogel's approximation method. Optimality test: the stepping stone method and MODI method. Assignment Problem: Introduction, Mathematical Formulation of the Problem, Hungarian Method Algorithm, Processing of n Jobs Through Two Machines and m Machines, Graphical Method of Two Jobs m Machines Problem Routing Problem, Travelling Salesman Problem Integer Programming Problem: Introduction, Types of Integer Programming Problems, Gomory's cutting plane Algorithm, Branch and Bound Technique. Introduction to Decomposition algorithms. 	14
02	Queuing models : queuing systems and structures, single server and multi-server models, Poisson input, exponential service, constant rate service, finite and infinite population	05
03	Simulation : Introduction, Methodology of Simulation, Basic Concepts, Simulation Procedure, Application of Simulation Monte-Carlo Method: Introduction, Monte-Carlo Simulation, Applications of Simulation, Advantages of Simulation, Limitations of Simulation	05
04	Dynamic programming . Characteristics of dynamic programming. Dynamic programming approach for Priority Management employment smoothening, capital budgeting, Stage Coach/Shortest Path, cargo loading and Reliability problems.	05

05	Game Theory . Competitive games, rectangular game, saddle point, minimax (maximin) method of optimal strategies, value of the game. Solution of games with saddle points, dominance principle. Rectangular games without saddle point – mixed strategy for 2 X 2 games.	05
06	Inventory Models : Classical EOQ Models, EOQ Model with Price Breaks, EOQ with Shortage, Probabilistic EOQ Model,	05

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Taha, H.A. "Operations Research An Introduction", Prentice Hall, (7th Edition), 2002.
- 2. Ravindran, A, Phillips, D. T and Solberg, J. J. "Operations Research: Principles and Practice", John Willey and Sons, 2nd Edition, 2009.
- 3. Hiller, F. S. and Liebermann, G. J. "Introduction to Operations Research", Tata McGraw Hill, 2002.
- 4. Operations Research, S. D. Sharma, KedarNath Ram Nath-Meerut.
- 5. Operations Research, KantiSwarup, P. K. Gupta and Man Mohan, Sultan Chand & Sons.

Course Code	Course Name	Credits
ILO1016	Cyber Security and Laws	03

- 1. To understand and identify different types cybercrime and cyber law
- 2. To recognized Indian IT Act 2008 and its latest amendments
- 3. To learn various types of security standards compliances

- 1. Understand the concept of cybercrime and its effect on outside world
- 2. Interpret and apply IT law in various legal issues
- 3. Distinguish different aspects of cyber law
- 4. Apply Information Security Standards compliance during software design and development

Module	Detailed Contents	Hrs
	Introduction to Cybercrime: Cybercrime definition and origins of the world,	
01	Cybercrime and information security, Classifications of cybercrime, Cybercrime	4
01	and the	4
	Indian ITA 2000, A global Perspective on cybercrimes.	
	Cyber offenses & Cybercrime: How criminal plan the attacks, Social Engg,	
	Cyber stalking, Cyber café and Cybercrimes, Botnets, Attack vector, Cloud	
	computing, Proliferation of Mobile and Wireless Devices, Trends in Mobility,	
	Credit Card Frauds in	
02	Mobile and Wireless Computing Era, Security Challenges Posed by Mobile	9
02	Devices, Registry Settings for Mobile Devices, AuthenticationService Security,	
	Attacks on Mobile/Cell Phones, Mobile Devices:Security Implications for	
	Organizations, Organizational Measures forHandling Mobile, Devices-Related	
	Security Issues, OrganizationalSecurity Policies and Measures in Mobile	
	Computing Era, Laptops	
	Tools and Methods Used in Cyberline	
03	Phishing, Password Cracking, Keyloggers and Spywares, Virus and Worms,	6
	Steganography, DoS and DDoS Attacks, SQL Injection, Buffer Over Flow,	
	Attacks on Wireless Networks, Phishing, Identity Thett (ID Thett)	
	The Concept of Cyberspace	
	E-Commerce, The Contract Aspects in Cyber Law, The Security Aspect of	
04	The Evidence Aspect in Cyber Law	0
04	, The Evidence Aspect in Cyber Law, The Criminal Aspect in Cyber Law, Clobal Trands in Cyber Law, Lagal Framework for Electronic Date	0
	Global Hends in Cyber Law, Legal Framework for Electronic Data Interchange, Law Poleting to Electronic Penking. The Need for an Indian Cyber	
	Law	
	Law Indian IT Act	
05	Cyber Crime and Criminal Justice · Penalties Adjudication and Appeals Under	6
05	the IT Act 2000 IT Act 2008 and its Amendments	0
	Information Security Standard compliances	
06	SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI.	6

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination.

In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Nina Godbole, Sunit Belapure, Cyber Security, Wiley India, New Delhi
- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, New Delhi.
- 4. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- 5. Nina Godbole, Information Systems Security, Wiley India, New Delhi
- 6. Kennetch J. Knapp, Cyber Security & Global Information Assurance Information Science Publishing.
- 7. William Stallings, Cryptography and Network Security, Pearson Publication
- 8. Websites for more information is available on : The Information Technology ACT, 2008- TIFR : https://www.tifrh.res.in
- 9. Website for more information , A Compliance Primer for IT professional : https://www.sans.org/reading-room/whitepapers/compliance/compliance-primer-professionals-33538

Course Code	Course Name	Credits
ILO1017	Disaster Management and Mitigation Measures	03

- 1. To understand physics and various types of disaster occurring around the world
- 2. To identify extent and damaging capacity of a disaster
- 3. To study and understand the means of losses and methods to overcome /minimize it.
- 4. To understand role of individual and various organization during and after disaster
- 5. To understand application of GIS in the field of disaster management
- 6. To understand the emergency government response structures before, during and after disaster

- 1. Get to know natural as well as manmade disaster and their extent and possible effects on the economy.
- 2. Plan of national importance structures based upon the previous history.
- 3. Get acquainted with government policies, acts and various organizational structure associated with an emergency.
- 4. Get to know the simple do's and don'ts in such extreme events and act accordingly.

Module	Detailed Contents	Hrs
01	Introduction 1.1 Definition of Disaster, hazard, global and Indian scenario, general perspective, importance of study in human life, Direct and indirect effects of disasters, long term effects of disasters. Introduction to global warming and climate change.	03
02	 Natural Disaster and Manmade disasters: 2.1 Natural Disaster: Meaning and nature of natural disaster, Flood, Flash flood, drought, cloud burst, Earthquake, Landslides, Avalanches, Volcanic eruptions, Mudflow, Cyclone, Storm, Storm Surge, climate change, global warming, sea level rise, ozone depletion 2.2 Manmade Disasters: Chemical, Industrial, Nuclear and Fire Hazards. Role of growing population and subsequent industrialization, urbanization and changing lifestyle of human beings in frequent occurrences of manmade disasters. 	09
03	 Disaster Management, Policy and Administration 3.1 Disaster management: meaning, concept, importance, objective of disaster management policy, disaster risks in India, Paradigm shift in disaster management. 3.2 Policy and administration: Importance and principles of disaster management policies, command and co-ordination of in disaster management, rescue operations-how to start with and how to proceed in due course of time, study of flowchart showing the entire process. 	06
04	 Institutional Framework for Disaster Management in India: 4.1 Importance of public awareness, Preparation and execution of emergency management programme.Scope and responsibilities of National Institute of Disaster Management (NIDM) and National disaster management authority (NDMA) in India.Methods and measures to avoid disasters, Management of casualties, set up of emergency facilities, importance of effective communication amongst different agencies in such situations. 4.2 Use of Internet and softwares for effective disaster management. 	06

	Applications of GIS, Remote sensing and GPS in this regard.	
05	 Financing Relief Measures: 5.1 Ways to raise finance for relief expenditure, role of government agencies and NGO's in this process, Legal aspects related to finance raising as well as overall management of disasters. Various NGO's and the works they have carried out in the past on the occurrence of various disasters, Ways to approach these teams. 5.2 International relief aid agencies and their role in extreme events. 	09
06	 Preventive and Mitigation Measures: 6.1 Pre-disaster, during disaster and post-disaster measures in some events in general 6.2 Structural mapping: Risk mapping, assessment and analysis, sea walls and embankments, Bio shield, shelters, early warning and communication 6.3 Non Structural Mitigation: Community based disaster preparedness, risk transfer and risk financing, capacity development and training, awareness and education, contingency plans. 6.4 Do's and don'ts in case of disasters and effective implementation of relief aids. 	06

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. 'Disaster Management' by Harsh K.Gupta, Universities Press Publications.
- 2. 'Disaster Management: An Appraisal of Institutional Mechanisms in India' by O.S.Dagur, published by Centre for land warfare studies, New Delhi, 2011.
- 3. 'Introduction to International Disaster Management' by Damon Copolla, Butterworth Heinemann Elseveir Publications.
- 4. 'Disaster Management Handbook' by Jack Pinkowski, CRC Press Taylor and Francis group.
- 5. 'Disaster management & rehabilitation' by Rajdeep Dasgupta, Mittal Publications, New Delhi.
- 6. 'Natural Hazards and Disaster Management, Vulnerability and Mitigation R B Singh, Rawat Publications

7. Concepts and Techniques of GIS –C.P.Lo Albert, K.W. Yonng – Prentice Hall (India) Publications.

(Learners are expected to refer reports published at national and International level and updated information available on authentic web sites)

Course Code	Course Name	Credits
ILOS 1018	Energy Audit and Management	03

- 1. To understand the importance energy security for sustainable development and the fundamentals of energy conservation.
- 2. To introduce performance evaluation criteria of various electrical and thermal installations to facilitate the energy management
- 3. To relate the data collected during performance evaluation of systems for identification of energy saving opportunities.

- 1. To identify and describe present state of energy security and its importance.
- 2. To identify and describe the basic principles and methodologies adopted in energy audit of an utility.
- 3. To describe the energy performance evaluation of some common electrical installations and identify the energy saving opportunities.
- 4. To describe the energy performance evaluation of some common thermal installations and identify the energy saving opportunities
- 5. To analyze the data collected during performance evaluation and recommend energy saving measures

Module	Detailed Contents	Hrs
01	Energy Scenario: Present Energy Scenario, Energy Pricing, Energy Sector Reforms, Energy Security, Energy Conservation and its Importance, Energy Conservation Act-2001 and its Features. Basics of Energy and its various forms, Material and Energy balance	04
02	 Energy Audit Principles: Definition, Energy audit- need, Types of energy audit, Energy management (audit) approach-understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution. Elements of monitoring& targeting; Energy audit Instruments; Data and information-analysis. Financial analysis techniques: Simple payback period, NPV, Return on investment (ROI), Internal rate of return (IRR) 	08
03	Energy Management and Energy Conservation in Electrical System: Electricity billing, Electrical load management and maximum demand Control;	10

	Power factor improvement, Energy efficient equipments and appliances, star ratings.	
	Energy efficiency measures in lighting system, Lighting control: Occupancy sensors, daylight integration, and use of intelligent controllers.	
	Energy conservation opportunities in: water pumps, industrial drives, induction motors, motor retrofitting, soft starters, variable speed drives.	
	Energy Management and Energy Conservation in Thermal Systems:	
04	Review of different thermal loads; Energy conservation opportunities in: Steam distribution system, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system.	10
	General fuel economy measures in Boilers and furnaces, Waste heat recovery, use of insulation- types and application. HVAC system: Coefficient of performance, Capacity, factors affecting Refrigeration and Air Conditioning system performance and savings opportunities.	
	Energy Performance Assessment:	
05	On site Performance evaluation techniques, Case studies based on: Motors and variable speed drive, pumps, HVAC system calculations; Lighting System: Installed Load Efficacy Ratio (ILER) method, Financial Analysis.	04
06	Energy conservation in Buildings: Energy Conservation Building Codes (ECBC): Green Building, LEED rating, Application of Non-Conventional and Renewable Energy Sources	03

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

- 1. Handbook of Electrical Installation Practice, Geofry Stokes, Blackwell Science
- 2. Designing with light: Lighting Handbook, By Anil Valia, Lighting System
- 3. Energy Management Handbook, By W.C. Turner, John Wiley and Sons

- 4. Handbook on Energy Audits and Management, edited by A. K. Tyagi, Tata Energy Research Institute (TERI).
- 5. Energy Management Principles, C.B.Smith, Pergamon Press
- 6. Energy Conservation Guidebook, Dale R. Patrick, S. Fardo, Ray E. Richardson, Fairmont Press
- 7. Handbook of Energy Audits, Albert Thumann, W. J. Younger, T. Niehus, CRC Press
- 8. www.energymanagertraining.com
- 9. www.bee-india.nic.in
| Course | Course Nome | Teac | hing Scheme | e (Hrs) | Credits Assigned | | | | |
|----------|---|--------|-------------|----------|------------------|-----------|----------|-------|--|
| Code | Course Manie | Theory | Practical | Tutorial | Theory | Practical | Tutorial | Total | |
| ELXL1011 | Advanced
Communication
Techniques
Laboratory – I | | 02 | | | 01 | | 01 | |

	Course Name	Examination Scheme										
Course Code		Theory Marks										
		Internal assessment			End	Term	Dave at a sl	Oral	T-4-1			
		Test	Test	Avenage	Sem	Work	Tactical	Ural	Total			
		1	2	Average	Exam							
ELXL1011	Advanced Communication Techniques Laboratory – I					25		25	50			

Suggested List of Experiments (Any six) :-

- 1. Generating and processing of random signals
- 2. Simulation of communication systems with AWGN channels (BER)
- 3. Introduction to Monte-Carlo methods
- 4. Multipath fading channels simulation of Raleigh and Ricean Channels
- 5. Simulation of CDMA system.
- 6. Simulation of OFDM system.
- 7. Equalizers Simulation of LMS algorithm
- 8. Simulation Viterbi decoding algorithm
- 9. Simulation of Turbo Encoder and Decoder
- 10. Simulation of LDPC Encoder.

Course Code	Course Nome	Teac	hing Scheme	e (Hrs)	Credits Assigned				
Course Coue	Course Maine	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELXL1012	Mixed Signal VLSI Design		02			01		01	
LLML1012	Laboratory – II								

	Course Name	Examination Scheme									
Course Code		Theory Marks				Tom					
		Internal assessment			End	Term	Ducation	01	Tota		
		Test	Test		Sem	XX71-	Fractical	Urai	1		
		1	2	Average	Exam	WORK					
	Mixed Signal										
ELXL1012	VLSI Design					25		25	50		
1	Laboratory – II										

Suggested List of Experiments (Any six) :-

Students will have to perform at least one experiment on each module and submit certified journal having a minimum of 8 experiments.

Module No.	List of Experiments
1	Supply and ground bounce determination
2	Switch capacitor Filter
2	Analog Multiplier
3	Schmitt Trigger
3	Ring oscillator
4	ADC based on charge distribution
4	Delta-sigma converters
	ROM Implementation
5	Sensing amplifier
	Operation of Memory cell
6	PLL Implementation
U	DLL Implementation

SEMESTER II

Course Code	Course Nome	Teachi	ing Scheme	(Hours)	Credits Assigned				
Course Coue	Course Maine	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELXC2021	Digital Design with Reconfigurable Architecture	04			04			04	

	Course Name	Examination Scheme									
Course Code			The	ory Marks							
		Internal Assessment			End	Term	Deresteral	Orral	Tatal		
		Test	Test	Average	Sem Exam	Work	Tactical	Utal	TULAI		
ELXC2021	Digital Design with Reconfigurable Architecture	20	20	20	80				100		

Course Pre-requisites:-

1. Digital Circuits & Design

Course Objectives:-

- 1. To teach students to understand, analyze & design finite state machines (FSM)
- 2. To train students in writing VHDL code of combinational & sequential circuits
- 3. To prepare students to synthesize & simulate FSM using hardware description languages (HDL)

4. To motivate students to use reconfigurable devices & make them competent to employ FPGA to build big systems

Course Outcomes:-

1. Ability to analyze & design FSM

- 2. Ability to use hardware description languages for simulation & synthesis
- 3. Ability to understand fundamentals of HDL which is essential in successful design of digital systems

4. Ability to understand FPGA architecture & compare different approaches to solving basic problems in programmable

logic devices

5. Ability to design complex digital systems on FPGA

Module No.	Торіс	Hrs.
	State Machines Design	
1	Mealy and Moore machines, Clocked synchronous state machine design, State reduction techniques, State assignment, Clocked synchronous state machine	08
	analysis. Sequence detector, Odd/even parity checker for serial data.	
	Hardware Description Language VHDL	
2	Introduction, Code structure, Data types, Concurrent and sequential codes, Signals and variables. Examples like Multiplexers, De-multiplexers, Adder, Flip	14
	Flops, Counters, Registers.	
	Design of Finite State Machines (FSM) using VHDL	
3	VHDL code for Moore, Mealy type FSMs, Serial adders, ASM charts, traffic	12
	light controller, vending machines.	
	System Design	44
4	Bit counting circuits, serial and parallel multipliers, dividers, implementation of Booth's algorithm, MAC design.	11
5	Programmable Logic Devices	03
3	PLDs, CPLD, SRAM based FPGA architecture, Spartan II.	03
6	Simulation and Synthesis	
U	Functional simulation, timing simulation, logic synthesis, RTL.	04
	TOTAL	52

<u>Reference Books</u> :-

1. John Wakerley, "Digital Design Principles & Practices" Pearson Publication, 3rd edition

- 2. Volnei A. Pedroni, "Circuit Design with VHDL" MIT Press (2004)
- 3. Stephen Brown, Zvonko Vranesic, "Fundamentals of Digital Logic Design" McGraw Hill, 2nd edition
- 4. P. J. Ashenden, "The students guide to VHDL" Elsevier (1999)
- 5. Wayne Wolf, "FPGA Based System Design" Pearson Education
- 6. Xilinx online resources www.xilnix.com

<u>Research Publications</u> :-

 Fayez Elguibaly, "A Fast Parallel Multiplier –Accumulator using the Modified Booth Algorithm", IEEE Transaction On Circuit And Systems –II, Analog And Digital Signal Processing, Vol 47, No. 9. Sept 2000.
 Paul Chow, Soon Ong Seo, Jonathan Rose, Kevin Chung, Gerard Paez-Monzon, Immanuel Rahardja," The Design of SRAM-Based Field Programmable Gate Array-Part II: Circuit Design and Layout," IEEE Transaction on Very Large Scale Integration (VLSI) System, Vol. 7, No. 3. Sept 1999.

Internal Assessment (IA) :-

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

End Semester Examination :-

1. Question paper will comprise of 6 questions, each of 20 marks.

2. Total 4 questions need to be solved.

3. Question No.1 will be compulsory and based on entire syllabus wherein sub-questions of 2 to 5 marks will be asked.

4. Remaining questions will be selected from all the modules.

Course Code	Course Name	Teachi	ing Scheme	(Hours)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELXC2022	Real Time System Design	04			04			04	

	Course Name	Examination Scheme									
Course Code			The	ory Marks							
		Internal Assessment			End	Term	Ducation	Orrol	Total		
		Test	Test	Average	Sem Exam	Work	Fractical	Urai	Totai		
		1	4		Елаш						
ELXC2022	Real Time System Design	20	20	20	80				100		

Course Pre-requisites :-

- 1. Microprocessor and Peripherals
- 2. Microcontroller & Applications
- 3. Embedded system

Course Objectives:-

- 1. To teach the fundamentals of real time systems, applicability of RFID technology
- 2. To study the ARM Cortex-M3, the industry leading 32-bit processor for low power, cost sensitive, highly deterministic embedded applications
- 3. To achieve an understanding of the real time concepts with embedded operating systems
- 4. To apply hardware and software knowledge to develop real time embedded system according to requirement and constraints

Course Outcomes:-

- **1.** The student will understand basic structure of a real time system and can address various issues in hardware-software co-design.
- 2. The student will exhibit the knowledge of Implementation of the system with industry leading microcontroller and other hardware components.
- **3.** The student will demonstrate the ability for designing software using commercial real time operating systems.
- **4.** The student will be capable of demonstrating the designing of the real time system according to requirement and constraints

Module No.	Topics	Hrs.
1	Introduction Typical Real Time Applications, structure of a real time system, Hard Versus Soft Real Time Systems, A Reference Model, Characterizing real time systems and tasks, issues in real time computing, hardware/software co-design, interrupt latency, Capabilities of commercial Real Time Operating Systems.	04
2	RFID: Technology and ApplicationsOverview of RFID:-Reader-tag, potential applications; RFID Technology: -RF communications, Reader/Tag protocols -Middleware architecture; EPC standards Case study: Enabling real-time decisions, PINES architecture overview, EPC Model: Internet of Things.RFID Business Aspects, Security and Privacy.	04
3	Hardware Architecture Cortex-M3 Basics, Implementation Overview, Memory Systems, Exceptions, The Nested Vectored Interrupt Controller and Interrupt Control, Interrupt Behaviour, Cortex-M3 Programming, Embedded OS Support, The Memory Protection Unit, Other Cortex-M3 Features, I/O Interfacing, Communication protocols, Device driver: Concepts, Module utilities, Driver methods, Device driver for LED, Keyboard, LCD	12
4	Real Time System Concepts with Embedded OS. Real time kernel, Task Management, Memory Management, Time Management, Inter-Task communication and Synchronization, Issues in multitasking, Real Time Scheduling for uniprocessor systems, Critical section, IPC through semaphores, Mutex, Mailbox, Message-Queues, pipes or event Flags using μ C/OS-II:Task assignment and real time scheduling in multiprocessor systems, Multiprocessor Priority-Ceiling protocol, Resource Access Control and Synchronization.Embedded Linux: using Linux kernel for implementing kernel objects in real time systems, RTLinux Modules, POSIX threads	12
5	Android operating System Introduction to Android technology, Structure of Android applications, Data stores, Network services and APIs, Intents, Content Providers and services, Advance Operations with Android, Telephony and SMS, Audio Video using the Camera, Project Discussion on Android.(Porting on Cortex-M3), Generating Android Application.	10
6	Case Studies Requirement Analysis, Specifications, Modelling techniques, Testing and Debugging. Database applications, process control applications, robotics, wireless/Network applications.	10
	TOTAL	52

Reference Books :-

[1] Jane W.S.Liu, "Real-Time Systems", Eighth Edition, Pearson Education, Inc. © 2009, 2000, Publisher, Dorling Kindersley (India) Pvt. Ltd.

[2] C.M.Krishna, Kang.G.Shin, "Real-Time Systems", The McGraw-Hill companies ©1997, Publisher, TATA McGraw-Hill Edition 2010

[3] Dennis E. Brown,"RFID Implementation", The McGraw-Hill companies ©2007, Publisher, TATA McGraw-Hill Edition [4] Joseph Yiu, "The Definitive Guide to the ARM CORTEX-M3", Second Edition, ©2007, 2010 Elsevier Inc. Forward by Paul Kimelman@2010, Texas Instruments Incorporated.

[5] Jean J. Labrossy, "µC/OS-II, The Real Time Kernel", Lawrence: R&D Publications.

[6] Embedded Linux primer, second edition, Christopher Hallinan, Pearson publication

Research Publications:

- 1. Lui Sha, Raghunathan Rajkumar and John Lehoczky,"**priority inheritance protocol: an approach to real time synchronization**", IEEE transactions on computers, vol 39, No.9, September 1990.
- 2. Almut Burchard, Jorg Liebeherr, Yingfeng Oh, and Sang H. Son, "New Strategies for Assigning Real-Time Tasks to Multiprocessor Systems", IEEE transactions on computers, vol. 44, no. 12, December 1995

Internal Assessment (IA) :-

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

End Semester Examination :-

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub-questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course Code	Course Nome	Teach	ing Scheme	(Hours)	Credits Assigned				
	Course Maine	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELXC2023	Advanced Signal Processing	04			04			04	

Course Code	Course Name	Examination Scheme									
			The	ory Marks							
		Internal Assessment			End	Term	Drastical	Oral	Tetal		
		Test	Test	Avorago	Sem	Work	Tactical	Orai	Total		
		1	2	Average	Exam						
ELXC2023	Advanced Signal Processing	20	20	20	80				100		

Course Pre-requisites:-

1. Signals & Systems

2. Digital Signal Processing

3. Probability & Random Processes

Course Objectives :-

- 1. To understand DSP techniques in different fields of modern-day applications
- 2. To study multi-rate DSP algorithms & filter bank analysis for real world applications
- 3. To develop a solid foundation in linear prediction analysis & optimum filtering concepts
- 4. To learn thoroughly RMS & LMS algorithm which are at the heart of adaptive systems
- 5. To gain deep insight into spectrum estimation algorithms

Course Outcomes:-

- 1. Ability to apply multi-rate processing techniques in practical applications
- 2. Ability to design optimum filters suited for different applications
- 3. Ability to design & simulate adaptive systems
- 4. Ability to extract information from spectral analysis of signals
- 5. Ability to design & test signal processing algorithms for various tasks

Module No.	Unit No.	Topics	Hrs.
01		Introduction and Review	04
	1.1	Basic DSP examples in block diagrams, Typical DSP in real world applications.	02
	1.2	Review of FIR & IIR filters, Sampling and Reconstruction of signals, Analog to digital and Digital to analog conversions.	02
02		Multirate Digital Signal Processing	12
	2.1	Introduction, Decimation by a factor D, Interpolation by a factor I, Sampling rate conversion by a rational factor I/D.	03
	2.2	Implementation of sampling rate conversion, Multistage implementation of sampling rate conversion.	03
	2.3	Sampling rate conversion of band pass signal, sampling rate conversion by arbitrary factor, Applications of multirate signal processing.	03
	2.4	Digital filter banks, Two channel Quadrature Mirror filter banks.	03
03		Linear Prediction and Optimum filters	12
	3.1	Random signals, Correlation functions, Power Spectra, Innovations representation of a Stationary random Process	03
	3.2	Forward and Backward Linear predictions.	03
	3.3	Solution of Normal equations. The Levinson-Durbin Algorithm, The Schur Algorithm. Properties of the Linear Prediction Error Filters.	03
	3.4	AR lattice and ARMA Lattice Ladder filters. Wiener filters for filtering and Prediction	03
04		Adaptive Digital Filters	10
	4.1	FIR adaptive filters, Steepest descent adaptive filter, LMS algorithms, Normalized LMS, Application in noise cancellation.	04
	4.2	Adaptive Recursive filters.	04
	4.3	Recursive Least squares algorithms.	02
05		Power Spectrum Estimation	08
	5.1	Estimation of spectra from finite duration observations of signals.	02
	5.2	Nonparametric methods for power spectrum estimation.	02
	5.3	Parametric methods for power spectrum estimation.	04
06		Applications of DSP	06
	6.1	Biomedical applications, ECG signal analysis, QRS template, QRS detection methods etc.	03
	6.2	Speech processing applications, Wideband and narrowband spectrograms.	03
		TOTAL	52

<u>Reference Books</u> :-

- 1. Digital Signal Processing Principles, algorithms & applications, John. G. Proakis, D.G.Manolakis. 4/e
- 2. Digital Signal Processing, "A Practical approach", Emmanuel C Ifeachor & B.W.Jervis. Pearson
- 3. Digital Signal Processing. A computer based approach, S.K.Mitra, Tata Mc Graw Hill

- 4. Statistical Digital Signal Processing, Monson. H .Hayes, Wiley India
- 5. Introduction to Digital Speech Processing, L.R. Rabiner & R.W Schafer, Pearson
- 6. Discrete time Signals Processing, Oppenheim & Schaffer, Pearson

<u>Research Publications</u> :-

1. P. Vaidyanathan (1990) . "Multirate Digital filters, Filter banks, Polyphase network and applications: A tutorial" Proc. IEEE vol 78, No 1,pp 56-90.

2. Schoeder M.R (1985) "Linear predictive coding of speech: Review and current directions" IEEE Communication Magazine vol. 23, pp. 54-61

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks.

End Semester Examination:-

1. Question paper will comprise of 6 questions, each of 20 marks.

2. Total 4 questions need to be solved.

3. Question No.1 will be compulsory and based on entire syllabus wherein sub-questions of 2 to 5 marks will be asked.

4. Remaining questions will be selected from all the modules.

Subject Code	Course Nome	Teachi	ng Scheme ((Hours)	Credits Assigned				
	Course Maine	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
	Advanced								
ELXDLO2021	Computer	04			04			04	
	Architectures-II								

	Course Name		Examination Scheme									
Subject Code			The	ory Marks								
		Internal Assessment			End	Term	Ducational	Oral	Total			
		Test	Test	Average	Sem Exam	Work	Flactical	Orai	Total			
		I	2		Exam							
	Advanced											
LLADLO202	System	20	20	20	80				100			
1	Architectures-II											

Course Pre-requisites:-

1. Computer Organization & Processor Architectures

Course Objectives:-

- 1. To outline the various factors those contribute to system design
- 2. To understand the design flow of application specific processors
- 3. To elaborate on the importance of VLIWDSP processors & soft-core processors
- 4. To analyze issues & pitfalls in reconfigurable processor design with FPGA

Course Outcomes:-

- 1. Ability to explain various types of processors & their design flow in detail
- 2. Ability to describe various concepts of VLIWDSP processors & soft-core processors
- 3. Ability to analyze the issues in VLIWDSP processor design
- 4. Ability to describe pitfalls in designing with reconfigurable processors with FP

Module No.	Unit No.	Topics	Hrs.
		Computer Architecture Fundamentals	
	1.1	A top Level View of Computer functions and Interconnections	1
1	1.2	Computer Components, Architecture organization	
1	1.3	Concepts and Ways of Parallelism	VO
	1.4	Domain-Specific Processors and Application Specific Processors	
	1.5	Design Considerations	
		Processor Design Flow	
	2.1	Capturing requirements, Instruction coding	
2	2.2	Exploration of Architecture Organizations	08
	2.3	Hardware and Software Development	
	2.4	Software tools and libraries	
		Memory	
	3.1	Semiconductor Memories SRAM, DRAM and organization	
3	3.2	Principles of Cache memory, Cache Design	06
	3.3	Cache Coherency, MESI Protocol	
	3.4	RAID	
		I/O, Peripherals and Operating System	l
	4.1	Types of I/Os, I/O Interfacing concepts	_
4	4.2	PCI, PCI-X, PCI-E	08
-	4.3	Universal Serial Bus(USB)	00
	4.4	Operating System Overview, Scheduling	_
	4.5	Memory Management in Operating Systems	
		VLIW DSP Processor	
	5.1	DSP Processor Architecture, DSP-specific requirements	-
5	5.2	Micro architectural concepts	12
L C	5.3	VLIW and SW programmability	
	5.4	Application specific adaptable core Architecture	-
	5.5	Design space Exploration, Complexity of Configurability	
		Soft-Core Processors	
	6.1	Processor Customization	-
6	6.2	Microprocessor cores in SOC design, Difference between Microprocessor and SOC	12
	6.3	Reconfigurable processors with FPGA	
	6.4	Case study of Reconfigurable structure	-
	6.5	Pitfalls in VLIW Architectures	
		TOTAL	52

<u>Reference Books</u> :-

1. William Stallings, "Computer Organization and Architecture: Designing for Performance", Eighth Edition, Pearson Publications.

2. Jari Nurmi, "Processor Design: System-on-Chip Computing for ASICs and FPGAs", Springer.

3. Daniel Tabak, Advanced Microprocessors, Second Edition, McGraw-Hill Publications.

4. Hennessy JL, Patterson DA (2003) Computer Architecture: A Quantitative Approach.3rd edition. Elsevier Morgan Kaufmann, San Francisco

Research Publications :-

1. Andrea Lodi, Mario Toma, "A VLIW Processor with a Reconfigurable Instruction Set for Embedded Applications", IEEE Journal Of Solid-State Circuits, Vol. 38, No. 11, November 2003,pp-1876-1886.

2. Lodi A, Cappelli A, Bocchi M, Mucci C, "XiSystem: A XiRisc-based SoC with a Reconfigurable I/O Module", IEEE Journal of Solid-State Circuits (JSSC), 2006, Vol.41, No.1, pp-85–96.

Internal Assessment (IA) :-

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

End Semester Examination :-

1. Question paper will comprise of 6 questions, each of 20 marks.

2. Total 4 questions need to be solved.

3. Question No.1 will be compulsory and based on entire syllabus wherein sub-questions of 2 to 5 marks will be asked.

4. Remaining questions will be selected from all the modules.

Course Code	Course Name	Teachir	ng Scheme (Hours)	Credits Assigned				
		Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELXDLO2022	Wireless & Mobile Networking	04			04			04	

	Course Name	Examination Scheme									
Course Code		Theory Marks									
		Internal Assessment			End	Term	Dere effect	01	T - 4 - 1		
		Test	Test		Sem	Work	Tactical	Orai	Total		
		1	2	Average	Exam						
	Wireless &										
ELXDLO2022	Mobile	20	20	20	80				100		
	Networking										

Course Pre-requisites:-

1. Computer Communication Networks

Course Objectives:-

- 1. To understand the various aspects of Wireless network operation
- 2. To understand the concept of Ad Hoc Networks
- 3. To comprehend the usefulness of Wireless Sensor Networks in many applications
- 4. To understand and analyze various Protocols of MANETS and WSNs.

Course Outcomes:-

1. Students would be able to understand principle of operation of Wireless Networks & its salient features.

2. Students would be the able to comprehend the various issues involved in establishing Mobile Ad Hoc Networks, designing its MAC Protocols.

3. They will have the ability to analyze and compare various Routing Protocols of MANETs.

4. They will have the ability to understand the significance of wireless Sensor Networks and its widespread applications all around us.

5. Students would be exposed to research issues in Next-Generation networks - Cognitive Radio Networks.

Module	Unit	Topics	Hrs
NO.	NO	Deview of Wineless network operation & Wineless I ANs	00
01	11	Wireless Network operation: topologies: Infrastructure networks and	Uð
	1.1	Adhoc networks Mobility Management – Mobile IP operation of	
		Mobile IP Discovery Registration and Tunneling	
	1.2	Power control & Power saving Mechanisms in Wireless networks.	
	-	Energy efficient designs and Energy efficient software approaches	
		Overview of Wireless LAN: 802.11 Architecture, Medium Access	
	1.3	Control: CSMA /CA, DCF, PCF, MAC Frame	
02		Mobile ADHOC Networks (MANETs)	08
	2.1	Ad hoc wireless networks: Issues in Ad Hoc wireless networks, Issues	
		in designing MAC Protocol for Ad Hoc networks, Classification of	
	2.2	MAC protocols	
		Contention-based Protocols: Contention-based Protocols with	
		reservation mechanisms, Contention-based MAC Protocol with	
		Scheduling mechanisms	
03		ROUTING PROTOCOLS for Mobile ADHOC Networks	12
	3.1	Routing Protocols for MANETs : Classification of Routing Protocols,	
		Table –driven Routing Protocols: Distance Sequence Distance Vector	
		Routing protocol, Cluster-nead Gateway switch routing protocol, On-	
		demand Routing protocols: Dynamic Source Routing Protocol, Ad	
		Protocols and Power aware Pouting protocols (AODV), Hierarchical Routing	
	37	Multicast Routing in MANETs: introduction and Classification of	
	3.2	Multicast routing protocols	
	3.3	Transport Laver protocol for MANETs: TCP over Ad Hoc wireless	
	0.0	networks : issues and challenges .OOS in MANETS: issues and	
		challenges	
04		Introduction to Wireless sensor networks	08
	4.1	Introduction and overview of WSN: Sensor Network Architectural	
		Elements, Basic Wireless sensor technology: Sensor node technology,	
	4.2	Applications of WSN: Category 1 WSNs and Category 2 WSNs	
		Challenges and hurdles in WSN.	
	4.3	Data Gathering ,MAC Protocols for WSN: Schedule based protocols ,	
		Random- Access based protocols	
05		Routing protocols for Wireless sensor networks	10
	5.1	Routing Challenges and Design issues in WSN ,Data Dissemination,	
		Routing strategies in WSN : Proactive, Reactive hybrid strategies	
	5.2	Data centric Routing Protocol: SPIN	
0.6	5.3	Hierarchical Routing protocol : LEACH	0.6
06		Recent Advances in Wireless networks	06
	6.1	Cognitive Radio Networks : Spectral sensing, white holes, Spectrum	
	63	Inanagement	
	0.4		52
		IUIAL	34

<u>Reference Books</u> :-

1. Kaveh Pahlavan, "Principles of Wireless Networks: A Unified Approach", Pearson Education

2. William Stallings,"Wireless Communications & Networking", 2nd Ed., Pearson Education

3. Siva Ram Murthy & B.S.Manoj, "Ad hoc wireless Networks: Architectures and Protocols "Pearson

4. Sohraby Kazem, Minoli Daniel & Znati Taieb,"Wireless Sensor Networks: Technology, Protocols and Applications", WILEY student Edition

5. Zhao Feng & Guibas Leonidas,"Wireless Sensor Networks: An Information Processing Approach", Morgan Kaufmann

Research Publications :-

1. Ian F. Akyildiz . Et al. ,"Wireless sensor networks: a survey", Elsevier Journal of Computer Networks 38 (2002) 393–422

2. Kemal Akkaya & Mohamed Younis, "A survey on routing protocols for wireless sensor network", Elsevier Journal of Ad Hoc Networks 3 (2005) 325–349

3. A. Ghasemi and E. S. Sousa, "Spectrum sensing in cognitive radio networks: Requirements, challenges and design trade-offs," IEEE Communications Magazine, vol. 46, no. 4, pp. 32-39, April 2008.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks.

End Semester Examination :-

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub-questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules

Course Code	Course Nome	Teachi	ng Scheme ((Hours)	Credits Assigned				
Course Coue	Course Maine	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELXDLO2023	Nanoelectronics	04			04			04	

		Examination Scheme									
	Course Name		Theo	ory Marks							
Course Code		Inter	nal Ass	sessment	End	Term	Drastical	Oral	Total		
		Test	Test	Average	Sem	Work	Flactical				
		1	2	Average	Exam						
ELXDLO2023	Nanoelectronics	20	20	20	80				100		

Course Pre-requisites:-

- 1. MOSFET & Microelectronic Concepts
- 2. Quantum Mechanics

Course Objectives:-

1. To learn fundamental concepts of nanoelectronics including single electron effects & electron transport in nanoscopic system

2. To learn the concept of the quantum dot, the quantum wire, quantum well & nano applications of these structures

3. To gain knowledge on SET & carbon nano tubes in design of transistors

4. To learn basics of ballistics transport & spintronics

Course Outcomes:-

1. Ability to explain concepts of nanoelectronics including single electron effects & electron transport in nanoscopic system

2. Ability to describe concept of the quantum dot, the quantum wire, quantum well & nano applications of these structures

3. Ability to describe various new structures like CNTFET & SET

4. Ability to describe basic of spintronics & spin based devices

Module	Unit	Topics	Hrs.						
No.	No.								
	1 1	Classical particles, classical waves and Quantum Particles							
	1.1	Introduction to Nanotechnology	-						
1	1.2	Comparison of classical and Quantum System	10						
	1.3	Origins of Quantum Mechanics	-						
	1.4	Electron as particle, electron as wave	-						
	1.5	Wave packets and uncertainty							
	1	Quantum Mechanics of Electron							
	2.1	General Postulates of Quantum Mechanics	-						
	2.2	Time Independent Schrodinger 's equation	-						
2	2.3	Free electron: One dimensional and three dimensional space, Free electron Gas theory of metals	10						
	25	Partially confined electron. Finite potential well: Finite potential rectangular well,							
	2.3	Parabolic well, Triangular well							
	2.6	Quantum Dot, Wires and wells							
		Single Electron and few Electron Phenomena and devices							
	3.1	Tunneling junctions and application of tunneling							
	3.2	2 Coulomb Blockade and The single Electron Transistor							
3	3.3	Resonant Tunneling Diodes- principle and applications	10						
	3.4	Carbon Nanotube Transistor(FETs and SETs), Semiconductor Nanowire FETs and SETs							
	3.5	Molecular SETs and Molecular Electronics							
		Model of Semiconductor Quantum Wells, Quantum Wires and Quantum Dots							
	4.1	Particles Statistics and density of states							
4	4.2	Semiconductor heterostructures and Quantum Well	10						
	4.3	Quantum Wires and Nanowire							
	4.4	Fabrication Techniques for Nanostructures							
		Ballistic Transport, and Spin Transport							
	5.1	Ballistic Transport: Electron collision and length scale, Ballistic Transport Model ,Quantum Resistance and conductance							
_	5.1	Spin Vs charge, AMR, GMR, TMR, The transport of spin	10						
5	5.2	Spin devices- Spin valves, Magnetic tunnel junctions,	12						
	5.3	Applications – Memories (MRAM, STRAM), Logic device and Microwave Oscillators							
		TOTAL	52						

Reference Books :-

1. George W. Hanson "Fundamental of Nanoelectronics", PEARSON

2. Rainer Waser, "Nano Electronics and Information Technology: Advanced Electronic Materials and Novel Devices", 2nd Edition, Wiley-VCH, 2012.

3. Chonles P. Poole Jr., Frank. J. Owens, "Introduction to Nanotechnology", John Wiley and Sons, 2009.

4. T. Pradeep, "Nano: The essentials", Tata McGraw Hill, 2007.

5. Mark A. Ratner, Danill Ratner, "Nano Technology: A Gentle Introduction to the Next Big Idea", Prentice Hall, 2003

6. Springer Handbook of Nanotechnology ISBN: 978-3-540-35172-6

Research Publications :-

1. Leland Chang, Yang-Kyu Choi, Daewon Ha, Pushkar Ranade, Shiying Xiong, Jeffrey Bokor, "Extremely Scaled Silicon Nano-CMOS Devices", PROCEEDINGS OF THE IEEE, VOL. 91, NO. 11, NOVEMBER 2003,pp-1860-1873.

2. Thomas Skotnicki, James A. Hutch by, Tsu-Jae King,H.-S. Philip Wong, and Frederic Boeuf,"The End of CMOS Scaling", IEEE CIRCUITS & DEVICES MAGAZINE, January 2005,pp-16-26.

Internal Assessment (IA):

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks.

End Semester Examination:-

1. Question paper will comprise of 6 questions, each of 20 marks.

2. Total 4 questions need to be solved.

3. Question No.1 will be compulsory and based on entire syllabus wherein sub-questions of 2 to 5 marks will be asked.

4. Remaining questions will be selected from all the modules.

Course Code	Course	Teach	ing Scheme	(Hrs)	Credits Assigned				
Course Coue	Name	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELEXDLO2024	Mechatronics	04			04			04	

Course Code		Examination Scheme								
	Course Name	Theory Marks								
		Internal Assessment			End	Tom				
		Test	Test	Avorago	Sem	Work Prac	Practical	Oral	Total	
		1	2	Average	Exam					
ELXDLO2024	Mechatronics	20	20	20	80				100	

Course Pre-requisites:-

- 1. Knowledge of electric circuits & components
- 2. Analog & digital electronic circuits
- 3. System dynamics, control & instrumentation
- 4. Microprocessor based controller
- 5. Microelectronics

Course Objectives:-

- 1. To develop an ability to identify, formulate & solve engineering problems
- 2. To develop an ability to design a system to meet desired needs

Course Outcomes:-

- 1. Ability to identify examples of mechatronics systems encountered in real life
- 2. Ability to discuss importance of feedback in controlling physical systems with use of examples
- 3. Ability to formulate specifications for adopting / designing different components of mechatronics system
- 4. Ability to identify signal processing that has to be applied to signals in mechatronics systems
- 5. Ability to conduct a mechatronics design using a structured formal approach
- 6. Ability to make decisions about components choices taking into account its effect on the choice of other components
- & performance of the mechatronics system

Module	Торіс	Hrs.
	Mechatronics Systems Design	
1	Introduction to Mechatronics, Integrated Design Issues in Mechatronics, The Mechatronics Design Process, Mechatronics Key Elements, Applications in Mechatronics	08
	Mechatronics Design Approach	
2	Functions of Mechatronic Systems, Division of Functions between Mechanics and Electronics, Improvement of Operating Properties, Addition of New Functions, Ways of Integration, Integration of Components, Integration of Information Processing, Information Processing Systems, Multilevel Control Architecture, Special Signal Processing, Concurrent Design Procedure for Mechatronic Systems	10
	Modeling & Simulation of Physical Systems	
3	Operator Notation and Transfer Functions, Block Diagrams, Manipulations, and Simulation, Block Diagram Modeling-Direct Method, Block Diagram Modeling- Analogy Approach, Electrical Systems, Mechanical Translational Systems, Mechanical Rotational Systems, Electrical–Mechanical Coupling	10
	Systems Response	
4	System Response, Amplitude Linearity, Fourier Series Representation of Signals, Bandwidth and Frequency Response, Phase Linearity, Distortion of Signals, Dynamic Characteristics of Systems, Zero-Order System, First-Order System, Experimental Testing of First-Order System, Frequency Response of System, System Modeling and Analogies	10
	Role of Modeling in Mechatronics Design	
5	Modeling as Part of the Design Process- Phase 1 • Phase 2 • Phase 3 • Phase 4, The Goals of Modeling- Documentation and Communication • Hierarchical Framework • Insights • Analogies • Identification of Ignorance, Modeling of Systems and Signals- Analytical vs. Numerical Models • Partial vs. Ordinary Differential Equations • Stochastic vs. Deterministic Models • Linear vs. Nonlinear	08
	Case Studies & Research Trends in Mechatronics	
6	Robocow Mobile Robot for Training Horses, Vision Guidance for Tractors, A Shape Recognition Example	06
	TOTAL	52

<u>Reference Books</u> :-

1. Devdas Shetty, Richard A. Kolk, Mechatronics System Design, SI Version, 2nd Ed. 2011, Cengage Learning, Published by Global Engineering: Christopher M. Shortt

2. Robert H. Bishop, Mechatronics : an introduction, 2006, published by CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW

3. David G. Alciatore & Michael B. Histand, Introduction to Mechatronics & Measurement Systems, Fourth Edition, 2011 McGraw-Hill

4. John Billingsley, Essentials of Mechatronics, 2006 John Wiley & Sons, Inc., Hoboken, New Jersey

Research Publications:-

1. Lorenzo Fagiano & Trevor Marks, "Design of a Small-Scale Prototype for Research in Airborne Wind Energy," IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 20, NO. 1, FEBRUARY 2015

2. Ammar Aldaoud, Callum Laurenson, Francois Rivet, Mehmet R. Yuce, and Jean-Michel Redoute, "Design of a Miniaturized Wireless Blood Pressure Sensing Interface Using Capacitive Coupling," IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 20, NO. 1, FEBRUARY 2015

Internal Assessment (IA) :-

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

End Semester Examination:-

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.
- 3. Question No.1 will be compulsory and based on entire syllabus wherein sub-questions of 2 to 5 marks will be asked.
- 4. Remaining questions will be selected from all the modules.

Course Code	Course Name	Teachi	ng Scheme (I	Hours)	Credits Assigned				
Course Coue	Course Maine	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total	
ELXDLO2025	Virtual Instrumentation	04			04			04	

	Examination Scheme									
Course Name	Theory Marks				Татт					
	Internal Assessment			End	Term	Dractical	Oral	Total		
	Test	Test	Average	Sem	Work	Tactical	Orai	10181		
	1	2	nveruge	Exam						
Virtual Instrumentation	20	20	20	80				100		
	Course Name Virtual Instrumentation	Course Name Inter Test 1 Virtual Instrumentation 20	Course NameInternal AssTestTestTest12Virtual Instrumentation20	Interview MarksTheory MarksInterview AssessmentTestTest12Virtual Instrumentation202020	ExaminationCourse Name $IIIE = IIE $	Examination SchereExamination SchereInterversewentEndTermInterversewentEndTermInterversewentEndInterversewentSemInterversewentSemInterversewentSemInterversewentSemInterversewentSemInterversewentSemInterversewentSemInterversewentSemInterversewentSemInterversewentSemInterversewentSemInterversewentSemInterversewentSemInterversewentSemInterversewentSemInterversewentInterversewentInterversewentInterversewentInterversewentInterversewentInterversewentInterversewentInterversewentInterversewentInterversewentInterversewentInterversewentInterversewentInterversewent <td>$\begin{array}{c c c c c c } \hline &$</td> <td>$\begin{array}{c c c c c c } \hline &$</td>	$\begin{array}{c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	$\begin{array}{c c c c c c } \hline & & & & & & & & & & & & & & & & & & $		

Course Pre-requisites:-

- 1. Understanding of fundamental principles of instrumentation
- 2. Basic level course in instrumentation system

Course Objectives:-

- 1. To understand the features of virtual instrumentation
- 2. To understand the concepts of graphical programming language
- 3. To understand the technique of real-time interface
- 4. To select proper communication interface
- 5. To apply knowledge in some real life application in field of biomedical & industrial automation

Course Outcomes:-

- 1. Ability to understand & implement basic VI
- 2. Ability to test the DAQ card for real-time interface
- 3. Ability to choose suitable interface for data monitoring, analyzing & communication
- 4. Ability to design & understand significance of VI in real-time applications

Module No.	Detailed Contents	Hrs.
1	Virtual Instrumentation Historical perspective, advantages, blocks diagram and architecture of a virtual instrument, data-flow techniques, graphical programming in data flow, comparison with conventional programming. Development of Virtual Instrument using GUI, Real-time systems, Embedded Controller, OPC, HMI / SCADA software, Active X programming.	08
2	VI Programming Techniques VIS and sub-VIS, loops and charts, arrays, clusters and graphs, case and sequence structures, formula nodes, local and global variables, string and file I/O, Instrument Drivers, Publishing measurement data in the web	08
3	Data Acquisition Basics Introduction to data acquisition on PC, Sampling fundamentals, Input/output techniques and buses. ADC, DAC, Digital I/O, counters and timers, DMA, Software and hardware installation, Calibration, Resolution, Data acquisition interface requirements.	10
4	Distributed Virtual Instrumentation Common Instrument Interfaces: Current loop, RS 232C/RS485, GPIB. Bus Interfaces: USB, PCMCIA, VXI, SCSI, PCI, PXI, Firewire. PXI system controllers, Ethernet control of PXI. Networking basics for office & industrial applications, VISA and IVI.	08
5	Tools and Platform VI toolsets, Distributed I/O modules. Application of Virtual Instrumentation: Instrument Control, Development of process database management system, Simulation of systems using VI, Development of Control system, Industrial Communication, Image acquisition and processing, Motion control.	10
6	Applications of Virtual Instrumentation Biomedical, Medical Signal Processing, Real world case studies	08
	TOTAL	52

<u>Reference Books</u> :-

1. Virtual Instrumentation Using Labview by Jerome J (Author) PHI

2. Virtual Instrumentation using LABVIEW Principles and practices of graphical programming, 2nd edition, May 2010 by Sanjay Gupta and Joseph John, Tata McGraw Hill Publication

3. Gary Johnson, LabVIEW Graphical Programming, Second edition, McGraw Hill, New York, 1997.

4. PC interfacing for Data Acquisition & process control, by S. Gupta, J.P.Gupta

5. Kevin James, PC Interfacing and Data Acquisition: Techniques for Measurement, Instrumentation and Control, Newnes, 2000.

<u>Research Publications</u> :-

1. Rahman Jamal, Lothal Wenzel, "The Applicability of the Visual Programming Language LabVIEW to Large Real-World Applications" 1995, IEEE, 99-106

2. Željko Obrenovic, Dušan Starcevic, Emil Jovanov, "Virtual Instrumentation"

3. D.S.Benitez, A.Zaidi, A.Fitchet, P.A.Gaydecki and A.P.Fitzpatrick' "Virtual instrumentation for clinical assessment of cardiovascular and autonomic function" *IEE Proc.-Sci. Meus. Technol., Vol. 147, No. 6, November 2000,397-402*

Internal Assessment (IA) :-

Two tests must be conducted which should cover at least 80% of syllabus. The average marks of two tests should be considered as final IA marks

End Semester Examination :-

- 1. Question paper will comprise of 6 questions, each of 20 marks.
- 2. Total 4 questions need to be solved.

3. Question No.1 will be compulsory and based on entire syllabus wherein sub-questions of 2 to 5 marks will be asked.

4. Remaining questions will be selected from all the modules.

Course Code	Course Name	Credits
ILO2021	Project Management	03

Objectives:

- 1. To familiarize the students with the use of a structured methodology/approach for each and every unique project undertaken, including utilizing project management concepts, tools and techniques.
- 2. To appraise the students with the project management life cycle and make them knowledgeable about the various phases from project initiation through closure.

Outcomes: Learner will be able to...

- 1. Apply selection criteria and select an appropriate project from different options.
- 2. Write work break down structure for a project and develop a schedule based on it.
- 3. Identify opportunities and threats to the project and decide an approach to deal with them strategically.
- 4. Use Earned value technique and determine & predict status of the project.
- 5. Capture lessons learned during project phases and document them for future reference

Module	Detailed Contents	Hrs
01	Project Management Foundation: Definition of a project, Project Vs Operations, Necessity of project management, Triple constraints, Project life cycles (typical & atypical) Project phases and stage gate process. Role of project manager. Negotiations and resolving conflicts. Project management in various organization structures. PM knowledge areas as per Project Management Institute (PMI).	5
02	Initiating Projects: How to get a project started, Selecting project strategically, Project selection models (Numeric /Scoring Models and Non-numeric models), Project portfolio process, Project sponsor and creating charter; Project proposal. Effective project team, Stages of team development & growth (forming, storming, norming & performing), team dynamics.	6
03	Project Planning and Scheduling: Work Breakdown structure (WBS) and linear responsibility chart, Interface Co-ordination and concurrent engineering, Project cost estimation and budgeting, Top down and bottoms up budgeting, Networking and Scheduling techniques. PERT, CPM, GANTT chart. Introduction to Project Management Information System (PMIS).	8
04	 Planning Projects: Crashing project time, Resource loading and leveling, Goldratt's critical chain, Project Stakeholders and Communication plan. Risk Management in projects: Risk management planning, Risk identification and risk register. Qualitative and quantitative risk assessment, Probability and impact matrix. Risk response strategies for positive and negative risks 	6
05	 5.1 Executing Projects: Planning monitoring and controlling cycle. Information needs and reporting, engaging with all stakeholders of the projects. Team management, communication and project meetings. 5.2 Monitoring and Controlling Projects: Earned Value Management techniques for measuring value of work completed; Using milestones for measurement; change requests and scope creep. Project 	8

	audit.	
	5.3 Project Contracting	
	Project procurement management, contracting and outsourcing,	
	6.1 Project Leadership and Ethics:	
	Introduction to project leadership, ethics in projects.	
	Multicultural and virtual projects.	
	6.2 Closing the Project:	
06	Customer acceptance; Reasons of project termination, Various types of project	6
	terminations (Extinction, Addition, Integration, Starvation), Process of project	
	termination, completing a final report; doing a lessons learned analysis;	
	acknowledging successes and failures; Project management templates and other	
	resources; Managing without authority; Areas of further study.	

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. Jack Meredith & Samuel Mantel, Project Management: A managerial approach, Wiley India, 7thEd.
- 2. A Guide to the Project Management Body of Knowledge (PMBOK[®] Guide), 5th Ed, Project Management Institute PA, USA
- 3. Gido Clements, Project Management, Cengage Learning.
- 4. Gopalan, Project Management, , Wiley India
- 5. Dennis Lock, Project Management, Gower Publishing England, 9 th Ed.

Course Code	Course Name	Credits
ILO2022	Finance Management	03

Objectives:

- 1. Overview of Indian financial system, instruments and market
- 2. Basic concepts of value of money, returns and risks, corporate finance, working capital and its management
- 3. Knowledge about sources of finance, capital structure, dividend policy

Outcomes: Learner will be able to...

- 1. Understand Indian finance system and corporate finance
- 2. Take investment, finance as well as dividend decisions

Module	Detailed Contents	Hrs
	Overview of Indian Financial System: Characteristics, Components and	
01	 Functions of Financial System. Financial Instruments: Meaning, Characteristics and Classification of Basic Financial Instruments — Equity Shares, Preference Shares, Bonds-Debentures, Certificates of Deposit, and Treasury Bills. Financial Markets: Meaning, Characteristics and Classification of Financial Markets — Capital Market, Money Market and Foreign Currency Market Financial Institutions: Meaning, Characteristics and Classification of Financial Institutions — Commercial Banks, Investment-Merchant Banks and Stock Exchanges 	06
02	Concepts of Returns and Risks: Measurement of Historical Returns and Expected Returns of a Single Security and a Two-security Portfolio; Measurement of Historical Risk and Expected Risk of a Single Security and a Two-security Portfolio. Time Value of Money: Future Value of a Lump Sum, Ordinary Annuity, and Annuity Due; Present Value of a Lump Sum, Ordinary Annuity, and Annuity Due; Continuous Compounding and Continuous Discounting.	06
03	 Overview of Corporate Finance: Objectives of Corporate Finance; Functions of Corporate Finance—Investment Decision, Financing Decision, and Dividend Decision. Financial Ratio Analysis: Overview of Financial Statements—Balance Sheet, Profit and Loss Account, and Cash Flow Statement; Purpose of Financial Ratio Analysis; Liquidity Ratios; Efficiency or Activity Ratios; Profitability Ratios; Capital Structure Ratios: Stock Market Ratios: Limitations of Ratio Analysis. 	09
04	 Capital Budgeting: Meaning and Importance of Capital Budgeting; Inputs for Capital Budgeting Decisions; Investment Appraisal Criterion—Accounting Rate of Return, Payback Period, Discounted Payback Period, Net Present Value(NPV), Profitability Index, Internal Rate of Return (IRR), and Modified Internal Rate of Return (MIRR) Working Capital Management: Concepts of Meaning Working Capital; Importance of Working Capital Management; Factors Affecting an Entity's Working Capital Needs; Estimation of Working Capital Requirements; Management of Inventories; Management of Receivables; and Management of Cash and Marketable Securities. 	10
05	Sources of Finance: Long Term Sources—Equity, Debt, and Hybrids; Mezzanine Finance; Sources of Short Term Finance—Trade Credit, Bank Finance, Commercial Paper; Project Finance.	05

	Capital Structure: Factors Affecting an Entity's Capital Structure; Overview of	
	Capital Structure Theories and Approaches— Net Income Approach, Net	
	Operating Income Approach; Traditional Approach, and Modigliani-Miller	
	Approach. Relation between Capital Structure and Corporate Value; Concept of	
	Optimal Capital Structure	
	Dividend Policy: Meaning and Importance of Dividend Policy; Factors	
06	Affecting an Entity's Dividend Decision; Overview of Dividend Policy Theories	02
00	and Approaches-Gordon's Approach, Walter's Approach, and Modigliani-	05
	Miller Approach	

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. Fundamentals of Financial Management, 13th Edition (2015) by Eugene F. Brigham and Joel F. Houston; Publisher: Cengage Publications, New Delhi.
- 2. Analysis for Financial Management, 10th Edition (2013) by Robert C. Higgins; Publishers: McGraw Hill Education, New Delhi.
- 3. Indian Financial System, 9th Edition (2015) by M. Y. Khan; Publisher: McGraw Hill Education, New Delhi.
- Financial Management, 11th Edition (2015) by I. M. Pandey; Publisher: S. Chand (G/L) & Company Limited, New Delhi.

Course Code	Course Name	Credits
ILO2023	Enterpreneurship Development and Management	03

Objectives:

- 1. To acquaint with entrepreneurship and management of business
- 2. Understand Indian environment for entrepreneurship
- 3. Idea of EDP, MSME

Outcomes: Learner will be able to...

- 1. Understand the concept of business plan and ownerships
- 2. Interpret key regulations and legal aspects of entrepreneurship in India
- 3. Understand government policies for entrepreneurs

Module	Detailed Contents	Hrs
01	Overview Of Entrepreneurship: Definitions, Roles and Functions/Values of Entrepreneurship, History of Entrepreneurship Development, Role of Entrepreneurship in the National Economy, Functions of an Entrepreneur, Entrepreneurship and Forms of Business Ownership Role of Money and Capital Markets in Entrepreneurial Development: Contribution of Government Agencies in Sourcing information for Entrepreneurship	04
02	Business Plans And Importance Of Capital To Entrepreneurship: Preliminary and Marketing Plans, Management and Personnel, Start-up Costs and Financing as well as Projected Financial Statements, Legal Section, Insurance, Suppliers and Risks, Assumptions and Conclusion, Capital and its Importance to the Entrepreneur Entrepreneurship And Business Development: Starting a New Business, Buying an Existing Business, New Product Development, Business Growth and the Entrepreneur Law and its Relevance to Business Operations	09
03	Women's Entrepreneurship Development, Social entrepreneurship-role and need, EDP cell, role of sustainability and sustainable development for SMEs, case studies, exercises	05
04	Indian Environment for Entrepreneurship: key regulations and legal aspects, MSMED Act 2006 and its implications, schemes and policies of the Ministry of MSME, role and responsibilities of various government organisations, departments, banks etc., Role of State governments in terms of infrastructure developments and support etc., Public private partnerships, National Skill development Mission, Credit Guarantee Fund, PMEGP, discussions, group exercises etc	08
05	Effective Management of Business: Issues and problems faced by micro and small enterprises and effective management of M and S enterprises (risk management, credit availability, technology innovation, supply chain management, linkage with large industries), exercises, e-Marketing	08
06	Achieving Success In The Small Business: Stages of the small business life cycle, four types of firm-level growth strategies, Options – harvesting or closing small business Critical Success factors of small business	05

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. Poornima Charantimath, Entrepreneurship development- Small Business Enterprise, Pearson
- 2. Education Robert D Hisrich, Michael P Peters, Dean A Shapherd, Entrepreneurship, latest edition, The McGrawHill Company
- 3. Dr TN Chhabra, Entrepreneurship Development, Sun India Publications, New Delhi
- 4. Dr CN Prasad, Small and Medium Enterprises in Global Perspective, New century Publications, New Delhi
- 5. Vasant Desai, Entrepreneurial development and management, Himalaya Publishing House
- 6. Maddhurima Lall, Shikah Sahai, Entrepreneurship, Excel Books
- 7. Rashmi Bansal, STAY hungry STAY foolish, CIIE, IIM Ahmedabad
- 8. Law and Practice relating to Micro, Small and Medium enterprises, Taxmann Publication Ltd.
- 9. Kurakto, Entrepreneurship- Principles and Practices, Thomson Publication
- 10. Laghu Udyog Samachar
- 11. www.msme.gov.in
- 12. www.dcmesme.gov.in
- 13. www.msmetraining.gov.in

Course Code	Course Name	Credits
ILO2024	Human Resource Management	03

Objectives:

- 1. To introduce the students with basic concepts, techniques and practices of the human resource management.
- 2. To provide opportunity of learning Human resource management (HRM) processes, related with the functions, and challenges in the emerging perspective of today's organizations.
- 3. To familiarize the students about the latest developments, trends & different aspects of HRM.
- 4. To acquaint the student with the importance of inter-personal & inter-group behavioral skills in an organizational setting required for future stable engineers, leaders and managers.

Outcomes: Learner will be able to...

- 1. Understand the concepts, aspects, techniques and practices of the human resource management.
- 2. Understand the Human resource management (HRM) processes, functions, changes and challenges in today's emerging organizational perspective.
- 3. Gain knowledge about the latest developments and trends in HRM.
- 4. Apply the knowledge of behavioral skills learnt and integrate it with in inter personal and intergroup environment emerging as future stable engineers and managers.

Module	Detailed Contents	Hrs
01	 Introduction to HR Human Resource Management- Concept, Scope and Importance, Interdisciplinary Approach Relationship with other Sciences, Competencies of HR Manager, HRM functions. Human resource development (HRD): changing role of HRM – Human resource Planning, Technological change, Restructuring and rightsizing, Empowerment, TQM, Managing ethical issues. 	5
02	 Organizational Behavior (OB) Introduction to OB Origin, Nature and Scope of Organizational Behavior, Relevance to Organizational Effectiveness and Contemporary issues Personality: Meaning and Determinants of Personality, Personality development, Personality Types, Assessment of Personality Traits for Increasing Self Awareness Perception: Attitude and Value, Effect of perception on Individual Decision- making, Attitude and Behavior. Motivation: Theories of Motivation and their Applications for Behavioral Change (Maslow, Herzberg, McGregor); Group Behavior and Group Dynamics: Work groups formal and informal groups and stages of group development. Team Effectiveness: High performing teams, Team Roles, cross functional and self-directed team. 	7
03	 Organizational Structure &Design Structure, size, technology, Environment of organization; Organizational Roles & conflicts: Concept of roles; role dynamics; role conflicts and stress. Leadership: Concepts and skills of leadership, Leadership and managerial roles, Leadership styles and contemporary issues in leadership. 	6

	• Power and Politics: Sources and uses of power; Politics at workplace, Tactics and strategies.	
	Human resource Planning	
	• Recruitment and Selection process, Job-enrichment, Empowerment - Job- Satisfaction, employee morale.	
04	• Performance Appraisal Systems: Traditional & modern methods, Performance Counseling, Career Planning.	5
	Training & Development: Identification of Training Needs, Training Methods	
	Emerging Trends in HR	
	• Organizational development; Business Process Re-engineering (BPR), BPR as a tool for organizational development, managing processes & transformation in	
05	HR. Organizational Change, Culture, Environment	6
05	Cross Cultural Leadership and Decision Making: Cross Cultural	0
	Communication and diversity at work, Causes of diversity, managing diversity	
	with special reference to handicapped, women and ageing people, intra	
	company cultural difference in employee motivation.	
	HR & MIS	
	Need, purpose, objective and role of information system in HR, Applications in	
	HRD in various industries (e.g. manufacturing R&D, Public Transport,	
	Hospitals, Hotels and service industries	
06	Pole of Strategic HPM in the modern business world. Concept of Strategy	10
00	Strategic Management Process Approaches to Strategic Decision Making	10
	Strategic Intent – Corporate Mission Vision Objectives and Goals	
	Labor Laws & Industrial Relations	
	Evolution of IR, IR issues in organizations, Overview of Labor Laws in India;	
	Industrial Disputes Act, Trade Unions Act, Shops and Establishments Act	

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. Stephen Robbins, Organizational Behavior, 16th Ed, 2013
- 2. V S P Rao, Human Resource Management, 3rd Ed, 2010, Excel publishing
- 3. Aswathapa, Human resource management: Text & cases, 6th edition, 2011
- C. B. Mamoria and S V Gankar, Dynamics of Industrial Relations in India, 15th Ed, 2015, Himalaya Publishing, 15thedition, 2015
- 5. P. Subba Rao, Essentials of Human Resource management and Industrial relations, 5th Ed, 2013, Himalaya Publishing
- 6. Laurie Mullins, Management & Organizational Behavior, Latest Ed, 2016, Pearson Publications

Course Code	Course Name	Credits
ILO2025	Professional Ethics and Corporat Social Responsibility (CSR)	03

Objectives:

- 1. To understand professional ethics in business
- 2. To recognized corporate social responsibility

Outcomes: Learner will be able to...

- 1. Understand rights and duties of business
- 2. Distinguish different aspects of corporate social responsibility
- 3. Demonstrate professional ethics
- 4. Understand legal aspects of corporate social responsibility

Module	Detailed Contents	Hrs
01	Professional Ethics and Business: The Nature of Business Ethics; Ethical Issues in Business; Moral Responsibility and Blame; Utilitarianism: Weighing Social Costs and Benefits; Rights and Duties of Business	04
02	 Professional Ethics in the Marketplace: Perfect Competition; Monopoly Competition; Oligopolistic Competition; Oligopolies and Public Policy Professional Ethics and the Environment: Dimensions of Pollution and Resource Depletion; Ethics of Pollution Control; Ethics of Conserving Depletable Resources 	08
03	 Professional Ethics of Consumer Protection: Markets and Consumer Protection; Contract View of Business Firm's Duties to Consumers; Due Care Theory; Advertising Ethics; Consumer Privacy Professional Ethics of Job Discrimination: Nature of Job Discrimination; Extent of Discrimination; Reservation of Jobs. 	06
04	Introduction to Corporate Social Responsibility: Potential Business Benefits—Triple bottom line, Human resources, Risk management, Supplier relations; Criticisms and concerns—Nature of business; Motives; Misdirection. Trajectory of Corporate Social Responsibility in India	05
05	Corporate Social Responsibility: Articulation of Gandhian Trusteeship Corporate Social Responsibility and Small and Medium Enterprises (SMEs) in India, Corporate Social Responsibility and Public-Private Partnership (PPP) in India	08
06	Corporate Social Responsibility in Globalizing India: Corporate Social Responsibility Voluntary Guidelines, 2009 issued by the Ministry of Corporate Affairs, Government of India, Legal Aspects of Corporate Social Responsibility—Companies Act, 2013.	08

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

University of Mumbai M.E.(Electronics Engineering) REV-2016

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. Business Ethics: Texts and Cases from the Indian Perspective (2013) by Ananda Das Gupta; Publisher: Springer.
- 2. Corporate Social Responsibility: Readings and Cases in a Global Context (2007) by Andrew Crane, Dirk Matten, Laura Spence; Publisher: Routledge.
- 3. Business Ethics: Concepts and Cases, 7th Edition (2011) by Manuel G. Velasquez; Publisher: Pearson, New Delhi.
- 4. Corporate Social Responsibility in India (2015) by BidyutChakrabarty, Routledge, New Delhi.

Course Code	Course Name	Credits
ILO2026	Research Methodology	03

Objectives:

- 1. To understand Research and Research Process
- 2. To acquaint students with identifying problems for research and develop research strategies
- 3. To familiarize students with the techniques of data collection, analysis of data and interpretation

Outcomes: Learner will be able to...

- 1. Prepare a preliminary research design for projects in their subject matter areas
- 2. Accurately collect, analyze and report data
- 3. Present complex data or situations clearly
- 4. Review and analyze research findings

Module	Detailed Contents	Hrs
	Introduction and Basic Research Concepts	
01	 1.1 Research – Definition; Concept of Construct, Postulate, Proposition, Thesis, Hypothesis, Law, Principle.Research methods vs Methodology 1.2 Need of Research in Business and Social Sciences 1.3 Objectives of Research 1.4 Issues and Problems in Research 1.5 Characteristics of Research:Systematic, Valid, Verifiable, Empirical and Critical 	09
	Types of Research	
	2.1. Dasie Research	
02	2.2. Applied Research	07
•=	2.4. Analytical Research	07
	2.5 . Empirical Research	
	2.6 Qualitative and Quantitative Approaches	
	Research Design and Sample Design	
03	3.1 Research Design – Meaning, Types and Significance	07
	3.2 Sample Design – Meaning and Significance Essentials of a good sampling	07
	Stages in Sample Design Sampling methods/techniques Sampling Errors	
	Kesearch Methodology	
	4.1 Meaning of Research Methodology 4.2 Stages in Scientific Research Process:	
	4.2. Stages III Scientific Research Problem	
	b Formulation of Research Problem	
	c. Review of Literature	
04	d. Formulation of Hypothesis	08
•••	e. Formulation of research Design	
	f. Sample Design	
	g. Data Collection	
	h. Data Analysis	
	i. Hypothesis testing and Interpretation of Data	
	j. Preparation of Research Report	
_	Formulating Research Problem	_
05	5.1 Considerations: Relevance, Interest, Data Availability, Choice of data,	04
	Analysis of data, Generalization and Interpretation of analysis	
06	Outcome of Research 6.1 Preparation of the report on conclusion reached	04
----	---	----
	6.2 Validity Testing & Ethical Issues 6.3 Suggestions and Recommendation	
	0.3 Suggestions and Recommendation	

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or at least 6 assignment on complete syllabus or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. Dawson, Catherine, 2002, Practical Research Methods, New Delhi, UBS Publishers Distributors.
- 2. Kothari, C.R., 1985, Research Methodology-Methods and Techniques, New Delhi, Wiley Eastern Limited.
- 3. Kumar, Ranjit, 2005, Research Methodology-A Step-by-Step Guide for Beginners, (2nded), Singapore, Pearson Education

Course Code	Course Name	Credits
ILO2027	IPR and Patenting	03

Objectives:

- 1. To understand intellectual property rights protection system
- 2. To promote the knowledge of Intellectual Property Laws of India as well as International treaty procedures
- 3. To get acquaintance with Patent search and patent filing procedure and applications

Outcomes: Learner will be able to...

- 1. understand Intellectual Property assets
- 2. assist individuals and organizations in capacity building
- 3. work for development, promotion, protection, compliance, and enforcement of Intellectual Property and Patenting

Module	Detailed Contents	Hr
01	 Introduction to Intellectual Property Rights (IPR): Meaning of IPR, Different category of IPR instruments - Patents, Trademarks, Copyrights, Industrial Designs, Plant variety protection, Geographical indications, Transfer of technology etc. Importance of IPR in Modern Global Economic Environment: Theories of IPR, Philosophical aspects of IPR laws, Need for IPR, IPR as an instrument of development 	05
02	Enforcement of Intellectual Property Rights: Introduction, Magnitude of problem, Factors that create and sustain counterfeiting/piracy, International agreements, International organizations (e.g. WIPO, WTO) activein IPR enforcement Indian Scenario of IPR: Introduction, History of IPR in India, Overview of IP laws in India, Indian IPR, Administrative Machinery, Major international treaties signed by India, Procedure for submitting patent and Enforcement of IPR at national level etc.	07
03	Emerging Issues in IPR: Challenges for IP in digital economy, e-commerce, human genome, biodiversity and traditional knowledge etc.	05
04	Basics of Patents: Definition of Patents, Conditions of patentability, Patentable and non-patentable inventions, Types of patent applications (e.g. Patent of addition etc), Process Patent and Product Patent, Precautions while patenting, Patent specification Patent claims, Disclosures and non-disclosures, Patent rights and infringement, Method of getting a patent	07
05	Patent Rules: Indian patent act, European scenario, US scenario, Australia scenario, Japan scenario, Chinese scenario, Multilateral treaties where India is a member (TRIPS agreement, Paris convention etc.)	08
06	 Procedure for Filing a Patent (National and International): Legislation and Salient Features, Patent Search, Drafting and Filing Patent Applications, Processing of patent, Patent Litigation, Patent Publicationetc, Time frame and cost, Patent Licensing, Patent Infringement Patent databases: Important websites, Searching international databases 	07

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or at least 6 assignment on complete syllabus or course project.

University of Mumbai M.E.(Electronics Engineering) REV-2016

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCE BOOKS:

- 1. Rajkumar S. Adukia, 2007, A Handbook on Laws Relating to Intellectual Property Rights in India, The Institute of Chartered Accountants of India
- 2. Keayla B K, Patent system and related issues at a glance, Published by National Working Group on Patent Laws
- 3. T Sengupta, 2011, Intellectual Property Law in India, Kluwer Law International
- 4. Tzen Wong and Graham Dutfield, 2010, Intellectual Property and Human Development: Current Trends and Future Scenario, Cambridge University Press
- 5. Cornish, William Rodolph & Llewelyn, David. 2010, Intellectual Property: Patents, Copyrights, Trade Marks and Allied Right, 7th Edition, Sweet & Maxwell
- 6. Lous Harns, 2012, The enforcement of Intellactual Property Rights: A Case Book, 3rd Edition, WIPO
- 7. Prabhuddha Ganguli, 2012, Intellectual Property Rights, 1st Edition, TMH
- 8. R Radha Krishnan & S Balasubramanian, 2012, Intellectual Property Rights, 1st Edition, Excel Books
- 9. M Ashok Kumar and mohd Iqbal Ali, 2-11, Intellectual Property Rights, 2nd Edition, Serial Publications
- 10. Kompal Bansal and Praishit Bansal, 2012, Fundamentals of IPR for Engineers, 1st Edition, BS Publications
- 11. Entrepreneurship Development and IPR Unit, BITS Pilani, 2007, A Manual on Intellectual Property Rights,
- 12. Mathew Y Maa, 2009, Fundamentals of Patenting and Licensing for Scientists and Engineers, World Scientific Publishing Company
- 13. N S Rathore, S M Mathur, Priti Mathur, Anshul Rathi, IPR: Drafting,Interpretation of Patent Specifications and Claims, New India Publishing Agency
- 14. Vivien Irish, 2005, Intellectual Property Rights for Engineers, IET
- 15. Howard B Rockman, 2004, Intellectual Property Law for Engineers and scientists, Wiley-IEEE Press

Course Code	Course Name	Credits
ILO2028	Digital Business Management	03

Objectives:

- 1. To familiarize with digital business concept
- 2. To acquaint with E-commerce
- 3. To give insights into E-business and its strategies

Outcomes: The learner will be able to

- 1. Identify drivers of digital business
- 2. Illustrate various approaches and techniques for E-business and management
- 3. Prepare E-business plan

Module	Detailed content	Hours
1	 Introduction to Digital Business- Introduction, Background and current status, E-market places, structures, mechanisms, economics and impacts Difference between physical economy and digital economy, Drivers of digital business- Big Data & Analytics, Mobile, Cloud Computing, Social media, BYOD, and Internet of Things(digitally intelligent machines/services) Opportunities and Challenges in Digital Business, 	09
2	Overview of E-Commerce E-Commerce- Meaning, Retailing in e-commerce-products and services, consumer behavior, market research and advertisement B2B-E-commerce-selling and buying in private e-markets, public B2B exchanges and support services, e-supply chains, Collaborative Commerce, Intra business EC and Corporate portals Other E-C models and applications, innovative EC System-From E- government and learning to C2C, mobile commerce and pervasive computing EC Strategy and Implementation-EC strategy and global EC, Economics and Justification of EC, Using Affiliate marketing to promote your e- commerce business, Launching a successful online business and EC project. Legal. Ethics and Societal impacts of EC	06
3	Digital Business Support services : ERP as e –business backbone, knowledge Tope Apps, Information and referral system Application Development: Building Digital business Applications and Infrastructure	06
4	Managing E-Business-Managing Knowledge, Management skills for e- business, Managing Risks in e –business Security Threats to e-business -Security Overview, Electronic Commerce Threats, Encryption, Cryptography, Public Key and Private Key Cryptography, Digital Signatures, Digital Certificates, Security Protocols over Public Networks: HTTP, SSL, Firewall as Security Control, Public Key Infrastructure (PKI) for Security, Prominent Cryptographic Applications	06

5	E-Business Strategy -E-business Strategic formulation- Analysis of Company's Internal and external environment, Selection of strategy, E-business strategy into Action, shallonges and E-Transition	04
	D-business sualegy into Action, chancinges and D-mainstiton	
	(Process of Digital Transformation)	
6	Materializing e-business: From Idea to Realization-Business plan preparation	
		08
	Case Studies and presentations	

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or at least 6 assignment on complete syllabus or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

References:

- 1. A textbook on E-commerce, Er Arunrajan Mishra, Dr W K Sarwade, Neha Publishers & Distributors, 2011
- 2. E-commerce from vision to fulfilment, Elias M. Awad, PHI-Restricted, 2002
- 3. Digital Business and E-Commerce Management, 6th Ed, Dave Chaffey, Pearson, August 2014
- 4. Introduction to E-business-Management and Strategy, Colin Combe, ELSVIER, 2006
- 5. Digital Business Concepts and Strategy, Eloise Coupey, 2nd Edition, Pearson
- 6. Trend and Challenges in Digital Business Innovation, VinocenzoMorabito, Springer
- 7. Digital Business Discourse Erika Darics, April 2015, Palgrave Macmillan
- 8. E-Governance-Challenges and Opportunities in : Proceedings in 2nd International Conference theory and practice of Electronic Governance
- 9. Perspectives the Digital Enterprise -A framework for Transformation, TCS consulting journal Vol.5
- 10. Measuring Digital Economy-A new perspective -DOI: 10.1787/9789264221796-en OECD Publishing

Course Code	Course Name	Credits
ILO2029	Environmental Management	03

Objectives:

- 1. Understand and identify environmental issues relevant to India and global concerns
- 2. Learn concepts of ecology
- 3. Familiarise environment related legislations

Outcomes: Learner will be able to...

- 1. Understand the concept of environmental management
- 2. Understand ecosystem and interdependence, food chain etc.
- 3. Understand and interpret environment related legislations

Module	Detailed Contents	Hrs
01	Introduction and Definition of Environment: Significance of Environment Management for contemporary managers, Career opportunities. Environmental issues relevant to India, Sustainable Development, The Energy scenario.	10
02	Global Environmental concerns : Global Warming, Acid Rain, Ozone Depletion, Hazardous Wastes, Endangered life-species, Loss of Biodiversity, Industrial/Man-made disasters, Atomic/Biomedical hazards, etc.	06
03	Concepts of Ecology: Ecosystems and interdependence between living organisms, habitats, limiting factors, carrying capacity, food chain, etc.	05
04	Scope of Environment Management, Role & functions of Government as a planning and regulating agency. Environment Quality Management and Corporate Environmental Responsibility	10
05	Total Quality Environmental Management, ISO-14000, EMS certification.	05
06	General overview of major legislations like Environment Protection Act, Air (P & CP) Act, Water (P & CP) Act, Wildlife Protection Act, Forest Act, Factories Act, etc.	03

Assessment:

Internal:

Assessment consists of two tests out of which; one should be compulsory class test and the other is either a class test or assignment on live problems or course project.

End Semester Theory Examination:

Some guidelines for setting up the question paper. Minimum 80% syllabus should be covered in question papers of end semester examination. In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

- 1. Question paper will comprise of total six question
- 2. All question carry equal marks
- 3. Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4. Only Four question need to be solved.

REFERENCES:

- 1. Environmental Management: Principles and Practice, C J Barrow, Routledge Publishers London, 1999
- 2. A Handbook of Environmental Management Edited by Jon C. Lovett and David G. Ockwell, Edward Elgar Publishing
- 3. Environmental Management, T V Ramachandra and Vijay Kulkarni, TERI Press
- 4. Indian Standard Environmental Management Systems Requirements With Guidance For Use, Bureau Of Indian Standards, February 2005
- 5. Environmental Management: An Indian Perspective, S N Chary and Vinod Vyasulu, Maclillan India, 2000
- 6. Introduction to Environmental Management, Mary K Theodore and Louise Theodore, CRC Press
- 7. Environment and Ecology, Majid Hussain, 3rd Ed. Access Publishing.2015

Course	Course Name	Teacl	hing Scheme	e (Hrs)	Credits Assigned			
Code	Course Maine	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELXL2021	Digital Design with Reconfigurable Architecture Laboratory – III		02			01		01

		Examination Scheme								
Subject		Theory Marks Internal assessment			heory Marks					
Codo	Subject Name				End	rerm	Dreatical	Oral	Tatal	
Code		Test	Test	Average	Sem	Work	Work	riactical	Ulai	Total
		1	2		Exam					
	Digital Design									
	with									
ELXL2021	Reconfigurable					25		25	50	
	Architecture									
	Laboratory – III									

Suggested List of Experiments (Any six) :-

Students will have to perform at least one experiment on each module and submit certified journal having a minimum of 8 experiments.

Module No.	List of Experiments						
	Design of Mealy machine using ICs.						
1	Design of Moore machine using ICs. Analysis of Mealy machine circuit assembled using ICs						
	Analysis of Moore machine circuit assembled using ICs.						
2	Simulation of multiplexer using VHDL.						
4	Simulation of register using VHDL.						
3	Simulation of Mealy machine using VHDL.						
	Simulation of Moore using VHDL.						
1	Simulation of multiplier using VHDL.						
	Simulation of divider using VHDL.						
	Hardware implementation of multiplexer on FPGA kit.						
5	Hardware implementation of Mealy machine on FPGA kit.						
	Hardware implementation of Moore machine on FPGA kit.						
	Hardware implementation of multiplier on FPGA kit.						

Course Code	Course Nome	Teac	hing Scheme	(Hrs)	Credits Assigned			
Course Code	Course Maine	Theory	Practical	Tutorial	Theory	Practical	Tutorial	Total
ELXL2022	Advanced Signal Processing Laboratory – IV		02			01		01

Course Code	Course Name	Examination Scheme								
		Theory Marks								
		Internal assessment			End Term	Term	Dractical	Oral	Total	
		Test	Test	A verage	Sem Exam	Work	Tacucai	Ulai	Totai	
		1	2	Average						
ELXL2022	Advanced					25		25	50	
	Signal									
	Processing									
	Laboratory – IV									

Course Pre-Requisites:-

- 1. Basic knowledge of Signals and Systems, DSP.
- 2. Acquaintance of Simulation languages and software tools.

Course Objectives:-

- 1. To design and simulate basic DSP systems and multirate systems for practical applications.
- 2. To design & simulate DSP systems for spectral analysis of signals and optimum filters for different applications
- 3. To design and simulate adaptive filters for real world applications

Course Outcomes:-

- 1. Ability to implement basic DSP algorithms and multirate techniques for various situations.
- 2. Ability to implement optimum filters for real world applications and extract spectral information.
- 3. Ability to design and test adaptive filter systems for practical applications.

List of Experiments.

- 1. Basic filtering operations, noise reduction FIR filter, enhancement of ECG signal using notch filtering etc.
- 2. IIR filter. Simulation of Digital audio equalizer.
- 3. Biomedical signal processing, ECG signal processing.
- 4. Algorithms in DTMF tone generation.
- 5. Oversampling and Analog to digital conversion & resolution.
- 6. Sampling rate reduction by an integer factor, sampling rate increase by an integer factor.
- 7. Changing Sampling rate by a non integer factor L/M.
- 8. Upsampling and Interpolation filter processes in CD audio systems.
- 9. Noise cancellation using adaptive filters.
- 10. System modeling using adaptive filters.
- 11. Line enhancement using linear prediction.
- 12. Sub-band decomposition and two channel perfect reconstructions QMF bank.

Students are required to perform any six experiments from the above list covering most of the topics in Advanced Signal processing and perform one mini project preferably based on any of the above topics 2, 4, 8 or 12.

SEMESTER III

Course Code	Course Name	Credits
ELXS3031	Seminar	03

Guidelines for Seminar

- Seminar should be based on thrust areas in Electronics and Telecommunication Engineering
- Students should do literature survey and identify the topic of seminar and finalize in consultation with Guide/Supervisor.
- Students should use multiple literatures and understand the topic and compile the report in standard format and present infront of Panel of Examiners appointed by the Head of the Department/Institute of respective Programme.

Seminar should be assessed based on following points

- Quality of Literature survey and Novelty in the topic
- Relevance to the specialization
- Understanding of the topic
- Quality of Written and Oral Presentation

IMPORTANT NOTE:

- 1. Assessment of Seminar will be carried out by a pair of Internal and External examiner. The external examiner should be selected from approved panel of examiners for Seminar by University of Mumbai, OR faculty from Premier Educational Institutions /Research Organizations such as IIT, NIT, BARC, TIFR, DRDO, etc. OR a person having minimum Post-Graduate qualification with at least five years' experience in Industries.
- 2. Literature survey in case of seminar is based on the broader area of interest in recent developments and for dissertation it should be focused mainly on identified problem.
- 3. At least 4-5 hours of course on Research Methodology should be conducted which includes Literature Survey, Problems Identification, Analysis and Interpretation of Results and Technical Paper Writing in the beginning of 3rd Semester.

SEMESTER III/IV

Course	Course Name	Credits
Code		
ELXD3031	Dissertation I/	12+
/ELXD4041	Dissertation-II	15

Guidelines for Dissertation

• Students should do literature survey and identify the problem for Dissertation and finalize in consultation with Guide/Supervisor. Students should use multiple literature and understand the problem. Students should attempt solution to the problem by analytical/simulation/experimental methods. The solution to be validated with proper justification and compile the report in standard format.

Guidelines for Assessment of Dissertation I

- Dissertation I should be assessed based on following points
- > Quality of Literature survey and Novelty in the problem
- Clarity of Problem definition and Feasibility of problem solution
- Relevance to the specialization
- Clarity of objective and scope
- Dissertation I should be assessed through a presentation by a panel of Internal examiners appointed by the Head of the Department/Institute of respective Programme.

Guidelines for Assessment of Dissertation II

- Dissertation II should be assessed based on following points
- Quality of Literature survey and Novelty in the problem
- Clarity of Problem definition and Feasibility of problem solution
- Relevance to the specialization or current Research / Industrial trends
- Clarity of objective and scope
- Quality of work attempted
- Validation of results
- > Quality of Written and Oral Presentation
- Dissertation II should be assessed through a presentation jointly by Internal and External Examiners appointed by the University of Mumbai
 - Students should publish at least one paper based on the work in reputed International / National Conference (desirably in Refereed Journal)